Bioinformatics

and Molecular

Evolution

C

N®F O R M AT

Paul G. Higgs and Teresa K. Attwood

BIOINFORMATICS AND MOLECULAR EVOLUTION

Bioinformatics
and Molecular
Evolution

Paul G. Higgs and Teresa K. Attwood

(Blackwell
’ Publishing

© 2005 by Blackwell Science Ltd
a Blackwell Publishing company

BLACKWELL PUBLISHING

350 Main Street, Malden, MA 02148-5020, USA

108 Cowley Road, Oxford 0X4 1]JF, UK

550 Swanston Street, Carlton, Victoria 3053, Australia

The right of Paul G. Higgs and Teresa K. Attwood to be identified as the Authors of this Work has been asserted in
accordance with the UK Copyright, Designs, and Patents Act 1988.

Allrights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK
Copyright, Designs, and Patents Act 1988, without the prior permission of the publisher.

First published 2005 by Blackwell Science Ltd
Library of Congress Cataloging-in-Publication Data

Higgs, Paul G.

Bioinformatics and molecular evolution / Paul G. Higgs and Teresa K. Attwood.

p.;cm.

Includes bibliographical references and index.

ISBN 1-4051-0683-2 (pbk. : alk. paper)

1. Molecular evolution—Mathematical models. 2. Bioinformatics.

[DNLM: 1. Computational Biology. 2. Evolution, Molecular. 3. Genetics. QU 26.5 H637b 2005]
I. Attwood, TeresaK. II. Title.

QH371.3.M37H54 2005
572.8—dc22
2004021066

A catalogue record for this title is available from the British Library.

Setin 9'/2/12pt Photina

by Graphicraft Limited, Hong Kong
Printed and bound in the United Kingdom
by TJ International, Padstow, Cornwall

The publisher’s policy is to use permanent paper from mills that operate a sustainable forestry policy, and which has
been manufactured from pulp processed using acid-free and elementary chlorine-free practices. Furthermore, the
publisher ensures that the text paper and cover board used have met acceptable environmental accreditation standards.

For further information on
Blackwell Publishing, visit our website:
www.blackwellpublishing.com

Short Contents

Preface X
Chapter plan Xiii
1 Introduction: The revolution in biological information 1
2 Nucleic acids, proteins, and amino acids 12
3 Molecular evolution and population genetics 37
4 Models of sequence evolution 58
5 Information resources for genes and proteins 81
6 Sequence alignment algorithms 119
7 Searching sequence databases 139
8 Phylogenetic methods 158
9 Patterns in protein families 195
10 Probabilistic methods and machine learning 227
11 Further topics in molecular evolution and phylogenetics 257
12 Genome evolution 283
13 DNA Microarrays and the ‘omes 313
Mathematical appendix 343
List of Web addresses 355
Glossary 357
Index 363

Full Contents

Preface

1T INTRODUCTION: THE

REVOLUTION IN BIOLOGICAL

INFORMATION

1.1 Dataexplosions

1.2 Genomics and high-throughput
techniques

1.3 Whatis bioinformatics?

1.4 Therelationship between population
genetics, molecular evolution, and
bioinformatics

Summary ® References ® Problems

2 NUCLEIC ACIDS, PROTEINS,
AND AMINO ACIDS
2.1 Nucleic acid structure
2.2 Protein structure
2.3 The central dogma
2.4 Physico-chemical properties of the
amino acids and their importance in
protein folding
2.1 Polymerase chain reaction
(PCR)
2.5 Visualization of amino acid properties
using principal component
analysis
2.6 Clustering amino acids according to
their properties
2.2 Principal component analysis
in more detail
Summary ® References ® Self-test
Biological background

12
12
14
16
22

23

25

28

29

34

3 MOLECULAR EVOLUTION AND

POPULATION GENETICS
3.1 Whatisevolution?
3.2 Mutations
3.3 Sequence variation within and
between species
3.4 Genealogical trees and coalescence
3.5 Thespread of new mutations
3.6 Neutral evolution and adaptation
3.1 The influence of selection on
the fixation probability
3.2 Adeterministic theory for
the spread of mutations
Summary ® References ® Problems

4 MODELS OF SEQUENCE
EVOLUTION
4.1 Models of nucleic acid sequence
evolution
4.1 Solution of the Jukes—-Cantor
model
4.2 The PAM model of protein sequence
evolution
4.2 PAM distances
4.3 Log-odds scoring matrices for amino
acids
Summary ® References ® Problems ®
Self-test Molecular evolution

5 INFORMATION RESOURCES
FOR GENES AND PROTEINS

5.1 Why build a database?

5.2 Database file formats

37
37
39
40
44
46
49
50
51
54
58
58
61

65
70

71

76

81

81
82

5.3 Nucleic acid sequence databases

5.4 Protein sequence databases

5.5 Protein family databases

5.6 Composite protein pattern
databases

5.7 Protein structure databases

5.8 Other types of biological database

Summary ® References

6 SEQUENCE ALIGNMENT

ALGORITHMS

6.1 Whatisan algorithm?

6.2 Pairwise sequence alignment —
The problem

6.3 Pairwise sequence alignment —
Dynamic programming methods

6.4 The effect of scoring parameters on
the alignment

6.5 Multiple sequence alignment

Summary ® References ® Problems

7 SEARCHING SEQUENCE

DATABASES

7.1 Similarity search tools

7.2 Alignment statistics (in theory)
7.1 Extreme value distributions

7.2 Derivation of the extreme
value distribution in the
word-matching example

7.3 Alignment statistics (in practice)
Summary ® References ® Problems ®
Self-test Alignments and database
searching

8 PHYLOGENETIC METHODS

8.1 Understanding phylogenetic trees

8.2 Choosing sequences

8.3 Distance matrices and clustering
methods
8.1 Calculation of distances in the

neighbor-joining method

8.4 Bootstrapping

8.5 Tree optimization criteria and tree
search methods

83
89
95

108
111
113
115

119

119

121

123

127

130
136

139
139
147
151

152
153

155

158
158
161
162

167
169

171

8.6 The maximum-likelihood criterion
8.2 Calculating the likelihood of
the data on a given tree
8.7 The parsimony criterion
8.8 Other methodsrelated to maximum
likelihood
8.3 Calculating posterior
probabilities
Summary @ References ® Problems @
Self-test Phylogenetic methods

9 PATTERNS IN PROTEIN

FAMILIES

9.1 Going beyond pairwise alignment
methods for database searches

9.2 Regular expressions

9.3 Fingerprints

9.4 Profiles and PSSMs

9.5 Biological applications—G
protein-coupled receptors

Summary @ References ® Problems @

Self-test Protein families and databases

10 PROBABILISTIC
METHODS AND MACHINE
LEARNING
10.1 Using machine learning for
pattern recognition in
bioinformatics
10.2 Probabilistic models of sequences —
Basic ingredients
10.1 Dirichlet prior distributions
10.3 Introducing hidden Markov models
@ 10.2 The Viterbi algorithm

10.3 The forward and backward
algorithms
10.4 Profile hidden Markov models
10.5 Neural networks
10.4 The back-propagation
algorithm
10.6 Neural networks and protein
secondary structure prediction
Summary ® References ® Problems

173

174
177

179

182

185

195
195
197
200
205
208

216

227

227

228
232
234
238

239
241
244

249

250
253

11 FURTHER TOPICS IN

MOLECULAR EVOLUTION AND

PHYLOGENETICS

11.1 RNA structure and evolution

11.2 Fitting evolutionary models to
sequence data

11.3 Applications of molecular
phylogenetics

Summary ® References

12 GENOME EVOLUTION
12.1 Prokaryotic genomes
12.1 Web resources for bacterial
genomes
12.2 Organellar genomes
Summary ® References

13 DNA MICROARRAYS AND
THE 'OMES
13.1 ’'Omesand ’omics
13.2 How do microarrays work?
13.3 Normalization of microarray data
13.4 Patternsin microarray data
13.5 Proteomics
13.6 Information management for
the 'omes

257
257

266

272
279

283
283

284
298
309

313
313
314
316
319
325

330

@ 13.1 Examples from the Gene
Ontology
Summary ® References ® Self-test

MATHEMATICAL APPENDIX

M.1 Exponentials and logarithms

M.2 Factorials

M.3 Summations

M.4 Products

M.5 Permutations and combinations

M.6 Differentiation

M.7 Integration

M.8 Differential equations

M.9 Binomial distributions

M.10 Normal distributions

M.11 Poisson distributions

M.12 Chi-squared distributions

M.13 Gamma functions and gamma
distributions

Problems ® Self-test

List of Web addresses
Glossary
Index

335
337

343
343
344
344
345
345
346
347
347
348
348
350
351

352
353

355
357
363

Preface

RATIONALE

Degree programs in bioinformatics at Masters or
undergraduate level are becoming increasingly
common and single courses in bioinformatics and
computational biology are finding their way into
many types of degrees in biological sciences. This
book satisfies a need for a textbook that explains the
scientific concepts and computational methods of
bioinformatics and how they relate to current
research in biological sciences. The content is based
on material taught by both authors on the MSc pro-
gram in bioinformatics at the University of Man-
chester, UK, and on an upper level undergraduate
course in computational biology taught by P. Higgs
at McMaster University, Ontario.

Many fundamental concepts in bioinformatics,
such as sequence alignments, searching for homolo-
gous sequences, and building phylogenetic trees, are
linked to evolution. Also, the availability of complete
genome sequences provides a wealth of new data for
evolutionary studies at the whole-genome level, and
new bioinformatics methods are being developed
that operate at this level. This book emphasizes the
evolutionary aspects of bioinformatics, and includes
a lot of material that will be of use in courses on
molecular evolution, and which up to now has not
been found in bioinformatics textbooks.

Bioinformatics chapters of this book explain the
need for computational methods in the current era
of complete genome sequences and high-through-
put experiments, introduce the principal biological
databases, and discuss methods used to create and

X

search them. Algorithms for sequence alignment,
identification of conserved motifs in protein families,
and pattern-recognition methods using hidden
Markov models and neural networks are discussed
in detail. A full chapter on data analysis for micro-
arrays and proteomics is included.

Evolutionary chapters of the book begin with a brief
introduction to population genetics and the study
of sequence variation within and between popula-
tions, and move on to the description of the evolu-
tion of DNA and protein sequences. Phylogenetic
methods are covered in detail, and examples are
given of application of these methods to biological
questions. Factors influencing evolution at the level
of whole genomes are also discussed, and methods
for the comparison of gene content and gene order
between species are presented.

The twin themes of bioinformatics and molecular
evolution are woven throughout the book — see the
Chapter Plan diagram below. We have considered
several possible orders of presenting this material,
and reviewers of this book have also suggested their
own alternatives. There is no single right way to do
it, and we found that no matter in which order we
presented the chapters, there was occasionally need
to forward-reference material in a later chapter. This
order has been chosen so as to emphasize the links
between the two themes, and to proceed from back-
ground material through standard methods to more
advanced topics. Roughly speaking, we would con-
sider everything up to the end of Chapter 9 as fun-
damental material, and Chapters 10—13 as more
advanced methods or more recent applications.

Individual instructors are free to use any combina-
tion of chapters in whichever order suits them best.

This book is for people who want to understand
bioinformatics methods and who may want to go on
to develop methods for themselves. Intelligent use of
bioinformatics software requires a proper under-
standing of the mathematical and statistical meth-
ods underlying the programs. We expect that many
of our readers will be biological science students who
are not confident of their mathematical ability. We
therefore try to present mathematical material care-
fully at an accessible level. However, we do not avoid
the use of equations, since we consider the theoret-
ical parts of the book to be an essential aspect. More
detailed mathematical sections are placed in boxes
aside from the main text, where appropriate. The
book contains an appendix summarizing the back-
ground mathematics that we would hope bioin-
formatics students should know. In our experience,
students need to be encouraged to remember and
practice mathematical techniques that they have
been taught in their early undergraduate years but
have not had occasion to use.

We discuss computational algorithms in detail
but we do not cover programming languages or pro-
gramming methods, since there are many other
books on computing. Although we give some poin-
ters to available software and useful Web sites, this
book is not simply a list of programs and URLs. Such
material becomes out of date extremely quickly,

whereas the underlying methods and principles that
we focus on here retain their relevance.

Features

* Comprehensive coverage of bioinformatics in a
single text, including sequence analysis, biological
databases, pattern recognition, and applications to
genomics, microarrays, and proteomics.
* Places bioinformatics in the context of evolution-
ary biology, giving detailed treatments of molecular
evolution and molecular phylogenetics and dis-
cussing evolution at the whole-genome level.
* Emphasizes the theoretical and statistical methods
used in bioinformatics programs in a way that is
accessible to biological science students.
 Extended problem questions provide reinforcement
of concepts and application of chapter material.
¢ Periodic cumulative “self-tests” challenge the stu-
dents to synthesize and apply their overall under-
standing of the material up to that point.
» Accompanied by a dedicated Web site at
www.blackwellpublishing.com/higgs including the
following:

— all art in downloadable JPEG format (also avail-

able to instructors on CD-ROM)

— all answers to self-tests

— downloadable sequences

— links to Web resources.

ACKNOWLEDGMENTS

We wish to thank Andy Brass for his tremendous
input to the Manchester Bioinformatics MSc pro-
gram over many years, and for his “nose” for which
subjects are the important ones to teach. We thank
Magnus Rattray for his help on the theory and algo-
rithms module and for coming up with several of the
problem questions in this book. Thanks are also due
to several members of our research groups whose
work has helped with some of the topics covered
here: Vivek Gowri-Shankar, Daniel Jameson, Howsun
Jow, Bin Tang, and Anna Gaulton.

At Blackwell publishers, we would like to thank
Liz Marchant, from the UK office, who originally
commissioned this book, and Elizabeth Wald and
Nancy Whilton at the US office, who have given
advice and support in the later stages.

Paul Higgs would also like to thank the enlight-
ened administrative authorities at the University of
Manchester for employing a physicist in the biology
department and the equally enlightened represent-
atives of McMaster University for employing a bio-
informatician in the physics department. The jump
between disciplines and between institutions is not
too much of a stretch:

M--CMASTER
MANCHESTER

Paul Higgs
Terri Attwood
May 2004

Bioinformatics and Molecular Evolution

Chapter Plan

1 Introduction: The Revolution
in Biological Information

\/

2 Nucleic Acids, Proteins,
and Amino Acids

*ﬂ
s
|
e

\

5 Information Resources
for Genes and Proteins

v

6 Sequence Alignment
Algorithms

7 Searching Sequence
Databases

\4

9 Patterns in
Protein Families

\4

10 Probablistic Methods
and Machine Learning

\4

13 DNA Microarrays
and the 'Omes

MOLECULAR EVOLUTION BIOINFORMATICS METHODS

THEME

THEME

Introduction:
The revolution
in biological
information

CHAPTER PREVIEW

Here we consider the rapid expansion in the a
available and compare this to the expone
memory size that has occurred in the sa
why bioinformatics is now essentia
tained in the sequences, and for
tion. We also consider some
many of its foundations a
genetics. Thus, the reade|
formatics” and the rol

1.1 DATA EXPLOSIONS

In the past decade there has been an explosion in the
amount of DNA sequence data available, due to the
very rapid progress of genome sequencing projects.
There are three principal comprehensive databases
of nucleic acid sequences in the world today.

» The EMBL (European Molecular Biology Laborat-
ory) database is maintained at the European Bioin-
formatics Institute in Cambridge, UK (Stoesser et al.
2003).

* GenBank is maintained at the National Center
for Biotechnology Information in Maryland, USA
(Benson etal. 2003).

» The DDBJ (DNA Databank of Japan) is maintained
at the National Institute of Genetics in Mishima,
Japan (Miyazaki et al. 2003).

These three databases share information and hence
contain almost identical sets of sequences. The
objective of these databases is to ensure that DNA
sequence information is stored in a way that is

CHAPTER

publicly, and freely, accessible
and that it can be retrieved
and used by other researchers
in the future. Most scientific
journals require submission of
newly sequenced DNA to one
of the public databases before
a publication can be made
that relies on the sequence.
This policy has proved tremen-
dously successful for the pro-
gress of science, and hasled to a rapid increase in the
size and usage of sequence databases.

As a measure of the rapid increase in the total
available amount of sequence data, Fig. 1.1 and
Table 1.1 show the total length of all sequences in
GenBank, and the total number of sequences in
GenBank as a function of time. Note that the vertical
scale is logarithmic and the curves appear approx-
imately as straight lines. This means that the size of
GenBank is increasing exponentially with time (see
Problem 1.1). The dotted line in the figure is a
straight-line fit to the data for the total sequence
length (the 1982 point seemed to be an outlier and
was excluded). From this we can estimate that the
yearly multiplication factor (i.e., the factor by which
the amount of data goes up each year) is about 1.6,
and that the database doubles in size every 1.4
years. All those sequencing machines are working
hard! Interestingly, the curve for the number of
sequences almost exactly parallels the curve for the
total length. This means that the typical length of
one sequence entry in GenBank has remained at

Introduction: The revolution in biological information @ 1

1x 108

1x 106

10000

O Number of sequences
A Moore's law
--- Exponential growth

o Total sequence length (kbp)

Table 1.1 The growth of GenBank.

Year

1982
198

2 ® (Chapterl

2000

2010

Fig. 1.1 Comparison of the rate of
growth of the GenBank sequence (data
from Table 1.1) with the rate of growth
of the number of transistors in personal
computer chips (Moore's law: data
from Table 1.2). Dashed lines are fits

to an exponential growth law.

close to 1000. There are, of course, enormous vari-
ations in length between different sequence entries.

There is another famous exponentially increasing
curve that goes by the name of Moore’s law. Moore
(1965) noticed that the number of transistors in
integrated circuits appeared to be roughly doubling
every year over the period 1959-65. Data on the
size of Intel PC chips (Table 1.2) show that this
exponential increase is still continuing. Looking at
the data more carefully, however, we see that the
estimate of doubling every year is rather overoptim-
istic. The chip size is actually doubling every two
years and the yearly multiplication factor is 1.4.
Although extremely impressive, this is substantially
slower than the rate of increase of GenBank (see Fig.
1.1 and Table 1.3).

What about the world’s fastest supercomputers?
Jack Dongarra and colleagues from the University of
Tennessee introduced the LINPACK benchmark,
which measures the speed of computers at solving a
complex set of linear equations. A list of the top 500
supercomputers according to this benchmark is
published twice yearly (http://www.top500.0rg).
Figure 1.2 shows the performance benchmark rate
of the top computer at each release of the list. Once
again, this is approximately an exponential (with
large fluctuations). The best-fit straight line has a

Table 1.2 The growth of the number
of transistors in personal computer
processors.

Type of pr:

4004
80

0 Benchmark rate (Gflops)
--- Exponential growth v

NEC Earth Simulator

%

Hitachi SR2201/1024
Fujitsu Numerical Wind Tunnel

10000
1000 F
Fig. 1.2 The performance of the > 5
world’s top supercomputers using the 100 L
1994

LINPACK benchmark (Gflops). Data
from http://www.top500.org.

doubling time of 1.04 years. So supercomputers
seem to be beating GenBank for the moment.
However, most of us do not have access to a super-
computer. The PC chip size may be a better measure
of the amount of computing power available to any-
one using a desktop.

Clearly, we have reached a point where com-
puters are essential for the storage, retrieval, and
analysis of biological sequence data. However, we
cannot simply rely on computers and stop thinking.
If we stick with our same old computing methods,
then we will be limited by the hardware. We still

1996 1998 2000 2002 2004

Year

need people, because only people can think of better
and faster algorithms for data analysis. That is what
this book is about. We will discuss the methods and
algorithms used in bioinformatics, so that hopefully
you will understand enough to be able to improve
those methods yourself.

Another important type of biological data that is
exponentially increasing is protein structures. PDB
is a database of protein structures obtained from X-
ray crystallography and NMR experiments. From
the number of entries in PDB in successive releases,
we calculated that the doubling time for the number

Introduction: The revolution in biological information @ 3

Table 1.3 Comparison of rates of increase of several different data explosion curves.

=i i

Table 1.4 The history of genome-sequencing projects.

of available protein structures is 3.31 years (Table
1.3), which is considerably slower than the number
of sequences. Since the number of experimentally
determined structures is lagging further and further
behind the number of sequences, computational
methods for structure prediction are important.
Many of these methods work by looking for similar-
ities in sequence between a protein of unknown
structure and a protein of known structure, and use
this to make predictions about the unknown struc-
ture. These techniques will become increasingly
useful as our knowledge of real examples increases.
In 1995, the bacterium Haemophilus influenzae en-
tered history as the first organism to have its genome
completely sequenced. Sequencing technology has

4 ® Chapterl

advanced rapidly and has become increasingly auto-
mated. The sequencing of a new prokaryotic genome
has now become almost commonplace. Table 1.4
shows the progress of complete genome projects with
some historical landmarks. With the publication of
the human genome in 2001, we can now truly say
that we are in the “post-genome age”. The number
of complete prokaryotic genomes (total of archaea
plus bacteria from Table 1.4) is going through its
own data explosion. The doubling time is about 1.3
years and the yearly multiplication factor is about
1.7. For the present, complete eukaryotic genomes
are still rather few, so that the publication of each
individual genome still retains its status as a land-
mark event. It seems only a matter of time, however,

before we shall be able to draw a data explosion
curve for the number of eukaryotic genomes too.
This book emphasizes the relationship between
bioinformatics and molecular evolution. The avail-
ability of complete genomes is tremendously import-
ant for evolutionary studies. For the first time we
can begin to compare whole sets of genes between
organisms, not just single genes. For the first time
we can begin to study the processes that govern the
evolution of whole genomes. This is therefore an
exciting time to be in the bioinformatics area.

1.2 GENOMICS AND HIGH-
THROUGHPUT TECHNIQUES

The availability of complete genomes has opened up
a whole research discipline known as genomics.
Genomics refers to scientific studies dealing with
whole sets of genes rather than single genes. The
advances made in sequencing technology have
come at the same time as the appearance of new
high-throughput experimental techniques. One of
the most important of these is microarray techno-
logy, which allows measurement of the expression
level (i.e., mRNA concentration) of thousands of
genes in a cell simultaneously. For example, in the
case of the yeast, Saccharomyces cerevisiae, where the
complete genome is available, we can put probes for
all the genes onto one microarray chip. We can then
study the way the expression levels of all the genes
respond to changes in external conditions or the
way that they vary during the cell cycle. Complete
genomes therefore change the way that experimen-
tal science is carried out, and allow us to address
questions that were not possible before.

Another important field where high-throughput
techniques are used is proteomics. Proteomics is
the study of the proteome, i.e., the complete set of
proteins in a cell. The experimental techniques used
are principally two-dimensional gel electrophoresis
for the separation of the many different proteins in a
cell extract, and mass spectrometry for identifying
proteins by their molecular masses. Once again, the
availability of complete genomes is tremendously
important, because the masses of the proteins deter-

mined by mass spectrometry can be compared
directly to the masses of proteins expected from the
predicted position of open reading frames in the
genome.

High-throughput experiments produce large
amounts of quantitative data. This poses challenges
for bioinformaticians. How do we store information
from a microarray experiment in such a way that it
can be compared with results from other groups?
How do we best extract meaningful information
from the vast array of numbers generated? New
statistical methods are needed to spot significant
trends and patterns in the data. This is a new area of
biological sciences where computational methods
are essential for the progress of the experimental
science, and where algorithms and experimental
techniques are being developed side by side.

As a measure of the interest of the scientific com-
munity in genomics and related areas, let us look at
the number of scientific papers published in these
areas over the past few years. The ISI Science
Citation Index allows searches for articles published
in specific years that use specified words in their title,
keywords, or abstract. Figure 1.3 shows the num-
bers of published articles (cumulative since 1981)
for several important terms relevant to this book.
Papers using the words “genomics” and “bioinform-
atics” increase at almost exactly the same rate,
both having yearly multiplication factors of 1.8 and
doubling times of 1.2 years. “Proteomics” is a very
young field, with no articles found prior to 1998.
The doubling time is 0.7 years: the fastest growth of
any of the quantities considered in Table 1.3.
References to “microarray” also increase rapidly.
This curve appears significantly nonlinear because
there are several different meanings for the term.
Almost all the references prior to about 1996 refer to
microarray electrodes, whereas in later years,
almost all refer to DNA microarrays for gene expres-
sion. The rate of increase of the use of DNA microar-
rays is therefore steeper than it appears in the figure.

The number of papers using both “sequence” and
“database” ismuch larger than those using any of the
terms considered above (although it isincreasing less
rapidly). This shows how important biological data-
bases and the algorithms for searching them have

Introduction: The revolution in biological information ® 5§

wv

o

=

z

< 1000

G

b © Genomics

_g O Proteomics

5 ig’."c.r?a"ay . Fig. 1.3 Cumulative number of

Z .I 00 oin ormat_lcs : K X .
V Phylogenetic(s) scientific articles published from 1981
* Sequence AND database to the date shown that use specific
X Total (in millions)

terms in the title, keywords, or abstract.
Data from the Science Citation Index
(SCI-EXPANDED) available at

1

1994 1996 1998 2000

Year

become to the biological science community in the
past decade. The number of papers using the term
“phylogenetic” or “phylogenetics” dwarfs those using
all the other terms considered here by at least an
order of magnitude. This curve is a remarkably good
exponential, although the doubling time is fairly long
(3.7 years). Phylogenetics is a relatively old area,
where morphological studies predate the availabil-
ity of molecular sequences by several decades. The
high level of interest in the field in recent years is
largely a result of the availability of sequence data
and of new methods for tree construction. Very large
sequence data sets are now being used, and we are
beginning to resolve some of the controversial
aspects of evolutionary trees that have been argued
over for decades.

As a comparison, for all the curves in Fig. 1.3 that
refer to specific scientific terms, the figure also shows
the total number of articles in the Science Citation
Index (this curve is in millions of articles, whereas
the others are in individual articles). The total level
of scientific activity (or at least, scientific writing)
has also been increasing exponentially, and hence
we all have to read more and more in order to keep
up. This curve is an almost perfect exponential, with
a doubling time of 9.8 years. Thus, all the curves
related to the individual subjects are increasing far
more rapidly than the total accumulation of sci-
entific knowledge.

6 ©® Chapterl

2002

]
2004 http://wos.mimas.ac.uk/ or
http://isi6.isiknowledge.com.

At this point you will be suitably impressed by the
importance of the subject matter of this book and
will be eager to read the rest of it!

1.3 WHAT IS BIOINFORMATICS?

Since bioinformatics is still a fairly new field, people
have a tendency to ask, “What is bioinformatics?”
Often, people seem to worry that it is not very well
defined, and tend to have a suspicious look in their
eyes when they ask. These people would never trou-
ble to ask “What is biology?” or “What is genetics?”
In fact, bioinformatics is no more difficult or more
easy to define than these other fields. Here is our
short and simple definition.

Bioinformatics is the use of computational meth-
ods to study biological data.

In case this is too short and too general for you, here
isalonger one.

Bioinformatics is:

(i) the development of computational methods for
studying the structure, function, and evolution of
genes, proteins, and whole genomes;

(ii) the development of methods for the manage-
ment and analysis of biological information arising
from genomics and high-throughput experiments.

If that is still too short, have another look at the con-
tents list of this book to see what we think are the
most important topics that make up the field of
bioinformatics.

1.4 THE RELATIONSHIP BETWEEN
POPULATION GENETICS, MOLECULAR
EVOLUTION, AND BIOINFORMATICS

1.4.1 Alittle history . . .

The field of population genetics is concerned with
the variation of genes within a population. The
issues of natural selection, mutation, and ran-
dom drift are fundamental to population genetics.
Alternative versions of a gene are known as alleles.
A large body of population genetics theory is used to
interpret experimental data on allele frequency dis-
tributions and to ask questions about the behavior of
the organisms being studied (e.g., effective popula-
tion size, pattern of migration, degree of inbreeding).
Population genetics is a well-established discipline
with foundations dating back to Ronald Fisher and
Sewall Wright in the first half of the twentieth cen-
tury. These foundations predate the era of molecular
sequences. It is possible to discuss the theory of the
spread of a new allele, for example, without knowing
anything about its sequence.

Molecular evolution is a more recent discipline
that has arisen since DNA and protein sequence
information has become available. Molecular tech-
niques provide many types of data that are of great
use to population geneticists, e.g., allozymes, micro-
satellites, restriction fragment length polymorph-
isms, single nucleotide polymorphisms, human
mitochondrial haplotypes. Population geneticists
are interested in what these molecular markers tell
us about the organisms (see the many examples in
the book by Avise 1994). In contrast, the focus of
molecular evolution is on the molecules themselves,
and understanding the processes of mutation and
selection that act on the sequences. There are many
genes that have now been sequenced in a large
number of different species. This usually means that
we have a representative example of a single gene
sequence from each species. There are only a few

species for which a significant amount of information
about within-species sequence variation is available
(e.g., humans and Drosophila). The emphasis in
molecular evolution therefore tends to be on com-
parative molecular studies between species, while
population genetics usually considers variation
within a species.

The article by Zuckerkandl and Pauling (1965)
is sometimes credited with inventing the field of
molecular evolution. This was the first time that pro-
tein sequences were used to construct a molecular
phylogeny and it set many people thinking about
biological sequences in a quantitative way. 1965
was the same year in which Moore invented his law
and in which computers were beginning to play a
significant role in science. Indeed, molecular biology
has risen to prominence in the biological sciences in
the same time frame that computers have risen to
prominence in society in general.

We might also argue that bioinformatics was
beginning in 1965. The first edition of the Atlas of
Protein Sequence and Structure, compiled by Margaret
Dayhoff, appeared in printed form in 1965. The
Atlas later became the basis for the PIR protein
sequence database (Wu et al. 2002). However, this is
stretching the point a little. The term bioinformatics
wasnotaroundin 1965, and barring a few pioneers,
bioinformatics was not an active research area at
that time. As a discipline, bioinformatics is more
recent. It arose from the recognition that efficient
computational techniques were needed to study the
huge amount of biological sequence information
that was becoming available. If molecular biology
arose at the same time as scientific computing, then
we may also say that bioinformatics arose at the
same time as the Internet. It is possible to imagine
the existence of biological sequence databases with-
out the Internet, but they would be a whole lot less
useful. Database use would be restricted to those who
subscribed to postal deliveries of database releases.
Think of that cardboard box arriving each month
and getting exponentially bigger each time. Amos
Bairoch of the Swiss Institute of Bioinformatics com-
ments (Bairoch 2000) that in 1988, the version of
their PC/Gene database and software was shipped as
53 floppy disks! For that matter, think how difficult it

Introduction: The revolution in biological information @ 7

would be to submit sequences to a database if it were
not for email and the Internet.

At this point, the first author of this book starts to
feel old. Coincidentally, I also first saw the light of
dayin 1965. Shortly afterwards, in 1985, I was hap-
pily writing programs with DO-loops in them for
mainframes (students who are too young to know
what mainframe computers are probably do not
need to know). In 1989, someone first showed me
how to use a mouse. I remember this clearly because
I used the mouse for the first time when I began to
write my Ph.D. thesis. It is scary to think almost all
my education is pre-mouse. Possibly even more
frightening is that I remember — it must have been in
1994 —someone explaining to our academic depart-
ment how the World-Wide Web worked and what
was meant by the terms URL and Netscape. A year
or so after that, use of the Internet had become a
daily affair for me. Now, of course, if the network is
down for a day, it is impossible to do anything at all!

1.4.2 Evolutionary foundations for bioinformatics

Let’s get back to the plot. Bioinformatics is a new dis-
cipline. Since this is a bioinformatics book, why do
we need to know about the older subjects of mole-
cular evolution and population genetics? There is
a famous remark by the evolutionary biologist
Theodosius Dobzhansky that, “Nothing in biology
makes sense except in the light of evolution”. You
will find this quoted in almost every evolutionary
textbook, but we will not apologize for quoting it
once again. In fact, we would like to update it to,
“Nothing in bioinformatics makes sense except in
the light of evolution”. Let’s consider some examples
to see why this is so.

The most fundamental and most frequently used
procedure in bioinformatics is pairwise sequence
alignment. When amino acid sequences are aligned,
we use a scoring system, such as a PAM matrix, to
determine the score for aligning any amino acid
with any other. These scoring systems are based
on evolutionary models. High scores are assigned
to pairs of amino acids that frequently substitute
for one another during protein sequence evolution.
Low, or negative, scores are assigned to pairs of

8 ©® Chapterl

amino acids that interchange very rarely. When
RNA sequences are aligned, we often use the fact
that the secondary structure tends to be conserved,
and that pairs of compensatory substitutions occur
in the base-paired regions of the structure. Thus,
creating accurate sequence alignments of both pro-
teins and RNAs relies on an understanding of mole-
cular evolution.

If we want to know something about a particular
biological sequence, the first thing we do is search
the database to find sequences that are similar to it.
In particular, we are often interested in sequence
motifs that are well conserved and that are present
in a whole family of proteins. The logic is that im-
portant parts of a sequence will tend to be conser-
ved during evolution. Protein family databases like
PROSITE, PRINTS, and InterPro (see Chapter 5)
identify important conserved motifs in protein align-
ments and use them to assign sequences to families.
An important concept here is homology. Sequences
are homologous if they descend from a common
ancestor, i.e., if they are related by the evolutionary
process of divergence. If a group of proteins all share
a conserved motif, it will often be because all these
proteins are homologous. If a motif is very short,
however, there is some chance that it will have
evolved more than once independently (conver-
gent evolution). It is therefore important to try to
distinguish chance similarities arising from con-
vergent evolution from similarities arising from
divergent evolution. The thrust of protein family
databases is therefore to facilitate the identification
of true homologs, by making the distinction between
chance and real matches clearer.

Similar considerations apply in protein structural
databases. It is often observed that distantly related
proteins have relatively conserved structures. For
example, the number and relative positions of o
helices and B strands might be the same in two pro-
teins that have very different sequences. Occasion-
ally, the sequences are so different that it would be
very difficult to establish a relationship between them
if the structure were not known. When similar (or
identical) structures are found in different proteins,
it probably indicates homology, but the possibility of
small structural motifs arising more than once still

needs to be considered. Another important aspect of
protein structure that is strongly linked to evolution
is domain shuffling. Many large proteins are com-
posed of smaller domains that are continuous sec-
tions of the sequence that fold into fairly well-defined
three-dimensional structures; these assemble to
form the overall protein structure. Particularly in
eukaryotes, it is found that certain domains occur in
many different proteins in different combinations
and different orders. See the ProDom database
(Corpet et al. 2000), for example. Although bioin-
formaticians will argue about what constitutes a
domain and where the boundaries between domains
lie, it is clear that the duplication and reshuffling of
domains is a very useful way of evolving new com-
plex proteins. The main message is that in order to
create reliable information resources for protein
sequences, structures, and domains, we need to
have a good understanding of protein evolution.

In recent years, evolutionary studies have also
become possible at the whole genome level. If we
want to compare the genomes of two species, it is
natural to ask which genes are shared by both
species. This question can be surprisingly hard to
answer. For each gene in the first species, we need to
decide if there is a gene in the second species that is
homologous to it. It may be difficult to detect similar-
ity between sequences from different species simply
because of the large amount of evolutionary change
that has gone on since the divergence of the species.
Most genomes contain many open reading frames
that are thought to be genes, but for which no sim-
ilar sequence can be found in other species. This is
evidence for the limitations of our current methods
as much as for the diversity generated by molecular
evolution. In cases where we are able to detect sim-
ilarity, then it can still be tough to decide which genes
are homologous. Many genomes contain families of
duplicated genes that often have slightly different
functions or different sites of expression within the
organism. Sequences from one species that are evo-
lutionarily related and that diverged from one
another due to a gene duplication event are called
paralogous sequences, in contrast to orthologous
sequences, which are sequences in different organ-
isms that diverged from one another due to the split

Introduction: The revolution in biological information

between the species. Duplications can occur in dif-
ferent lineages independently, so that a single gene
in one species might be homologous to a whole fam-
ily in the other species. Alternatively, if duplications
occurred in a common ancestor, then both species
should contain a copy of each member of the gene
family — unless, of course, some genes have been
deleted in one or other species. Another factor to
consider, particularly for bacteria, is that genomes
can acquire new genes by horizontal transfer of DNA
from unrelated species. This sequence comparison
can show up genes that are apparently homolog-
ous to sequences in organisms that are otherwise
thought to be extremely distantly related. A major
task for bioinformatics is to establish sets of homolog-
ous genes between groups of species, and to under-
stand how those genes got to be where they are. The
flip side of this is to be able to say which genes are
not present in an organism, and how the organism
manages to get by without them.

The above examples show that many of the ques-
tions addressed in bioinformatics have foundations
in questions of molecular evolution. A fair amount
of this book is therefore devoted to molecular evolu-
tion. What about population genetics? There are
many other books on population genetics and hence
this book does not try to be a textbook of this area.
However, there are some key points that are usually
considered in population genetics courses that we
need to consider if we are to properly understand
molecular evolution and bioinformatics. These ques-
tions concern the way in which sequence diversity is
generated in populations and the way in which new
variant sequences spread through populations. If we
run a molecular phylogeny program, for example,
we might be asking whether “the” sequence from
humans is more similar to “the” sequence from chim-
panzees or gorillas. It is important to remember
that these sequences have diverged as a result of the
fixation of new sequence variants in the populations.
We should also not forget that the sequences we
have are just samples from the variations that exist
in each of the populations.

There are some bioinformatics areas that have a
direct link to the genetics of human populations. We
are accumulating large amounts of information

® 9

about variant gene sequences in human popula-
tions, particularly where these are linked to hered-
itary diseases. Some of these can be major changes,
like deletions of all or part of a gene or a chromosome
region. Some are single nucleotide polymorphisms,
or SNPs, where just a single base varies at a particu-
lar site in a gene. Databases of SNPs potentially con-
tain information of great relevance to medicine and
to the pharmaceutical industry. The area of phar-
macogenomics attempts to understand the way
that different patients respond more or less well to

SUMMARY

The amount of biologic
increasing very rapidly
exponential growth
playing an increasi
algorithms will

REFERENCES

Avise, J.C. 1994. Molecular Markers, Natural History, and
Evolution. New York: Chapman and Hall.

Bairoch, A. 2000. Serendipity in bioinformatics: The tri-
bulations of a Swiss bioinformatician through exciting
times. Bioinformatics, 16: 48—64.

Benson, D.A., Karsch-Mizrachi, I., Lipman, D.]., Ostell, .,
and Wheeler, D.L. 2003. GenBank. Nucleic Acids
Research,31:23-7.

Corpet, F., Sernat, F., Gouzy, J., and Kahn, D. 2000.
ProDom and ProDom-CG: Tools for protein domain
analysis and whole genome comparisons. Nucleic Acids
Research, 28: 267-9. http://prodes.toulouse.inra.fr/
prodom/2002.1/html/home.php

Miyazaki, S., Sugawara, H., Gojobori, T., and Tateno, Y.
2003. DNA Databank of Japan (DDBJ) in XML. Nucleic
Acids Research,31: 13-16.

Moore, G.E. 1965. Cramming more components onto integ-
rated circuits. Electronics, 38(8): 114-17.

10 @ Chapterl

drug treatments according to which alleles they
have for certain genes. The hope is that drug treat-
ments can be tailored to suit the genetic profile of the
patient. However, many important diseases are not
caused by a single gene. Understanding the way that
variations at many different loci combine to affect
the susceptibility of individuals to different medical
problems is an important goal, and developing com-
putational techniques to handle data such as SNPs,
and to extract information from the data, is an
important application of bioinformatics.

Stoesser, G., Baker, W., van den Broek, A., Garcia-Pastor,
M., Kanz, C., Kulikova, T., Leinonen, R., Lin, Q.,
Lombard, V., Lopez, R., Mancuso, R., Nardone, R.,
Stoehr, P., Tuli, M.A., Tzouvara, K., and Vaughan, R.
2003. The EMBL Nucleotide Sequence Database: Major
new developments. Nucleic Acids Research,31:17-22.

Wu, CH., Huang, H., Arminski, L., Castro-Alvear,]J.,
Chen, Y., Hu, Z.Z., Ledley, R.S., Lewis, K.C., Mewes,
H.W., Orcutt, B., Suzek, B.E., Tsugita, A., Vinayaka,
C.R., Yeh, L.L., Zhang,]., and Barker, W.C. 2002. The
Protein Information Resource: An integrated public
resource of functional annotation of proteins. Nucleic
Acids Research, 30: 35-7. http://pir.georgetown.edu/.

Zuckerkandl, E. and Pauling, L. 1965. Evolutionary
divergence and convergence in proteins. In V. Bryson,
and H.J. Vogel (eds.), Evolving Genes and Proteins,
pp. 97-166. New York: Academic Press.

Introduction: The revolution in biological information @ 11

Nucleic acids,
proteins, and
amino acids

CHAPTER PREVIEW

This chapter begins with a basic introdu
structure of nucleic acids and proteins fo
in biochemistry or biology. We also gi
tion, RNA processing, translation
We then give a detailed discu
amino acids and their rele
property data as an exa
are useful in bioinfo
algorithms.

2.1 NUCLEIC ACID STRUCTURE

There are two types of nucleic acid that are of key
importance in cells: deoxyribonucleic acid (DNA)
and ribonucleic acid (RNA). The chemical structure
of a single strand of RNA is shown in Fig. 2.1. The
backbone of the molecule is composed of ribose units
(five-carbon sugars) linked by phosphate groups in
a repeating polymer chain. Two repeat units are
shown in the figure. The carbons in the ribose are
conventionally numbered from 1 to 5, and the phos-
phate groups are linked to carbons 3 and 5. At one
end, called the 5" (“five prime”) end, the last carbon
in the chain is a number 5 carbon, whereas at the
other end, called the 3’ end, the last carbon is a
number 3. We often think of a strand as beginning
at the 5" end and ending at the 3” end, because this
is the direction in which genetic information is read.
The backbone of DNA differs in that deoxyribose
sugars are used instead of ribose. The OH group on
carbon number 2 in ribose is simply an H in deoxyri-

12 @ Chapter?2

CHAPTER

bose, but the molecules are
otherwise the same.

Each sugar is linked to a
molecule known as a base. In
DNA, there are four types of
base, called adenine, thymine,
guanine, and cytosine, usu-
ally referred to simply as A, T,
G, and C. The structures of
these molecules are shown in
Fig. 2.2. In RNA, the base
uracil (U; Fig. 2.2) occurs instead of T. The structure
of U is similar to that of T but lacks the CH; group
linked to the ring of the T molecule. In addition, a
variety of bases of slightly different structures, called
modified bases, can also be found in some types of
RNA molecule. A and G are known as purines. They
both have a double ring in their chemical structure.
C, T, and U are known as pyrimidines. They have a
single ring in their chemical structure. The funda-
mental building block of nucleic acid chains is called
a nucleotide: this is a unit of one base plus one sugar
plus one phosphate. We usually think of the “length”
of a nucleic acid sequence as the number of nucle-
otides in the chain. Nucleotides are also found as
separate molecules in the cell, as well as being part of
nucleic acid polymers. In this case, there are usually
two or three phosphate groups attached to the same
nucleotide. For example, ATP (adenosine triphos-
phate) is an important molecule in cellular metabol-
ism, and it has three phosphates attached in a chain.

DNA is usually found as a double strand. The
two strands are held together by hydrogen bonding

Phosphate

Ribose sugar

L O OH

3'end

Fig. 2.1 Chemical structure of the RNA backbone showing
ribose units linked by phosphate groups.

Adenine H Thymine

N |

H \(N—H-O CH3

N— \N ------- H—N>_\$—H

N= N
Uracil H ©
0]
Guanine Cytosine

N =
} |, AW
= o>ﬁN

Fig. 2.2 The chemical structure of the four bases of DNA
showing the formation of hydrogen-bonded AT and GC base
pairs. Uracil is also shown.

Fig. 2.3 Schematic diagram of the DNA double helical
structure.

between A and T and between C and G bases
(Fig. 2.2). The two strands run in opposite directions
and are exactly complementary in sequence, so that
where one has A, the other has T and where one has
Cthe other has G. For example:

5-C-C-T-G-A-T-3’
3'-G-G-A-C-T-A-5’

The two strands are coiled around one another in
the famous double helical structure elucidated by
Watson and Crick 50 years ago. This is shown
schematically in Fig. 2.3.

In contrast, RNA molecules are usually single
stranded, and can form a variety of structures by
base pairing between short regions of complement-
ary sequences within the same strand. An example
of this is the cloverleaf structure of transfer RNA
(tRNA), which has four base-paired regions (stems)
and three hairpin loops (Fig. 2.4). The base-pairing
rules in RNA are more flexible than DNA. The prin-
cipal pairs are GC and AU (which is equivalent to AT
in DNA), but GU pairs are also relatively frequent,
and a variety of unusual, so-called “non-canonical”,
pairs are also found in some RNA structures
(e.g., GA pairs). A two-dimensional drawing of the
base-pairing pattern is called a secondary structure

Nucleic acids, proteins, and amino acids ® 13

Site of amino
acid attachment

u
C A
U CUCG ACGCC A
G 1 i G
G~ GAGC UGCGG C
GA CU uu
C—-G
C—GAGG
U—A
G—C
Cc—-G
U C
u A
UgC
Anticodon

Fig. 2.4 Secondary structure of tRNA-Ala from Escherichia
coli showing the anticodon position and the site of amino acid
attachment.

diagram. In Chapter 11, we will discuss RNA sec-
ondary structure in more detail.

2.2 PROTEIN STRUCTURE

The fundamental building block of proteins is the
amino acid. An amino acid has the chemical struc-
ture shown in Fig. 2.5(a), with an amine group on
one side and a carboxylic acid group on the other. In
solution, these groups are often ionized to give NHY
and COO™. There are 20 types of amino acid found in
proteins. These are distinguished by the nature of
the side-chain group, labeled R in Fig. 2.5(a). The
central carbon to which the R group is attached is
known as the o carbon. Proteins are linear polymers
composed of chains of amino acids. The links are
formed by removal of an OH from one amino acid
and an H from the next to give a water molecule. The

@) (b) Tz
H
HO 1 ° CHI < S
N—C—C HyN | EC—NTPEC—NE |
e | Nou Ne I I
R | o |
R R3

14 @® Chapter?2

C/"\O_

resultant linkage is called a peptide bond. These are
shown in boxes in Fig. 2.5(b), which illustrates
a tripeptide, i.e., a chain composed of three amino
acids. Proteins, or “polypeptides”, are typically com-
posed of several hundred amino acids.

The chemical structures of the side chains are given
in Fig. 2.6. Each amino acid has a standard three-
letter abbreviation and a standard one-letter code,
as shown in the figure. A protein can be represented
simply by a sequence of these letters, which is very
convenient for storage on a computer, for example:

MADIQLSKYHVSKDIGFLLEPLODVLPDYFAPWNR
LAKSLPDLVASHKFRDAVKEMPLLDSSKLAGYRQK

is the first part of a real protein. The two ends of a
protein are called the N terminus and the C terminus
because one has an unlinked NH? group and the
other has an unlinked COO~ group. Protein sequ-
ences are traditionally written from the N to the C
terminus, which corresponds to the direction in
which they are synthesized.

The four atoms involved in the peptide bond lie in
a plane and are not free to rotate with respect to one
another. This is due to the electrons in the chemical
bonds, which are partly delocalized. The flexibility of
the protein backbone comes mostly from rotation
about the two bonds on either side of each o carbon.
Many proteins form globular three-dimensional struc-
tures due to this flexibility of the backbone. Each pro-
tein has a structure that is specific to its sequence.
The formation of this three-dimensional structure
is called “protein folding”. The amino acids vary
considerably in their properties. The combination of
repulsive and attractive interactions between the
different amino acids, and between the amino acids
and water, determines the way in which a protein
folds. An important role of proteins is as catalysts of

Fig. 2.5 Chemical structure of an
amino acid (a) and the protein
o) backbone (b). The peptide bond units
4 (boxed) are planar and inflexible.
Flexibility of the backbone comes from
rotation about the bonds next to the o
carbons (indicated by arrows).

Acidic 1| Basic

HaN*_ o . ; LN .
/ spartic aci I ysine
- — : H—(CH,),—*NH
W wp) @ o SHTCHTNE (Lys) (0
: “00C o : 1 -00C
H3N*\ /O‘ Glutamic acid H3N+\ NH Arginine
utamic aci H :
H—(CH,),—C CH—(CHp)4—NH—C —+NH (Arg) (R)
E SHpERZE S (Glu) (E) P SH=(CHy, 3
elele o i i -ooC
.. e
... 2N
, CH—CH,— C—Ng
Neutral, nonpolar ~00C [ey Histidine
: HC—NH” (His) (H)
HaN*
NN e
: CH—CH,— ¢
00C W Typtophan | £
: NH (Trp) (W) Neutral, polar
A .
v /CH_CHZOOH Drosne
\CH— CH Phenylalanine | : -4
2 (Phe) (F) P
0o e S
3N+ : : erine
; P — CH,—OH
HSH Glycine L S (Ser) (5)
(Gly) (G) ;i 7ooC
-00C P
HaN*_ L RN _OH "
Alanine H : | reonine
. HTOs (Ala) (A) N AN (Thr) (T)
: 700C : : "00C CH3
TN cH .
’ o 1 ’ Valine H3N* A o
4 (val) (V) P —CH»—C—NH sparagine :
-00C CH, P Y A T (Asn) (N)
i “00C
: (6]
H3N+ CHZ_CH3 : :
\CH—CH/ Isoleucine H : HyN+ :
P N (le) (1) \CH—(CH) N Glutamine
00C CH3 J 272 I 2 @GIn) (Q ¢
CH N CH - ooe ©
TN o Leucine P
L AT e | § HNe ‘
i “00C CHs P CH— CH,—SH Cysteine
: P 2 (Cys) (O
: ¢ “00C
H3N+\ s Methionine & &
: CH=(CHy), =S (Met) (M)
i -00C
NﬁCH_COO_
+
1% CH i
2 Proline
HCL (Pro) (P)
CH,

Fig. 2.6 Chemicalstructures of the 20 amino acid side chains.

biochemical reactions — protein catalysts are called
enzymes. Proteins are able to catalyze a huge variety
of chemical reactions due to the wide range of
different side groups of the amino acids and the vast
number of sequences that can be assembled by com-
bining the 20 building blocks in specific orders.

Many protein structures are known from X-ray
crystallography. Plate 2.1(a) illustrates the inter-
action between a glutaminyl-tRNA molecule and a
protein called glutaminyl-tRNA synthetase. We will
discuss the functions of these molecules below when
we describe the process of translation and protein
synthesis. At this point, the figure is a good example
of the three-dimensional structure of both RNAs and
proteins. Rather than drawing all the atomic posi-
tions, the figure is drawn at a coarse-grained level so
that the most important features of the structure are
visible. The backbone of the RNA is shown in yellow,
and the bases in the RNA are shown as colored rect-
angular blocks. The tRNA has the cloverleaf struc-
ture with the four stems shown in Fig. 2.4. In three
dimensions, the molecule is folded into an L-shaped
globule. The anticodon loop (see Section 2.3.4) at
the bottom of Fig. 2.4 is the top loop in Plate 2.1(a).
The stem regions in the secondary structure dia-
gram are the short sections of the double helix in the
three-dimensional structure.

The backbone of the protein structure is shown as
a purple ribbon in Plate 2.1(a). Two characteristic
aspects of protein structures are visible in this ex-
ample. In many places, the protein backbone forms
a helical structure called an o helix. The helix is
stabilized by hydrogen bonds between the CO group
in the peptide link and the NH in another peptide
link further down the chain. These hydrogen bonds
are roughly parallel to the axis of the helix. The side
groups of the amino acids are pointing out perpen-
dicular to the helix axis. For more details, see a text-
book on protein structure, e.g., Creighton (1993).
The other features visible in the purple ribbon
diagram of the protein are P sheets. The strands
composing the sheets are indicated by arrows in the
ribbon diagram that point along the backbone from
the N to the C terminus. A B sheet consists of two or
more strands that are folded to run more or less side
by side with one another in either parallel or anti-

16 ® Chapter?2

parallel orientations. The strands are held together
by hydrogen bonds between CO groups on one
strand and NH groups on the neighboring strand.
The o helices and B sheets in a protein are called
elements of secondary structure (whereas the sec-
ondary structure of an RNA sequence refers to the
base-paired stem regions).

Plate 2.1(b) gives a second example of a molecular
structure. This shows a dimer of the lac repressor
protein bound to DNA. The lac operon in Escherichia
coli is a set of genes whose products are responsible
for lactose metabolism. When the repressor is bound
to the DNA, the genes in the operon are turned off
(i.e., not transcribed). This happens when there isno
lactose in the growth medium. This is an example of
a protein that can recognize and bind to a specific
sequence of DNA bases. It does this without separat-
ing the two strands of the DNA double helix, as it is
able to bind to the “sides” of the DNA bases that are
accessible in the grooves of the double helix. The
binding of proteins to DNA is an important way of
controlling the expression of many genes, allowing
genes to be turned on in some cells and not others.

Plates 2.1(a) and (b) give an idea of the relative
sizes of proteins and nucleic acids. The protein in
Plate 2.1(a) has 548 amino acids, which is probably
slightly larger than the average globular protein.
The tRNA has 72 nucleotides. Most RNAs are much
longer than this. The diameter of an o helix is
roughly 0.5 nm, whereas the diameter of a nucleic
acid double helixisroughly 2 nm.

2.3 THE CENTRAL DOGMA
2.3.1 Transcription

There is a principle, known as the central dogma of
molecular biology, that information passes from
DNA to RNA to proteins. The process of going from
DNA to RNA is called transcription, while the pro-
cess of going from RNA to protein is called transla-
tion. Synthesis of RNA involves simply rewriting (or
transcribing) the DNA sequence in the same lan-
guage of nucleotides, whereas synthesis of proteins
involves translating from the language of nucleotides
to the language of amino acids.

(@)

Non-template

5' —

3!

Template

DNA strand
Promoter RNA Terminator
polymerase
©
Growing Ribosome
protein
I
LA 0 0 1 11 i L1l __ mRNA
1 2 3 4

DNA strand 3

Start Introns Stop

Lagging strand

. 3
5

Leading strand
5!
3!

Fig. 2.7 Four important mechanisms. (a) Transcription. (b) Structure and processing of prokaryotic mRNA. (c) Translation.

(d) DNA replication.

DNA is usually found in cells in very long pieces.
For example, the genomes of most bacteria are circu-
lar loops of DNA a few million base pairs (Mbp) long,
while humans have 23 pairs of linear chromosomes,
with lengths varying from 19 to 240 Mbp. Genes
are regions of DNA that contain the information
necessary to make RNA and protein molecules.
Transcription is the process of synthesis of RNA
using DNA as a template. Typically sections of DNA
a few thousand base pairs long are transcribed that
correspond to single genes (or sometimes a small
number of sequential genes). Transcription is car-
ried out by an enzyme called RNA polymerase. The
RNA polymerase binds to one of the two strands
of DNA that are temporarily separated from one
another during the transcription process (see Fig.
2.7(a)). This strand is called the template strand.
The polymerase catalyzes the assembly of individual
ribonucleotides into an RNA strand that is comple-
mentary to the template DNA strand. Base pairing
occurs between the template strand and the grow-
ing RNA strand initially, but as the polymerase

moves along, the RNA separates from the template
and the two DNA strands close up again. When the
template is a C, G, or T, the base added to RNA is
a G, C, or A, as usual. If the template has an A, then
a U base is added to the RNA rather than a T. Since
the RNA is complementary to the template strand,
it is actually the same as the non-template
strand, with the exception that Ts are converted to
Us. When people talk about the DNA sequence of a
gene, they usually mean the non-template strand,
because it is this sequence that is the same as the
RNA, and this sequence that is subsequently trans-
lated into the protein sequence.

RNA polymerase moves along the template from
the 3’ to the 5" end, hence the RNA is synthesized
from its 5" end to its 3” end. The polymerase needs to
know where to stop and start. This information is
contained in the DNA sequence. A promoter is a
short sequence of DNA bases that is recognized as
a start signal by RNA polymerase. For example, in
E. coli, most promoters have a sequence TATAAT
about 10 nucleotides before the start point of

Nucleic acids, proteins, and amino acids ® 17

transcription and a sequence TTGACA about 35
nucleotides before the start. However, these sequ-
ences are not fixed, and there is considerable vari-
ation between genes. Since promoters are relatively
short and relatively variable in sequence, it is
actually quite a hard problem to write a computer
program to reliably locate them.

The stop signal, or terminator, for RNA poly-
merase is often in the form of a specific sequence that
has the ability to form a hairpin loop structure in the
RNA sequence. This structure delays the progres-
sion of the polymerase along the template and
causes it to dissociate. We still have a lot more to
learn about these signals.

2.3.2 RNA processing

An RNA strand that is transcribed from a protein-
coding region of DNA is called a messenger RNA
(mRNA). The mRNA is used as a template for protein
synthesis in the translation process discussed below.
In prokaryotes, mRNAs consist of a central coding
sequence that contains the information for making
the protein and short untranslated regions (UTRs)
atthe 5 and 3" ends. The UTRs are parts of the sequ-
ence that were transcribed but will not be translated.

In eukaryotes, the RNA transcript has a more
complicated structure (Fig. 2.7(b)). When the RNA
isnewly synthesized, it is called a pre-mRNA. It must
be processed in several ways before it becomes a
functional mRNA. At the 5" end, a structure known
as a cap is added, which consists of a modified G
nucleotide and a protein complex called the cap-
binding complex. At the 3’ end, a poly-A tail is
added, i.e., a string of roughly 200 A nucleotides.
Proteins called poly-A binding proteins bind to the
poly-A tail. Many mRNAs have a rather short life-
time (a few minutes) in the cell because they are bro-
ken down by nuclease enzymes. These are proteins
that break down RNA strands into individual
nucleotides, either by chopping them in the middle
(endonucleases), or by eating them up from the
end one nucleotide at a time (exonucleases). Having
proteins associated with the mRNA, particularly at
the ends, slows down the nucleases. Variation in the
types of binding protein on different mRNAs is an

18 ® Chapter?2

important way of controlling mRNA lifetimes, and
hence controlling the amount of protein synthesized
by limiting the number of times an mRNA can be
used in translation.

Probably the most important type of RNA process-
ing occurs in the middle of the pre-mRNA rather
than at the ends. Eukaryotic gene sequences are
broken up into alternating sections called exons
and introns. Exons are the pieces of the sequence
that contain the information for protein coding.
These pieces will be translated. Introns do not
contain protein-coding information. The introns,
indicated by the inverted Vs in Figure 2.7(b), are
cut out of the pre-mRNA and are not present in the
mRNA after processing. When an intron is removed,
the ends of the exons on either side of it are linked
together to form a continuous strand. This is known
as splicing.

Splicing is carried out by the spliceosome, a com-
plex of several types of RNA and proteins bound
together and acting as a molecular machine. The
spliceosome is able to recognize signals in the pre-
mRNA sequence that tell it where the intron—exon
boundaries are and hence which bits of the sequence
toremove. As with promoter sequences, the signals for
the splice sites are fairly short and somewhat variable,
so that reliable identification of the intron—exon struc-
ture of a gene is a difficult problem in bioinformatics.
Nevertheless, the spliceosome manages to do it.

Introns that are spliced out by the spliceosome are
called spliceosomal introns. This is the majority of
introns in most organisms. In addition, there are
some interesting, but fairly rare, self-splicing introns,
which have the ability to cut themselves out of an
RNA strand without the action of the spliceosome.
There are surprisingly large numbers of introns in
many eukaryotic genes— 10 or 20 in one gene is not
uncommon. In contrast, most prokaryotic genes do
not contain introns. It is still rather controversial
where and when introns appeared, and what is the
use, if any, of having them.

In eukaryotes, the DNA is contained in the nucleus,
and transcription and RNA processing occur in the
nucleus. The mRNA is then transported out of
the nucleus through pores in the nuclear membrane,
and translation occurs in the cytoplasm.

Table 2.1 The standard genetic code. This is used in most prokaryotic genomes and in the nuclear genomes of most eukaryotes.

2.3.3 The genetic code

We now need to consider the way information in the
form of sequences of four types of base is turned into
information in the form of sequences of 20 types
of amino acid. The mRNA sequence isread in groups
of three bases called codons. There are 4= 64
codons that can be made with four bases. Each of
these codons codes for one type of amino acid, and
since 64 is greater than 20, most amino acids have
more than one codon that codes for them. The set
of assignments of codons to amino acids is known
as the genetic code, and is given in Table 2.1.

The table is divided into blocks that have the same
bases in the first two positions. For example, codons
of the form UCN (where N is any of the four bases) all
code for Ser. There are many groups of four codons
where all four code for the same amino acid and the
base at the third position does not make any differ-
ence. There are several groups where there are two
pairs of two amino acids in a block, e.g., CAY codes

for His and CAR codes for Gln (Y indicates a pyrimi-
dine, C or U; and R indicates a purine, A or G). There
are only two amino acids that have a single codon:
UGG = Trp, and AUG = Met. Ile is unusual in having
three codons, while Leu, Ser, and Arg all have six
codons, consisting of a block of four and a block of
two. There are three codons that act as stop signals
rather than coding for amino acids. These denote
the end of the coding region of a gene.

When the genetic code was first worked out in the
1960s, it was thought to be universal, i.e., identical
in all species. Now we realize that it is extremely
widespread but not completely universal. The stan-
dard code shown in Table 2.1 applies to almost all
prokaryotic genomes (including both bacteria and
archaea) and to the nuclear genomes of almost all
eukaryotes. In mitochondrial genomes, there are
several different genetic codes, all differing from the
standard code in small respects (e.g., the reassign-
ment of the stop codon UGA to Trp, or the reassign-
ment of the Ile codon AUA to Met). There are also

Nucleic acids, proteins, and amino acids ® 19

some changes in the nuclear genome codes for specific
groups of organisms, such as the ciliates (a group of
unicellular eukaryotes including Tetrahymena and
Paramecium), and Mycoplasma bacteria use a slightly
different code from most bacteria. These changes are
all quite small, and presumably they occurred at a
relatively late stage in evolution. The main message
is that the code is shared between all three domains
of life (archaea, bacteria, and eukaryotes) and hence
must have evolved before the divergence of these
groups. Thus the last universal common ancestor of
all current life must have used this genetic code.

Here we will pause to write a letter of complaint to
the BBC. When the release of the human genome
sequence was announced in 2001, there were many
current affairs broadcasters who commented on
how exciting it is that we now know the complete
“human genetic code”. We have known the genetic
code for 40 years! What is new is that we now have
the complete genome sequence. Please do not
confuse the genetic code with the genome. We now
have the complete book, whereas 40 years ago we
only knew the words in which the book is written.
It will probably take us another 40 years to under-
stand what the book means.

2.3.4 Translation and protein synthesis

Translation is the process of synthesis of a pro-
tein sequence using mRNA as a template. A key
molecule in the process is transfer RNA (tRNA).
The structure of tRNA was already shown in Fig. 2.4
and Plate 2.1(a). The three bases in the middle of
the central hairpin loop in the cloverleaf are called
the anticodon. The sequence shown in Fig. 2.4 is
a tRNA-Ala, i.e., a tRNA for the amino acid alanine.
The anticodon of this molecule is UGC (reading from
5”to 3’) in the tRNA. This can form complementary
base pairs with the codon sequence GCA (reading
from 5’ to 3" in the mRNA) like this:

| |
C-G-U
~G-C-A-

tRNA
mRNA

Note that GCA is an alanine codon in the genetic
code. Organisms possess sets of tRNAs capable of

20 © Chapter2

base pairing with all 61 codons that denote amino
acids. These tRNAs have different anticodons, and
are also different from one another in many other
parts of the sequence, but they all have the same
cloverleaf secondary structure.

Itis not true, however, that there is one tRNA that
exactly matches every codon. Many tRNAS can pair
with more than one codon due to the flexibility of the
pairing rules that occurs at the third position in the
codon — this is known as wobble. For example, most
bacteria have two types of tRNA-Ala. One type, with
anticodon UGC, decodes the codons GCA and GCG,
while the other type, with anticodon GGC, decodes
the codons GCU and GCC. The actual number of
tRNAs varies considerably between organisms. For
example, the E. coliK12 genome has 86 tRNA genes,
of which three have UGC and two have GGC anti-
codons. In contrast Rickettsia prowazeckii, another
member of the proteobacteria group, has a much
smaller genome with only 32 tRNAs, and only one
of each type of tRNA-Ala. These figures are all taken
from the genomic tRNA database (Lowe and Eddy,
1997). In eukaryotes, the wobble rules tend to be
less flexible, so that a greater number of distinct
tRNA types are required. Also the total number of
tRNA genes can be much larger, due to the presence
of duplicate copies. Thus, in humans, there are
about 496 tRNAs in total, and for tRNA-Ala there
are 10 with UGC anticodon, five with CGC, and 25
with AGC. In contrast, in most mitochondrial
genomes, there are only 22 tRNAs capable of decod-
ing the complete set of codons. In this case, when-
ever there is a box of four codons, only one tRNA is
required. Pairing at the third position is extremely
flexible (sometimes known as hyperwobble). For ex-
ample the tRNA-Ala, with anticodon UGC, decodes
all codons of the form GCN.

Transfer RNA acts as an adaptor molecule. The
anticodon end connects to the mRNA, and the other
end connects to the growing protein chain. Each
tRNA has an associated enzyme, known as an
amino acyl-tRNA synthetase, whose function is to
attach an amino acid of the correct type to the 3’ end
of the tRNA. The enzyme and the tRNA recognize
one another specifically, due to their particular shape
and intermolecular interactions. The interaction

between glutaminyl-tRNA synthetase and tRNA-
glutamine is shown in Plate 2.1(a).

Protein synthesis is carried out by another mole-
cular machine called a ribosome. The ribosome is
composed of a large and a small subunit (repres-
ented by the two large ellipses in the cartoon in
Fig. 2.7(c)). In bacteria, the small subunit contains
the small subunit ribosomal RNA (SSU rRNA),
which is typically 1500 nucleotides long, together
with about 20 ribosomal proteins. The large subunit
contains large subunit ribosomal RNA (LSU rRNA),
which is typically 3000 nucleotides long, together
with about 30 proteins and another smaller ribo-
somal RNA known as 5S rRNA. The ribosomes
of eukaryotes are larger — the two major rRNA
molecules are significantly longer and the number of
proteins in each subunit is greater.

Figure 2.7(c) illustrates the mechanism of protein
synthesis. The ribosome binds to the mRNA and
moves along it one codon at a time. tRNAs, charged
with their appropriate amino acid, are able to bind to
the mRNA at a site inside the ribosome. The amino
acid is then removed from the tRNA and attached to
the end of a growing protein chain. The old tRNA then
leaves and can be recharged with another molecule
of the same type of amino acid and used again. The
tRNA corresponding to the next codon then binds to
the mRNA and the ribosome moves along one codon.

Just as with transcription, translation also requires
signals to tell it where to start and stop. We already
mentioned stop codons. These are codons that do not
have a matching tRNA. When the ribosome reaches
a stop codon, a protein known as a release factor
enters the appropriate site in the ribosome instead of
a tRNA. The release factor triggers the release of the
completed protein from the ribosome.

There is also a specific start codon, AUG, which
codes for methionine. The ribosome begins protein
synthesis at the first AUG codon it finds, which will
be slightly downstream of the place where it initially
binds to the mRNA. In bacteria, mRNAs contain
a conserved sequence of about eight nucleotides,
called the Shine—Dalgarno sequence, close to their
5” end. This sequence is complementary to part of
SSU rRNA in the small subunit of the ribosome. This
interaction triggers the binding of the ribosome to

the mRNA. The first tRNA involved is known as an
fMet initiator tRNA. This is a special type of tRNA-
Met, where a formyl group has been added to the
methionine on the charged tRNA. The fMet is only
used when an AUG is a start codon. Other AUG
codons occurring in the middle of a gene sequence
lead to the usual form of Met being added to the
protein sequence.

In the last few years, we have been able to obtain
three-dimensional crystal structures of the ribosome
(e.g., Yusupov et al. 2001), and we are getting closer
to understanding the mechanism by which the ribo-
some actually works. The ribosome is acting as a
catalyst for the process of peptide bond formation.
“Ribozyme” is the term used for a catalytic RNA
molecule, by analogy with “enzyme”, which is a cata-
lytic protein. It had previously been thought that
rRNA was simply a scaffold onto which the ribo-
somal proteins attached themselves, and that it was
the catalytic action of the proteins that achieved pro-
tein synthesis. Recent experiments are making it
clear that rRNA plays an essential role in the cata-
lysis, and hence that rRNA is a type of ribozyme.

2.3.5 Closing the loop: DNA replication

As stated above, the central dogma is the principle
that information is stored in DNA, is transferred
from DNA to RNA, and then from RNA to proteins.
We have now briefly explained the mechanisms by
which this occurs. In order to close the loop in our
explanation of the synthesis of nucleic acids and pro-
teins, we still need to explain how DNA is formed.

DNA needs to be replicated every time a cell
divides. In a multicellular organism, each cell con-
tains a full copy of the genome of the organism to
which it belongs (with the exception of certain cells
without nuclei, such as red blood cells). The DNA
is needed in every cell in order that transcription
and translation can proceed in those cells. DNA re-
plication is also essential for reproduction, because
DNA contains the genetic information that ensures
heredity.

DNA replication is semi-conservative. This means
that the original double strand is replicated to give
two double strands, each of which contains one of

Nucleic acids, proteins, and amino acids ® 21

the original strands and one newly synthesized
strand that is complementary to it. Clearly, both
strands of DNA contain the full information neces-
sary to recreate the other strand. The key processes
of DNA replication occur at a replication fork (Fig.
2.7(d)). At this point, the two old strands are separ-
ated from one another and the new strands are syn-
thesized. The main enzyme that does this job is DNA
polymerase III. This enzyme catalyzes the addition of
nucleotides to the 3” ends of the growing strands (at
the heads of the arrows in Fig. 2.7(d)). The new
strand is therefore synthesized in the 5 to 3’ direc-
tion (as with mRNA synthesis during transcription).
On one strand, called the leading strand, synthesis
is possible in a continuous unbroken fashion. How-
ever, on the lagging strand on the opposite side, con-
tinuous synthesis is not possible and it is necessary
to initiate synthesis independently many times. The
new strand is therefore formed in pieces, which are
known as Okazaki fragments.

DNA polymerase III is able to carry out the addition
of new nucleotides to a strand but it cannot initiate a
new strand. This is in contrast to RNA polymerase,
which is able to perform both initiation and addition.
DNA polymerase therefore needs a short sequence,
called a primer, from which to begin. Primers are
short sequences of RNA (indicated by dotted lines in
Fig. 2.7(d)) that are synthesized by a form of RNA
polymerase called primase. The processes of DNA
synthesis initiated by primers has been harnessed to
become an important laboratory tool, the poly-
merase chain reaction or PCR (see Box 2.1).

Once the fragments on the lagging strand have
been synthesized, it is necessary to connect them
together. This is done by two more enzymes. DNA
polymerase I removes the RNA nucleotides of the
primers and replaces them with DNA nucleotides.
DNA ligase makes the final connection between the
fragments. Both DNA polymerase I and III have the
ability to excise nucleotides from the 3’ end if they do
not match the template strand. This process of error
correction is called proof-reading. This means that
the fidelity of replication of DNA polymerase is
increased by several orders of magnitude with
respect to RNA polymerases. Errors in DNA replica-
tion cause heritable point mutations, whereas errors

22 ® Chapter2

in RNA replication merely lead to mistakes in a sin-
gle short-lived mRNA. Hence accurate DNA replica-
tion is very important.

We called this section “closing the loop” because,
in the order that we presented things here, DNA
replication is the last link in the cycle of mechan-
isms for synthesis of the major biological macro-
molecules. There is, however, a more fundamental
sense in which this whole process is a loop. Clearly
proteins cannot be synthesized without DNA be-
cause proteins do not store genetic information.
DNA can store this information, but it cannot carry
out the catalytic roles necessary for metabolism in
a cell, and it cannot replicate itself without the aid
of proteins. There is thus a chicken and egg situ-
ation: “Which came first, DNA or proteins?” Many
people now believe that RNA preceded both DNA
and proteins, and that there was a period in the
Earth’s history when RNA played both the genetic
and catalytic roles. This is a tempting hypothesis,
because several types of catalytic RNA are known
(both naturally occurring and artificially synthes-
ized sequences), and because many viruses use
RNA as their genetic material today. As with all con-
jectures related to the origin of life and very early
evolution, however, it is difficult to prove that an
RNA world once existed.

2.4 PHYSICO-CHEMICAL PROPERTIES
OF THE AMINO ACIDS AND THEIR
IMPORTANCE IN PROTEIN FOLDING

As we mentioned in Section 1.1, we have many pro-
tein sequences for which experimentally determined
three-dimensional structures are unavailable. A
long-standing goal of bioinformatics has been to pre-
dict protein structure from sequence. Some methods
for doing this will be discussed in Chapter 10 on pat-
tern recognition. In this section, we will introduce
some of the physico-chemical properties that are
thought to be important for determining the way a
protein folds.

One property that obviously matters for amino
acids is size. Proteins are quite compact in structure,
and the different residues pack together in a way

that is almost space filling. The volume occupied by
the side groups is important for protein folding, and
also for molecular evolution. It would be difficult to
substitute a very large amino acid for a small one
because this would disrupt the structure. It is more
difficult than we might think at first to define the
volume of an amino acid. We have a tendency to
think of molecules as “balls and sticks”, but really
molecules contain atomic nuclei held together by
electrons in molecular orbitals. However, if you
push atoms together too much, they repel and hence
itis possible to define a radius of an atom, known as a

van der Waals radius, on the basis of these repul-
sions. A useful measure of amino acid volume is to
sum the volumes of the spheres defined by the van
der Waals radii of its constituent atoms. These
figures are given in Table 2.2 (in units of A3). There
is a significant variation in volume between the
amino acids. The largest amino acid, tryptophan,
has roughly 3.4 times the volume of the smallest
amino acid, glycine. Creighton (1993) gives more
information on van der Waals interactions and on
amino acid volumes. Since protein folding occurs in
water, another way to define the amino acid volume

Nucleic acids, proteins, and amino acids ® 23

Table 2.2 Physico-chemical properties of the amino acids.

is to consider the increase in volume of a solution
when an amino acid is dissolved in it. This is known
as the partial volume. Partial volumes are closely
correlated with the volumes calculated from the
van der Waals radii, and we do not show them in
the table.

Zimmerman, Eliezer, and Simha (1968) presented
data on several amino acid properties that are relev-
ant in the context of protein folding. Rather than
simply considering the volume, they defined the
“bulkiness” of an amino acid as the ratio of the side
chain volume to its length, which provides a meas-
ure of the average cross-sectional area of the side

24 ® Chapter2

chain. These figures are shown in Table 2.2 (in A2).
Zimmerman, Eliezer, and Simha (1968) also intro-
duced a measure of the polarity of the amino acids.
They calculated the electrostatic force of the amino
acid acting on its surroundings at a distance of 10 A.
This is composed of the force from the electric charge
(for the amino acids that have a charged side group)
plus the force from the dipole moment (due to the
non-uniformity of electronic charge across the amino
acid). The total force (in units scaled for convenience)
was used as a polarity index, and this is shown in
Table 2.2. The electrostatic charge term, where it ex-
ists, is much larger than the dipole term. Hence, this

measure clearly distinguishes between the charged
and uncharged amino acids.

The polarity index does not distinguish between
the positively and negatively charged amino acids,
however, since both have high polarity. A quantity
that does this is the pI, which is defined as the pH of
the isoelectric point of the amino acid. Acidic amino
acids (Asp and Glu) have pI in the range 2—3. This
means that these amino acids would be negatively
charged at neutral pH due to ionization of the COOH
group to COO™. We need to put them in an acid solu-
tion in order to shift the equilibrium and balance this
charge. The basic amino acids (Arg, Lys, and His)
have plI greater than 7. All the others usually have
uncharged side chains in real proteins. They have pI
in the range 5-6. Thus, pl is a useful measure of
acidity of amino acids that distinguishes clearly be-
tween positive, negative, and uncharged side chains.

A key factor in protein folding is the “hydrophobic
effect”, which arises as a result of the unusual char-
acteristics of water as a solvent. Liquid water has
quite a lot of structure due to the formation of chains
and networks of molecules interacting via hydrogen
bonds. When other molecules are dissolved in water,
the hydrogen-bonded structure is disrupted. Polar
amino acid residues are also able to form hydrogen
bonds with water. They therefore disrupt the struc-
ture less than non-polar amino acids that are unable
to form hydrogen bonds. We say that the non-polar
amino acids are hydrophobic, because they do not
“want” to be in contact with water, whereas the
polar amino acids are hydrophilic, because they
“like” water. It is generally observed that hydro-
phobic residues in a protein are in the interior of
the structure and are not in contact with water,
whereas hydrophilic residues are on the surface and
are in contact with water. In this way the free energy
of the folded molecule is minimized.

Kyte and Doolittle (1982) defined a hydrophobicity
(or hydropathy) scale that is an estimate of the differ-
ence in free energy (in kcal/mol) of the amino acid
when it is buried in the hydrophobic environment of
the interior of a protein and when it is in solution in
water. Positive values on the scale mean that the
residue is hydrophobic: it costs free energy to take
the residue out of the protein and put it in water.

Another version of the hydrophobicity scale was
developed by Engelman, Steitz, and Goldman (1986),
who were particularly interested in membrane pro-
teins. The interior of a lipid bilayer is hydrophobic,
because it mostly consists of the hydrocarbon tails of
the lipids. They estimated the free energy cost for
removal of an amino acid from the bilayer to water.
These two scales are similar but not identical; there-
fore both scales are shown in the table.

Another property that is thought to be relevant
for protein folding is the surface area of the amino
acid that is exposed (accessible) to water in an
unfolded peptide chain and that becomes buried
when the chain folds. Table 2.2 shows the accessible
surface areas of the residues when they occur in a
Gly—X=Gly tripeptide (Miller et al. 1987, Creighton
1993). Rose et al. (1985) calculated the average
fraction of the accessible surface area that is buried
in the interior in a set of known crystal structures.
They showed that hydrophobic residues have a
larger fraction of the surface area buried, which sup-
ports the argument that the “hydrophobic effect” is
important in determining protein structure.

2.5 VISUALIZATION OF AMINO
ACID PROPERTIES USING PRINCIPAL
COMPONENT ANALYSIS

So far, this chapter has summarized some of the fun-
damental aspects of molecular biology that we think
every bioinformatician should know. In the rest of the
chapter, we want to introduce some simple methods
for data analysis that are useful in bioinformatics.
We will use the data on amino acid properties.

Table 2.2 shows eight properties of each amino
acid (and we could easily have included several
more columns using data from additional sources).
It would be useful to plot some kind of diagram that
lets us visualize the information in this table. It is
straightforward to take any two of the properties
and use these as the coordinates for the points in
a two-dimensional graph. Figure 2.8 shows a plot
of volume against pl. This clearly shows the acidic
amino acids at low pI, the basic amino acids at high
pl, and all the rest in the middle. It also shows the

Nucleic acids, proteins, and amino acids ® 25

180
160 - Sk
L oR
L oY
140 Fo o
o i oo
2120 e OoH
) B oF Qo
g 100 i
9 | No
> oT
L o
D oC oPp
80 |-
So
L i
60 [
L oG)
40 L L . . . ! : ‘ h ! Fig. 2.8 Plot of amino acid volume
4 6 8 10 12 against pI—two properties thought to

pl

large spread of the middle group along the volume
axis. However, the figure does not distinguish
between the hydrophilic and hydrophobic amino
acids in the middle group: N and Q appear very close
toM and V, for example. We could separate these by
using one of the hydrophobicity scales on the axis
instead of pI, but then the acidic and basic groups
would appear close together because both are
hydrophilic (negative on the hydrophobicity scale).
What we need is a way of combining the informa-
tion from all eight properties into a two-dimensional
graph. This can be done with principal component
analysis (PCA).

In general with PCA, we begin with the data in the
form of an N x P matrix, like Table 2.2. The number
of rows, N, is the number of objects in our data set (in
this case N =20 amino acids), and the number of
columns, P, is the number of properties of those
objects (in this case P =8). Each row in the data
matrix can be thought of as the coordinates of a
point in P-dimensional space. The whole data setis a
cloud of these points. The PCA method transforms
this cloud of points first by scaling them and shifting
them to the origin, and then by rotating them in
such a way that the points are spread out as much as
possible, and the structure in the data is made easier
to see.

26 ® Chapter2

be important in protein folding.

Let the original data matrix be Xjie., X is the
value of the j® property of object i). The mean and
standard deviation of the properties are

1
HIZNZXU

i

and

1 172
0= (ﬁ 2 (X, - HJ')ZJ

The mean and standard deviation are listed at the
foot of Table 2.2. Since the properties all have differ-
ent scales and different mean values, the first step of
PCA is to define scaled data values by
z;= (X —w)/o;
The z; matrix measures the deviation of the values
from the mean values for each property. By defin-
ition, the mean value of each column in the z;matrix
is 0 and the standard deviation is 1. Scaling the data
in this way means that all the input properties are
placed on an equal footing, and all the properties will
contribute equally to the data analysis.

We now choose a set of vectors V= (vil, Viy Vi3
e Vp) that define the directions of the principal

a X b z C
@ 2 o° % b 2z © »
% Q
@ 90
Q
Q@ 9 Q Q °
o Q
Xq Q 7 2 o 1
Q Q Q
Q Q
X3 73 y3

Fig. 2.9 Schematicillustration of principal component analysis. (a) Original data. (b) Scaled and centered on the origin.

(c) Rotated onto principal components.

components. These vectors are of unit length, i.e.,
2 v].Zk = 1for each vector, and they are all orthogonal
k

to one another, i.e., 2 ViV = 0,wheniand jare not
k

equal. Each vector represents a new coordinate axis
that is a linear combination of the old coordinates.
The positions of the points in the new coordinate sys-
tem are given by

Yy = 2 Vil
k

The new y coordinate system is a rotation of the z
coordinate system —see Fig. 2.9.

There are still P coordinates, so we can only use
two of them if we plot a two-dimensional graph.
However, we can define the y coordinates so that as
much of the variation between the points as possible
is visible in the first few coordinates. We therefore
choose the v, values so that the variance of the
points along the first principal component axis,

1
N
means of the y’s are all zero because the means of the
z's were zero.) We then choose the v,, for the second

2 y? is as large as possible. (Note that the
i

1
component by maximizing the variance NZ Y3,
i
with the constraint that the second axisis orthogonal
to the first, i.e., ZVIkVZk =0. If we wish, we can
k
define further components by maximizing the vari-

ance with the constraint that each component is
orthogonal to the previous ones. Calculation of the
Vi s discussed in more detail in Box 2.2.

The results of PCA for the amino acid data in
Table 2.2 are shown in Fig. 2.10. The first two
principal component vectors are shown in the
matrix on p. 28. For component 1, the largest
contributions in the vector are the negative con-
tributions from the hydrophobicity scales. Thus
hydrophobic amino acids appear on the left side
and hydrophilic ones on the right. For component 2,
the largest contributions are positive ones from
volume, bulkiness, and surface area. Thus large
amino acids appear near the top of the figure and
small ones near the bottom. However, all the pro-
perties contribute to some extent to each of the com-
ponents; therefore, the resulting figure is not the
same as we would have got by simply plotting
hydrophobicity against volume.

Figure 2.10 illustrates several points about the
data that seem intuitive. There is a cluster of
medium-sized hydrophobic residues, I, L, V, M, and
F. The two acids, D and E, are close, and so are the
two amides, Q and N. Two of the basic residues, R
and K, are very close, and H is fairly close to these.
The two largest residues, W and Y, are quite close to
one another. The PCA diagram manages to do a
fairly good job at illustrating all these similarities at
the same time.

The PCA calculation in this section was done
using the program pca.c by F. Murtagh (http://
astro.u-strasbg.fr/~fmurtagh/mda-sw/).

Nucleic acids, proteins, and amino acids ® 27

0.8
0.6 i
OR

0.4 oF oy ml
= 1o oL
qc) 0.2+ oM oH
g ov
1o}

0 ()
'g -0.2- ocC oT oN
S-0.4 °D
oA 3s
-0.6
-0.81 Go
1.0 \ R S b v+ Fig. 2.10 Plotofthe amino acids on
-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 the first two components of the
First component principal component analysis.
Vol Bulk. Pol. pl Hyd.1 Hyd.2 S.A. Fr.A.
Comp. 1 (0.06, -0.22, 0.44, 0.19, -0.49, -0.51, 0.10, -0.45)
Comp. 2 (0.58, 0.48, 0.10, 0.25, 0.03, -0.03, 0.56, 0.17)

2.6 CLUSTERING AMINO ACIDS
ACCORDING TO THEIR PROPERTIES

2.6.1 Handmade clusters

When we look at a figure like 2.10, it is natural to try
to group the points into “clusters” of similar objects.
We already remarked above that I, L, V, M, and F
look like a cluster. So, where would you put clusters?
Before going any further, make a few photocopies of
Fig. 2.10. Now take one of the copies and draw rings
around the groups of points that you think should be
clustered. You can decide how many clusters you
think there should be — somewhere between four
and seven is probably about right. You can also
decide how big the clusters should be — you can put
lots of points together in one cluster if you like, or
you can leave single points on their own in a cluster
of size one. OK, go ahead!

When we presented the chemical structures of the
amino acids in Fig. 2.6, we chose four groups:

28 ® Chapter2

Neutral, nonpolar W,F,G A V,I,LL,LM, P

Neutral, polar Y,S,T,N,Q,C
Acidic D,E
Basic K,R,H

This is one possible clustering. We chose these four
clusters because this is the way the amino acids are
presented in most molecular biology textbooks. Try
drawing rings round these four clusters on another
copy of Fig. 2.10. The acidic and basic groups work
quite well. The neutral polar group forms a rather
spread-out cluster in the middle of the figure, but
unfortunately it has P in the middle of it. The nonpo-
lar group can hardly be called a cluster, as it takes up
about halfthe diagram, and contains points that are
very far from one another, like G and W. You prob-
ably think that you did a better job when you made
up your own clusters a few minutes ago.

We now want to consider ways of clustering data
that are more systematic than drawing rings on paper.

Nucleic acids, proteins, and amino acids ® 29

In fact, there is a huge number of different clustering
methods. This testifies to the fact that there are a lot
of different people from a lot of different disciplines
who find clustering useful for describing the patterns
in their data. Unfortunately, it also means that there
is not one single clustering method that everyone
agrees is best. Different methods will give different
answers when applied to the same data; therefore,
there has to be some degree of subjectivity in decid-
ing which method to use for any particular data set.
In the context of the amino acids, clustering
according to physico-chemical properties is actu-
ally quite helpful when we come to do protein
sequence alignments. We usually want to align
residues with similar properties with one another,
even if the residues are not identical. There are sev-
eral sequence alignment editors that ascribe colors
to residues, assigning the same color to clusters of
similar amino acids. In well-aligned parts of protein
sequences, we often find that all the residues in a
column have the same color. The coloring scheme
can thus help with constructing alignments and
spotting important conserved motifs. When we look
at protein sequence evolution (Chapter 4) it turns
out that substitutions are more frequent between
amino acids with similar properties. So, clustering
according to properties is also relevant for evolution.
In the broader context, however, clustering algo-
rithms are very general and can be used for almost
any type of data. In this book, they will come up
again in two places: in Chapter 8 we discuss distance
matrix methods for molecular phylogenetics, which
are a form of hierarchical clustering; and in Chapter
13 we discuss applications of clustering algorithms
on microarray data. It is therefore worth spending
some time on these methods now, even if you are
getting a bit bored with amino acid properties.

2.6.2 Hierarchical clustering methods

In a hierarchical clustering method, we need to
choose a measure of similarity between the data
points, then we need to choose a rule for measuring
the similarity of clusters.

We will use the scaled coordinates z as in the pre-
vious section. There is a vector z, from the origin to

30 ® Chapter?2

22

o-.

z

Z3 Q Q

Fig. 2.11 Illustration of the data points as vectors in
multidimensional space.

each point iin the data set (see Fig. 2.11). The length
of the vector is:

12
|z, = [z zﬁ{)
k

We want to measure how similar the vectors are for
two pointsiand j. A simple way to do this is to use the
cosine of the angle 0; between the vectors. If the two
vectors are pointing in almost the same direction, 0;
will be small and cos Gi]. will be close to 1. Vectors
with no correlation will have GU close to 90° and
cos 8 close to 0. Vectors with negative correlation
will have Oi]. >90° and cos el.], <0.
From standard geometry,

Another possible similarity measure is the correla-
tion coefficient between the z vectors:

1
Ry=—>— (2~ m)(zy, —my)
k

Ps;s;
where m, and s; are the mean and standard deviation
ofthe elements in the i row (see also Box 2.2, where
we define the correlation between the columns).
R;isin therange—1to 1.

In what follows, we shall assume that we have
calculated an N x N matrix of similarities between
the data points that could be cos 6 or R, or any
other measure of similarity that appears appropriate
for the data in question. We will call the similarity

matrix S from now on, to emphasize that the
method is general and works the same way, which-
ever measure we use for similarity.

During the process of hierarchical clustering,
points are combined into clusters, and small clusters
are combined to give progressively larger clusters.
To decide in what order these clusters will be con-
nected, we will need a definition of similarity between
clusters. Suppose we already have two clusters A
and B. We want to define the similarity S, of these
clusters. There are (at least) three ways of doing this:
* Group average. S, = the mean of the similarities
Sl.]. between the individual data points, averaged over
all pairs of points, where i is in cluster A and j is in
cluster B.

* Single-link rule. S,, = maximum similarity Sl.]. for
anyiin A andjinB.

 Complete-link rule. S, = minimum similarity Su
foranyiin A andjinB.

The reasons for the terms “single link” and “com-
plete link” will be made more clear in Section 2.6.3.

An algorithm is a computational recipe that
specifies how to solve a problem. Algorithms come
up throughout this book, and we will discuss some
general points about algorithms in Chapter 6. For
the moment, we will present a very simple algorithm
for hierarchical clustering. This works in the same
way, whatever the definitions of similarity between
data points and between clusters. We begin with
each point in a separate cluster of its own.

1 Join the two clusters with the highest similarity to
form a single larger cluster.

2 Recalculate similarities between all the clusters
using one of the three definitions above.

3 Repeat steps 1 and 2 until all points have been
connected to a single cluster.

This procedure is called “hierarchical” because it gen-
erates a set of clusters within clusters within clusters.
For thisreason, the results of a hierarchical clustering
procedure can be represented as a tree. Each branch-
ing point on the tree is a point where two smaller
clusters were joined to form a larger one. Reading
backwards from the twigs of the tree to the root tells
us the order in which the clusters were connected.

Plate 2.2(a) shows a hierarchical clustering of
the amino acid data. This was performed using the

CLUTO package (Karypis 2002). The similarity meas-
ure used was cos 0 and the group-average rule was
used for the similarity between clusters. The tree on
the left of Plate 2.2(a) shows the order in which the
amino acids were clustered. For example, L and I are
very similar, and are clustered at the beginning. The
LI cluster is later combined with V. In the meantime
M and F are clustered, and then the MF cluster is
combined with VLI, and so on. The tree indicates
what happens if the clustering is continued to the
point where there is only one cluster left. In practice,
we want to stop the clustering at some stage where
there is a moderate number of clusters left. The right
side of Plate 2.2(a) shows the clusters we get if we
stop when there are six clusters. These can be sum-
marized as follows.

Cluster 1: Basicresidues K,R,H
Cluster 2: Acid and amideresidues E,D,Q,N
Cluster 3: Small residues P,T,S,G, A
Cluster4: Cysteine C

Cluster 5: Hydrophobic residues V,L,LM,F
Cluster 6: Large, aromatic residues W,Y

The central part of Plate 2.2(a) is a representation
of the scaled data matrix z;. Red/green squares indic-
ate that the value is significantly higher/lower than
average; dark colors indicate values close to the
average. This color scheme makes sense in the con-
text of microarrays, as we shall see in Chapter 13.
We have named the clusters above according to
what seemed to be the most important feature link-
ing members of the cluster. The basic cluster con-
tains all the residues that are red on both the pI and
polarity scales. The acid and amide cluster contains
all the residues that are green on the hydrophobic-
ity scales and also on the pI scale. Note that if we
had stopped the clustering with a larger number of
clusters, the acids and the amides would have been
in separate clusters. We called cluster 3 “small”
because the most noticeable thing is that these
residues are all green on the volume and surface
area scales. These residues are quite mixed in terms
of hydrophobicities. Cluster 4 contains only cys-
teine. Cysteine has an unusual role in protein struc-
ture because of its potential to form disulfide bonds

Nucleic acids, proteins, and amino acids ® 31

between pairs of cysteine residues. For this reason,
cysteines tend to be important when they occur and
it is difficult to interchange them for other residues.
Cysteine does not appear to be particularly extreme
in any of the eight properties used here, and none of
the eight properties captures the important factor of
disulfide bonding. Nevertheless, it is interesting that
this cluster analysis manages to spot some of its
uniqueness. Cluster 5 is clearly hydrophobic, and
cluster 6 contains the two largest amino acids, which
both happen to be aromatic. It is worth noting, how-
ever, that the other aromatic residue, phenylalanine
(F), isin cluster 5. Phenylalanine has a simple hydro-
carbon ring as a side group and therefore is hydro-
phobic. In contrast, tryptophan and tyrosine are only
moderate on the hydrophobicity scales used here.

At the top of Plate 2.2(a), there is another tree
indicating a clustering of the eight properties. This is
done so that the properties can be ordered in a way
that illustrates groups of properties that are corre-
lated. The tree shows very similar information to
the correlation matrix given in Box 2.2, i.e., volume
and surface area are correlated, the two hydropho-
bicity scales are correlated with the fractional area
scale, etc.

2.6.3 Variants on hierarchical clustering

Take another copy of Fig. 2.10 and draw rings
around the six clusters specified by the hierarchical
method. These clusters seem to make sense, and
they are probably as good as we are likely to get with
these data as input. They are not the only sensible set
of clusters, however, and the details of the clusters
we get depend on the details of the method.

First, the decision to stop at six clusters is subject-
ive. If we use the same method (cos ® and group
average) and stop at seven, the difference is that the
acids are separated from the amides. If we stop at
five, cysteine is joined with the hydrophobic cluster.

A second point to consider is the rule for similarity
between clusters. In hierarchical clustering methods,
we could in principle plot the similarity of the pair of
clusters that we connect at each step of the process
as a function of the number of steps made. This level
begins at one, and gradually descends and the clusters

32 @ Chapter?2

get bigger and the similarity between the clusters
gets lower. In the group-average method, the sim-
ilarity of the clusters is the mean of the similarities of
the pairs of points in the cluster. Therefore, roughly
half of the pairs of points will have similarities
greater than or equal to the similarity level at which
the connection is made. When the single-link rule is
used, the level at which the connection is made is the
similarity of the most similar pair of points in the two
clusters connected. This means that clusters can be
very spread out. Two points in the same cluster may
be very different from one another as long as there is
a chain of points between them, such that each link
in the chain corresponds to a high similarity pair. In
contrast, the complete-link rule will only connect a
pair of clusters when all the pairs of points in the two
clusters have similarity greater than the current
connection level. Thus each point is completely
linked to all other points in the cluster. In our case,
using cos 0, the single-link rule and stopping at six
clusters yields the same six clusters as with the
group-average rule, except that WY is linked with
VLIMF and ON is split from DE. Using cos 6 with
the complete-link rule gives the same as the group-
average method, with the exception that C is linked
with VLIMF and TP is split from SGA.

These are relatively minor changes. We also tried
using the correlation coefficient as the similarity
measure instead of cos 6, and this gave a more
significant change in the result. With the group-
average rule we obtained: EDH; QNKR; YW; VLIMF;
PT; SGAC. These clusters seem less intuitive than
those obtained with the cos & measure, and also
appear less well defined in the PCA plot. The correla-
tion coefficient therefore seems to work less well on
this particular data set. The general message is that
it is worth considering several different methods on
any real data, because differences will arise.

So far we have been treating the data in terms of
similarities. It is also possible to measure distances
between data points that measure how “far apart”
the points are, rather than how similar they are. We
already have points in our P-dimensional space
defined by the z coordinates (Fig. 2.11). Therefore
we can straightforwardly measure the Euclidean
distance between these points:

12
dy = [2 (2 = ij)zj
k

We can use the matrix of distances between points
instead of the matrix of similarities. The only differ-
ence in the hierarchical clustering procedure is
always to connect the pair of clusters with the small-
est distance, rather than the pair with the highest
similarity. Group-average, single-link, and complete-
link methods can still be used with distances. Even
though the clustering rule is basically the same,
clustering based on distances and similarities will
give different results because the data are input to
the method in a different way — the distances are not
simple linear transformations of the similarities.

One of the first applications of clustering tech-
niques, including the ideas of single-link, complete-
link, and group-average clusters, was for construction
of phylogenetic trees using morphological charac-
ters (Sokal and Sneath 1963). Distance-matrix
clustering methods are still important in molecular
phylogenetics. In that case, the data consist of
sequences, rather than points in Euclidean space.
There are many ways of defining distances between
sequences (Chapter 4), but once a distance matrix
has been defined, the clustering procedure is the
same. In the phylogenetic context, the group-
average method starting with a distance matrix
is usually called UPGMA (see Section 8.3).

2.6.4 Non-hierarchical clustering methods

All the variants discussed above give rise to a nested
set of clusters within clusters that can be represented
by atree. There are other types of clustering method,
sometimes called “direct” clustering methods,
where we simply specify the number, K, of clusters
required and we try to separate the objects into K
groups without any notion of a hierarchy between
the groups. Direct clustering methods require us to
define a function that measures how good a set of
clusters is. One function that does this is

15 22/;' 28y

ijeA
Here, Alabels the cluster, and we are summing over
allclusters A=1,2 ... K. Thenotation i,j € A means

that we are summing over all pairs of objects i and
j that are in cluster A. We called this function I,,
following the notation in the manual for the CLUTO
software (Karypis 2002). Given any proposed division
of the objects into clusters, we can evaluate I,. We
can then choose the set of clusters that maximizes I,.

There are many other optimization functions that
we might think of to evaluate the clusters. Basically,
we want to maximize some function of the similarit-
ies of objects within clusters or minimize some func-
tion of the similarities of objects in different clusters.
L, is the default option in CLUTO, but several other
functions can be specified as alternatives. Note that
if a cluster has n objects, there are n? pairs of points
in the cluster. The square root in I, provides a way
of balancing the contributions of large and small
clusters to the optimization function. Using the I,
optimization function on the amino acid data with
K =6 gives the clusters: KRH; EDQN; PT; CAGS;
VLIMF; WY. Thisis another slight variant on the one
shown in Plate 2.2(a), but one that also seems to
make sense intuitively and when drawn on the prin-
cipal components plot.

Another well-known form of direct clustering,
known as K-means (Hartigan 1975), treats the data
in the form of distances instead of similarities. In this
case, we define an error function E and choose the
set of clusters that minimizes E. Let {1 ; be the mean
value of Z; for all objects i assigned to cluster A. The
square of the distance of object i from the mean point
of the cluster to which it belongs is

dle = Z(ZU - NA]')Z

j
and the error function is

B3 34

A i€eA

In direct clustering methods, we have a well-
defined function that is being optimized. However,
we do not have a well-defined algorithm for finding
the set of clusters. It is necessary to write a computer
program that tries out very many possible solutions
and saves the best one that it finds. Typically, we
might begin with some random partition of the data
into K clusters and then try moving one object at a

Nucleic acids, proteins, and amino acids ® 33

time into a different cluster in such a way as to make
the best possible improvement in the optimization
function. If there is no movement of an object that
would improve the optimization function, then we
have found at least a local optimum solution. If the
process is repeated several times from different start-
ing positions, we have a good chance of finding the
global optimum solution.

For the hierarchical methods in the previous
section, the algorithm tells us exactly how to form
the clusters, so there is no trial and error involved.
However, there is no function that is being optimized.
Exactly the same distinction will be made when we
discuss phylogenetic methods in Chapter 8: distance
matrix methods have a straightforward algorithm
but no optimization criterion, whereas maximum-
parsimony and maximum-likelihood methods have
well-defined optimization criteria, but require a trial-
and-error search procedure to locate the optimal
solution.

There are many issues related to clustering that
we have not covered here. Some methods do not fit
into either the hierarchical or the direct clustering
categories. For example, we can also do top-down
clustering where we make successive partitions of
the data, rather than successive amalgamations,
as in hierarchical methods. It is worth stating an
obvious point about all the clustering methods dis-
cussed in this chapter: clusters are defined to be non-

SUMMARY
DNA is composed of s
nucleotide building blo
the molecule that st

34 @ Chapter2

overlapping. An object cannot be in more than one
cluster at once. When we run a clustering algo-
rithm, we are forcing the data into non-overlapping
groups. Sometimes the structure of the data may not
warrant this, in which case we should be wary of
using clustering methods or of reading too much
into the clusters produced. Statistical tests for the
significance of clusters are available, and these
would be important if we were in doubt whether a
clustering method was appropriate for our data.

To illustrate the limitations of non-overlapping
clusters, we tried to plot a Venn diagram illustrating
as many relevant properties of amino acids as pos-
sible: see Plate 2.2(b). These properties do overlap.
For example, several amino acids are not strongly
polar or nonpolar, and are positioned in the overlap
area. There are aromatic amino acids on both the
polar and nonpolar sides, so the aromatic ring over-
laps the others. This diagram is surprisingly hard to
draw (this is at least the fourth version we tried!).
There were some things in earlier versions that got
left out of this one, for example tyrosine (Y) is some-
times weakly acidic (so should it be in a ring with D
and E?) and histidine is only weakly basic (so should
we move it into the polar neutral area?). The general
message is that clusters are useful, but they have
limitations, and we should keep this in mind when
clustering more complex data sets, such as the
microarray data discussed in Chapter 13.

amino acid properties. PCA choo
linear combinations of the ori
way that the maximum
points is explained
Clustering analysis is
in complex data s
ods is possible, i

REFERENCES

Bell, C.E. and Lewis, M. 2001. Crystallographic analysis of
lac repressor bound to natural operator O1. Journal of
Molecular Biology, 312:921-6.

Berman, H.M., Olson, W.K., Beveridge, D.L., Westbrook, J.,
Gelbin, A., Demeny, T., Hsieh, S.H., Srinivasan, A.R.,
and Schneider, B. 1992. The nucleic acid database: A
comprehensive relational database of three-dimensional
structures of nucleic acids. Journal of Biophysics, 63:
751-9. (http://ndbserver.rutgers.edu/index.html)

Creighton, T.E. 1993. Proteins: Structures and Molecular
Properties. New York: W.H. Freeman.

Engelman, D.A., Steitz, T.A., and Goldman, A. 1986.
Identifying non-polar transbilayer helices in amino acid
sequences of membrane proteins. Annual Review of Bio-
physics and Biophysical Chemistry, 15:321-53.

Hartigan, J.A. 1975. Clustering Algorithms. New York:
Wiley.

Karypis, G. 2002. CLUTO - a clustering toolkit. University
of Minnesota technical report #02—017 (http://www-
users.cs.umn.edu/~karypis/cluto/)

Kyte, J. and Doolittle, R.F. 1982. A simple method for dis-
playing the hydropathic character of a protein. Journal of
Molecular Biology, 157: 105-32.

Lowe, T.M. and Eddy, S.R. 1997. tRNA-scan-SE: A pro-
gram for improved detection of transfer RNA genes in

genomic sequences. Nucleic Acids Research, 25:955-64.
(http://rna.wustl.edu/tRNAdb/)

Miller, S., Janin, J., Lesk, A.M., and Chothia, C. 1987.
Interior and surface of monomeric proteins. Journal of
Molecular Biology, 196: 641-57.

Parry-Smith, D.J., Payne, A.W.R., Michie, A.D., and
Attwood, T.K. 1998. CINEMA: A novel colour interactive
editor for multiple alignments. Gene, 221: GC57-GC63.

Rose, G.D., Geselowitz, A.R., Lesser, G.J., Lee, R.H., and
Zehfus, M.H. 1985. Hydrophobicity of amino acid res-
idues in globular proteins. Science, 228: 834—8.

Sherlin, L.D., Bullock, T.L., Newberry, K.J., Lipman, R.S.A.,
Hou, Y.M., Beijer, B., Sproat, B.S., and Perona, J.J. 2000.
Influence of transfer RNA tertiary structure on amino-
acylation efficiency by glutaminyl- and cysteinyl-tRNA
synthetases. Journal of Molecular Biology, 299: 431-46.

Sokal, R.R. and Sneath, P.H.A. 1963. Principles of Num-
erical Taxonomy. San Francisco: W.H. Freeman.

Yusupov, M.M., Yusupova, G.Z., Baucom, A., Lieberman,
K., Earnest, T.N., Cate,].H.D., and Noller, H.F. 2001.
Crystal structure of the ribosome at 5.5 angstrom resolu-
tion. Science, 292: 883-96.

Zimmerman, J.M., Eliezer, N., and Simha, R. 1968. The
characterization of amino acid sequences in proteins by
statistical methods. Journal of Theoretical Biology, 21:
170-201.

Nucleic acids, proteins, and amino acids ® 35

36 © Chapter?2

Molecular evolution

and population
genetics

CHAPTER PREVIEW

This chapter covers some basic ideas in e
provide a foundation for work in bioinft
natural selection, and random drift i
of the coalescence theory that d
ancestors, and discuss the rel
sider the theory of fixation
the fixation probability
tion. We compare t
ences seen betw

3.1 WHAT IS EVOLUTION?

We argued in the Introduction (Section 1.4.2) that
evolution is essential to understanding biology and
bioinformatics. Biology is the study of life. While it is
usually obvious to us whether something is alive,
it is not so easy to come up with a satisfactory
definition of what we mean by life. One definition
that we like is that used by scientists in the NASA
astrobiology program, who are interested in search-
ing for signs of life on other planets. If you are going
to search for something, it is important to know
what you are looking for!

Life is a self-sustained chemical system capable of
undergoing Darwinian evolution.

You may know of other definitions of life, or be able
to come up with one of your own. One reason we like

CHAPTER

this one is that it underlines
the importance of evolution
in biology by including it in
the very definition of life. Of
course, this begs the question
of how to define evolution.

Most people have an intu-
itive idea of what is meant
by evolution, and are familiar
with phrases like “survival
of the fittest”. Everyone also
knows that modern ideas of
evolution can be traced back to Charles Darwin,
whose famous book On the Origin of Species by Means
of Natural Selection appeared in 1859. Take a few
moments now to think about what the word evo-
lution means to you. Try to write down a definition
of evolution in one or two sentences, in a form that
would be suitable for use in a glossary of a scientific
textbook. When you have done this, read on.

A definition that is often found in genetics text-
books is that evolution is a “change in frequency of
genes in a population”. While it is true that when a
new variant of a gene spreads through a population,
the population will have evolved, this definition does
not really seem to get to the heart of the matter.
Another one we came across is that evolution is
“heritable changes in a population over many gen-
erations”. This seems closer to the mark, but we are
not quite satisfied with it. We would like to suggest
that the following two points are the essential factors
that define evolution: (i) error-prone self-replication;
(ii) variation in success at self-replication.

Molecular evolution and population genetics ® 37

By “self-replication”, we mean that whatever is
evolving must have the ability to make copies of
itself. Evolution is not simply change. For example,
changes that occur during the lifetime of an organ-
ism, such as the development of an embryo, aging
processes, or the occurrence of mutations in non-
germline cells, do not count as evolution. Dawkins
(1976) uses the term “replicator” to describe a thing
that can self-replicate. Clearly genes can self-
replicate, at least in the context of the cell in which
they occur. Asexual organisms like bacteria can self-
replicate — when a bacterial cell divides, two cells are
produced having all the same essential components
as the original cell in roughly the same quantities.
Sexual organisms like people can also self-replicate
in a sense — the offspring of two people is recogniz-
ably another person. However, the situation is com-
plicated by the mixing of genes from both parents
into one offspring. For this reason, Dawkins (1976)
makes a good case for considering genes rather than
organisms as the fundamental replicators in biology.

By “error-prone”, we mean that the copies are not
always identical to the originals. If DNA replication
were perfect, there would be no further evolution,
because there would be no variations upon which
natural selection could act. Also, modern-day genes
have arisen by gradual changes that occurred when
previous versions of these genes were replicated
slightly incorrectly. Errors are thus essential for evo-
lution, provided they do not occur too frequently. If
there are too many errors, there will be no heredity,
i.e., genetic information will not be passed on to the
next generation.

Point (ii) is variation in success at self-replication.
Most organisms could continue to increase expon-
entially if they were not limited by something (usu-
ally food or space or predators). If all organisms
survived and multiplied at the same rate, then there
would be no change in frequency of the variants,
and there could be no evolution. When the popula-
tion size is limited, not everyone survives, and there
is the possibility of natural selection occurring. Some
variants will have a greater probability than others
of surviving and successfully replicating again. In
evolutionary biology, the fitness of an organism is
the expected number of offspring that it will have (or

38 @ Chapter3

some quantity proportional to this). The principle of
natural selection is that those variants with higher
fitness will increase in number relative to those with
lower fitness. The properties of the population there-
fore change in time, as is required by both the first
two definitions of evolution that we mentioned.
However, there is another important aspect of evo-
lution that is covered within the “variation in suc-
cess” in our definition. When population sizes are
limited to finite numbers, chance effects can deter-
mine which variants survive. If we have a popula-
tion composed initially of equal numbers of two
different variants, these numbers will not stay
exactly equal, even if the fitnesses of the variants are
equal. Chance fluctuations in numbers will occur,
known as random drift, so that sooner or later one
variant will take over the whole population. This
variation in success due to chance means that evo-
lution can occur even without natural selection.
This is referred to as neutral evolution, and it is an
important part of the way evolution occurs at the
molecular level, as we shall discuss below.

The evolutionary mechanism is surprisingly sim-
ple, to the extent of seeming almost inevitable,
which is scientifically pleasing, as all we need is
some kind of replicator and the notion of fallibility.
It goes without saying that nothing is perfect, and
hence that some errors are bound to occur in the
replication. It also goes without saying that re-
sources are limited and the replicators will have vary-
ing success, whether due to chance or to natural
selection. Hence replicators are bound to evolve.
Interestingly, it is not only biological replicators that
can evolve. Dawkins (1976) introduced the term
“meme” to describe an idea or fashion that replicates
and evolves in human society. Blackmore (1999)
has given a very stimulating discussion of this topic.

Given the beautiful simplicity and inevitability of
evolution, it is rather surprising that it should have
taken mankind until the middle of the nineteenth
century to come up with the idea. It is even more sur-
prising that some educated people today should still
steadfastly refuse to accept that evolution occurs.
In the context of a book on bioinformatics, there can
be no better example of evolution than looking at
a sequence alignment. The fact that similar gene

sequences can be found in different organisms, even
when these organisms look as different from one
another as bacteria, mushrooms, and humans, is
striking evidence that they evolved from a common
ancestor. The other nice thing about comparing
sequences is that it actually allows us to see the
mechanism of evolution in a way that comparing
morphological features does not. When we look at a
picture of a chimpanzee and a human, we can say
qualitatively that they look pretty similar but with
some changes, although it is difficult to know
exactly what the changes have been. When we look
at an alignment of a chimpanzee gene and a human
gene, however, we can say that they are different
precisely because of a couple of amino acid substitu-
tions at this point and that point. We will now go on
tolook at how gene sequences evolve.

3.2 MUTATIONS

At this point, it will be handy to introduce some
genetic terminology that we will need in this chap-
ter. A locus is the genetic name for a particular posi-
tion on a chromosome. Usually a locusis a gene, but
it might also be a molecular marker, i.e., a sequence
that is detectable experimentally, but which is not
necessarily a coding sequence. Alternative sequence
variants that occur at the same locus are called
alleles. If sequence information is available from
many different individuals in a population, then
the frequencies of the alleles at a given locus can be
measured. A polymorphic locus (or a polymor-
phism) is one where there is more than one allele
present in the population at a significant frequency.
Sometimes there are rare alleles in a population,
with frequencies of only a few percent or a fraction
of a percent. It will be difficult to detect such rare
alleles unless extremely large samples are available.
For this reason, geneticists often count a locus as
polymorphic only if the most common allele has
a frequency less than a cutoff (usually 99%). This
definition essentially ignores the presence of ex-
tremely rare alleles.

Most prokaryotic organisms are haploid, i.e.,
they have a single copy of each locus in the genome.

Many eukaryotic organisms are diploid, i.e., they
have paired chromosomes, and hence two copies of
each locus. If the two sequences at a given locus in
an individual are copies of the same allele, then the
individual is said to be homozygous at this locus,
whereas if they are different alleles, the individual is
heterozygous.

A mutation is any change in a gene sequence
that can be passed on to offspring. Mutations occur
either as a result of damage occuring to the DNA
molecule (e.g., from radiation) or as a result of errors
in the replication process. The simplest type of muta-
tion is a point mutation, where a single DNA base is
replaced by another base of a different type. As we
discussed in Chapter 2, A and G bases are called
purines, and C and T/U bases are called pyrimidines.
A mutation from one purine to another or from one
pyrimidine to another is known as a transition,
whereas a mutation from a purine to a pyrimidine or
vice versa is known as a transversion. When a
mutation occurs, it will often create a new allele that
isnot already present in the population. However, in
principle, the same mutation could occur more than
once at different times in different individuals, in
which case the mutation would create another copy
of an existing allele.

Point mutations occur all over DNA sequences.
The effect of these mutations will depend on where
the mutation occurs. In some genomes, there are
large regions of non-coding DNA between genes. In
eukaryotic genomes, these often consist of repetitive
sequence elements that are not transcribed and do
not contribute to the functioning of the organism.
A mutation occurring in such a region will have no
effect on any protein sequences and is quite likely to
be a neutral mutation, i.e., a mutation that does not
affect the fitness of the organism. Not all non-coding
regions are non-functional, however. Non-coding
regions will contain signals that control initiation
and termination of transcription and translation
(see Chapter 2). A mutation that affects one of these
regions could have a significant effect on fitness,
because it would affect the level of expression of
agene.

When a mutation occurs within a protein-coding
region, it has the potential to change the amino acid

Molecular evolution and population genetics ® 39

sequence of the protein that will be synthesized from
this gene. Due to the structure of the genetic code
(Table 2.1), not every DNA mutation causes a
change in the protein sequence. A mutation that
does not lead to a change in amino acid is called a
synonymous substitution, while one that does lead
to an amino acid change is called a non-synony-
mous substitution. Many changes at the third
codon position are synonymous: e.g., the CCG codon
codes for proline, but the G could changeto A, C,or T
without affecting the amino acid. There are also a
few synonymous changes that can occur in other
positions of the codon: e.g., in the leucine codon
CTG, the first position C can change to a T. However,
the majority of changes in first and second positions
are non-synonymous.

Non-synonymous changes are sometimes classi-
fied as either missense mutations, where an amino
acidisreplaced by another amino acid, or nonsense
mutations, where a stop codon is introduced into
the middle of the sequence (e.g., the tryptophan
codon TGG could change to the stop codon TAG).
A nonsense mutation will lead to termination of
translation in the middle of the protein, i.e., half
the protein will be missing. This will almost always
have a strong negative effect on fitness. A missense
mutation might have a positive or negative effect or
no effect on fitness, depending on where the change
is in the protein and how different the new amino
acid is from the old one.

Not all mutations are simple substitutions of one
base by another. Insertions and deletions can also
occur — these are collectively referred to as indels.
Small indels of a single base or just a few bases are
frequent. One way in which this can occur is by slip-
page during DNA replication. If the DNA replicase
slips back a couple of bases, it can lead to insertion of
those bases twice into the new strand. Repeated
sequences are particularly prone to this type of indel
because the two strands of DNA can still pair with
one another if they slip slightly: e.g., a sequence
GCGCGCGCGC could have extra GC units inserted or
removed from it. Repeated sequences of short motifs
like this are called microsatellites. The length of
microsatellite alleles (i.e., the number of copies of the
repeated motif) changes rapidly, hence microsatel-

40 ® Chapter3

lites are often polymorphic. They are useful in experi-
mental population genetics studies because they
reveal information about the history and geograph-
ical subdivisions of populations (see Schlotterer
2000). Repeated sequences occurring in protein-
coding sequences can have dramatic effects, and
often lead to disease (Karlin et al. 2002). For exam-
ple, the protein huntingtin contains a CAG repeat
region that is prone to expansion via slippage, which
results in Huntington’s disease, a severe hereditary
disorder in humans.

If an indel occurs in a protein sequence that is not
a multiple of three nucleotides, this causes a frame
shift that changes the sequence of amino acids
specified for the whole of the region downstream of
the deletion or insertion. This is likely to cause loss
of function of the gene. Thus a single base insertion
or deletion is a much more drastic mutation than a
single base substitution.

Mutations can sometimes involve much larger
scale changes in DNA. For example, deletions or
insertions of tens or even thousands of bases can
sometimes occur in genes. Changes can also occur at
the chromosome level. Sections of DNA involving
whole genes or several genes can be inverted, i.e.,
reversed in direction, or translocated, i.e., cut out
from one part of a genome and inserted into another.
All these types of change can be classed as muta-
tions, as they are changes in DNA that can be passed
on to future generations.

3.3 SEQUENCE VARIATION WITHIN
AND BETWEEN SPECIES

In this section, we will consider the example of one
well-studied gene that allows us to see the patterns
of sequence variation that arise due to mutations.
We will compare the variations we see within the
human species with those we see between humans
and other animals.

The gene BRCA1 has been shown to be associ-
ated with hereditary breast and ovarian cancer in
humans (Miki et al. 1994). Women with mutations
in this gene are significantly more likely to develop
cancer. It is thought that the normal role of the

Table 3.1 Numbers of documented cancer-associated
mutations in the BRCA1 gene.

Mutation

BRCA1 protein is in repair of oxidative DNA damage
(Gowen et al. 1998). If this protein does not function
correctly, DNA damage can accumulate in indivi-
dual somatic cells and occasionally this causes can-
cer. The Human Gene Mutation Database (Stenson
et al. 2003) describes mutations in human genes
that are known to be associated with diseases. For
BRCA1, the database lists 408 mutations. The
positions of these mutations are distributed along
the entire length of the sequence. The numbers of
documented mutations of different types are shown
in Table 3.1.

Roughly a third of these mutations are single
nucleotide substitutions. Slightly over a third of
the mutations are small deletions of one or a few
nucleotides from the coding region of the DNA. A
few gross deletions and insertions are also observed
in this gene, as are a few inversions. Like many
human genes, BRCA1 has a complex intron/exon
structure — there are 24 exons in this case. The
correct synthesis of the BRCA1 protein therefore
requires correct splicing of the mRNA. Nucleotide
substitutions occurring at the splice sites can lead to
incorrect splicing, and hence to large-scale errors in
the resulting protein. For example, a splice site
might disappear due to a mutation, which might

cause the omission of a whole exon from a protein,
or a sequence defining a new splice site might arise
in the wrong place (this is called activation of a cryp-
tic splice site). Many splice-site mutations are seen in
this protein.

This example illustrates how many different ways
mutations can impair the function of a gene. Genes
have arisen through many millions of years of nat-
ural selection, so we would expect them usually
to be rather good at their jobs. Most mutations
introduced into a functioning gene sequence will
be deleterious, i.e., they will be of reduced fitness
in comparison to the original sequence. Mutations
contained in disease-linked databases are those that
are sufficiently deleterious to result in an obvious
disease phenotype. These mutations are usually very
rare in the population at large because there is
significant natural selection acting against them.
Other mutations may have only a very small effect
on the function of the gene that would have no
obvious consequences for the individual. However,
small selective effects are very important on the evo-
lutionary time scale. Natural selection, acting over
many generations, tends to keep the frequencies of
slightly deleterious mutations to low levels.

Of course, not all mutations are deleterious. Some
will be neutral, and there must be occasional ad-
vantageous mutations that increase the fitness of
the sequence. If there were no advantageous muta-
tions, then the gene sequence could never have
evolved to be functional in the first place. Never-
theless, we would expect advantageous mutations
to be much rarer than deleterious ones, so when we
look at a set of mutations of a gene in a population
like this, the majority will be deleterious.

The BRCA1 gene has been sequenced in many
other species as well as humans. Figure 3.1 shows
an alignment of part of the BRCA1 DNA sequence
from 14 different mammals. Sites shaded in black
are identical in all species, and sites shaded in gray
show a noticeable degree of conservation across
species. All these sequences must have descended
from a common ancestor at some point in the past.
They have gradually diverged from one another due
to the fixation of different mutations in different
species. Deleterious mutations will not often be fixed

Molecular evolution and population genetics ® 41

Wombat
Opossum
Armadillo
Sloth
Dugong
Hyrax
Aardvark
Tenrec
Rhinoceros
Pig
Hedgehog
Human

Rat

Hare

A AAGTTAARGABTGCI T TECACARE
: AAAGTTAATGAGTGGTTETECAGAAG
A2 AGTTAAGGAGTGGETITECAGAEE
A A RGTIAATGAGTGGETITCCACARE
A ARGTTIAATGAGTGGE TI TIRCACARE
A ARGTTIAATGAGTGGETITCCACARE
A A AGTIAATGAGTGGETETECACARE

A AAGTEAATGAGTGGETE TCIIAGAACHEATEA
A A AGTEAATCARTCCE T TCEACAACTEATCAING

Wombat
Opossum
Armadillo
Sloth
Dugong
Hyrax
Aardvark
Tenrec
Rhinoceros
Pig
Hedgehog
Human

Rat

Hare

t gAagtt

gt gctg tgc

CA a gaag a atggatatT t Gtt TtCagAgAA Atagac

: : ;83

156
153
150
150
141
141
141
141
150
150
150
150
150
150

Fig. 3.1 Partof the alignment of the DNA sequences of the BRCA1 gene.

in a population, thus the differences between species
will usually arise due to the accumulation of either
neutral or advantageous mutations.

Figure 3.2 shows the protein alignment for the
same part of the BRCAI sequence as Fig. 3.1. The
first few amino acids in this sequence are the same in
all these species. In the DNA alignment, the only
substitutions that have occurred in this region are
synonymous changes. These occur in columns 3, 6,
9, and 12 of Fig. 3.1 (check these with the genetic
code in Table 2.1). Since almost all synonymous
changes are at the third position of codons, third-
position sites tend to evolve more rapidly than first-
and second-position sites. For each amino acid
where there are just two synonymous codons in the
genetic code, the alternative bases are either two
purines or two pyrimidines. This means that many
synonymous substitutions tend to be transitions,
and this is one reason why transitions tend to
be seen more frequently than transversions. For
example, in Fig. 3.1 we have A < G transitions at
columns 3 and 12, and C <> T transitions in column

42 ® Chapter3

9 (the C seems to have arisen more than once in
unrelated species). In column 6 there is a T <> G
transversion. This is still synonymous because there
are four synonymous codons for valine.

When examining protein alignments, we see that
not all amino acid substitutions are equally likely.
Those that occur between amino acids of similar
chemical properties tend to be more frequent. These
are often called conservative changes. As clear
examplesin Fig. 3.2, we see that in column 8 there is
a substitution from an arginine to a lysine (two basic
amino acids) and in column 12 there are several
substitutions between isoleucine, leucine, valine,
and methionine (all of which are hydrophobic, as we
discussed in Chapter 2). In Chapter 4, we will
describe methods for quantifying the differences in
substitution rates between different amino acids.

The alignments in Figs. 3.1 and 3.2 also contain
several gap regions. There appears to have been a
nine-base (i.e., three-amino acid) deletion in the four
species dugong, hyrax, aardvark, and tenrec, from
positions 37—45. This deletion was pointed out by

* 20 * 40 *
Wombat RN ERYE S DL A SIS ENGRSHEQ SAEN P SAPEDGHPDTAEGNS SVEAATE @ 52
Opossum AN FIRES DWLA P YIS SVR SHIZQNAEATNAIREY GHVET - DGNS S T2 51
Armadillo : ISWNHNEEING DML TSEIEHPRGSHLNAENAGAIRKY - - SKIEVDEY S SFE)oi@un 50
Sloth LTSbEH SIYAEYVGAIFKY, - - PNIZVDGYSGS[sias@ss : 50
Dugong —— - LH S#AEvAG E\- - PEIZVHGYSSSEodss : 47
Hyrax -~ - SEPSEGSIALNGKW/AGP K!——PG VHRYSSFPINiss : 47
Aardvark - - -BCEHBEGSIHSNABNMGGAIRE)) - - SNIVHSYSCSEH@ns, : 47
Tenrec : e DS| SGADvAVAFE - -PDACESYSSPIHAT, : 47
Rhinoceros : LTSBIsHBIGGP SWTEMAGAEEv——Q VDCYSGSEAEIG : 50
Pig AN IRl UL TSI SORR SIS TC\YAGAAE)) - - PNIZADGHLGSE#@m : 50
Hedgehog AN IR BT TSIl Y KGSK SKTENTVTTE)) - - PNAIDXFFG S @ 50
Human MK VNEWESRSDID LGSDDSHDGESESEAKuAD D)~ - LNIZVDEYSGSfsziéns : 50
Rat K VNEWESR! GEELTSD ASDRRPAS*AEAA E)- - SNIZVDGCF SSEKl@#s : 50
Hare AN IR R T PR DRRSESHAKHAGAIEY - - PKIZVDGYSCSiimens, : 50

KVNEWfs4 6 d s

e n e eki

Fig. 3.2 Alignment of the BRCA1 protein sequences for the same region of the gene as Fig. 3.1.

Madsen et al. (2001), who showed that the deletion
was common to a group of species known as
Afrotheria, which also includes golden moles, ele-
phant shrews, and elephants. The Afrotheria group
is extremely diverse morphologically, and it is only
by using molecular evidence such as this that we
have become aware that these species are relatives.
Mammalian phylogeny is discussed in more detail in
Chapter 11. For now, we note that there are two
more deletions in this part of the BRCA1 gene. Three
bases have been deleted from positions 121-3 in the
opossum, and six bases have been deleted in posi-
tions 106-11 in all species except the wombat and
opossum. This example is also illustrative of mam-
malian phylogeny: the wombat and opossum are
marsupials, whereas the rest are eutherian mam-
mals. Strictly speaking, whenever there is a gap in
an alignment, we have no way of knowing whether
there has been a deletion in one group of species or
an insertion in the opposite group. For the first two
examples given above, it seems safe to assume that
the deletion is a derived feature, and that the shorter
sequences have evolved from longer ancestors.
However, in the third example, the information in
the alignment does not tell us whether there was a
deletion in the common ancestor of the eutherian
mammals or an insertion in the common ancestor of
the marsupials.

One thing that is clear in all three indels is that
they have occurred in multiples of three bases, i.e.,
whole codons. None causes a frame shift. An indel of

a small number of amino acids into a protein will
somtimes not affect the protein much, especially if it
does not disrupt a region of secondary structure. So,
like some amino acid substitutions, some small in-
dels can be nearly neutral. We know from studying
human mutations (e.g., Table 3.1) that frame-shift-
causing indels do occur. Presumably they occur in
other species too, although data on sequence vari-
ants are not usually available for non-human spe-
cies. The reason we do not see these frame shifts in
between-species comparisons is that they are very
likely to be deleterious mutations that do not become
fixed in populations.

This section has emphasized that there is an
important difference between the sequence vari-
ation that we see within a species and the variation
that we see between species. Most sequence variants
within a species will be deleterious mutations that
will probably go on to be eliminated by selection. The
differences that we see between species are as a
result of fixation of mutations in the population of
one species or the other. These changes are the ones
that did not get eliminated by selection, i.e., they are
usually either neutral or advantageous. The ques-
tion of the relative importance of neutral versus
advantageous mutations in driving molecular evo-
lution is a key issue to which we will return at the
end of this chapter. For the next two sections, we
need to look at two fundamental aspects of popula-
tion genetics: coalescence theory and the process of
fixation of mutations in populations.

Molecular evolution and population genetics ® 43

3.4 GENEALOGICAL TREES AND
COALESCENCE

3.4.1 Adam and Eve

Each gene that we have is a copy of a gene in one of
our parents, and this was itself a copy of a gene in
one of our grandparents. It is possible to trace the
lines of descent of a gene back through the genera-
tions. It is simplest to begin with genes that are
inherited through only one sex. In humans, there
are two good examples of this: mitochondrial DNA
(mtDNA) is inherited through the maternal line
(both boys and girls get it from their mother), and Y
chromosome DNA is inherited through the paternal
line (boys get it from their father). As far as we know,
both types of DNA are inherited without recombina-
tion. Thus, in the absence of new mutations, each
gene will be an exact copy of the parent’s gene.
Figure 3.3 shows the “family tree” of such a gene.
Each circle represents a copy of a gene in a popula-
tion. Each row represents a generation. Each gene is
copied from one of the genes in the previous genera-
tion, indicated by a line. Suppose we consider all the

e L L LN &L
Mutation 1

Mutation 2

C— | | 1)@

Current
generation

Fig. 3.3 Illustration of the coalescence process. Each
circle represents one gene copy. Bold lines show the lines of
descent of genes in the current generation. Thin lines show
lines of descent that do not lead to the current generation.
Shaded circles show the inheritance of two different
mutations.

44 ® Chapter 3

individuals in the current generation (bottom of the
figure) and trace back their genes. The lines of
descent leading to the present generation are shown
in bold. All these lines of descent eventually con-
verge on a single copy of the gene if we go far enough
back in time. This process is known as coalescence.
The number of generations that we have to go back
until all the lines of descent coalesce depends on the
size of the population and other details, but it is
inevitable that coalescence will occur eventually.
The reason for this inevitability is simply that not
all individuals in any one generation pass on copies
of their genes. A woman with no daughters does
not pass on her mitochondrial DNA, and a man with
no sons does not pass on his Y chromosome. These
are dead ends in the gene family tree. Equally there
are some gene copies that are passed on more than
once (e.g., mothers with two or more daughters).
These are branch points in the tree when we move
forwards in time, and coalescence points when we
move back in time.

In the case of human mtDNA, it is believed that all
existing sequence variants can be traced back to a
single woman living in Africa roughly 200,000
years ago, who is usually known as mitochondrial
Eve (Cavalli-Sforza, Menozzi, and Piazza 1996). This
does not mean that there was only one woman in
Africa at that time. There must have been a whole
population, but Eve was the only one whose mtDNA
happened to survive. There was probably nothing
much to distinguish her from anyone else around
at the time. We know that humans were found in
many different areas of the world well before the
estimated date of mitochondrial Eve. The “out of
Africa” hypotheses, supported by the mtDNA evid-
ence, is that modern humans are all descended
from an African population that successfully spread
throughout the world relatively recently and re-
placed previously existing groups.

Most studies of human mtDNA have used a highly
variable non-coding part of the genome called the
D-loop. More recently complete mitochondrial gen-
ome sequences have become available from many
individuals and these have also been used to recon-
struct the history of human populations. Ingman
etal. (2000) observed that the mean number of sites

that differed between pairs of genomes taken from
a worldwide sample was 61.1 out of a total length
of 16,553 bases. When the sample was divided into
Africans and non-Africans, the mean pairwise dif-
ference was 76.7 between Africans and only 38.5
between non-Africans. This suggests that there
have been different divergent populations in Africa
for much longer than in the rest of the world. The
part of the genome excluding the D-loop almost
entirely codes for proteins, rRNAs, and tRNAs.
Although the D-loop has a substantially higher den-
sity of variable sites than the rest of the genome,
Ingman et al. (2000) argue that the rest of the
genome evolves in a more predictable fashion and is
more reliable for estimating substitution rates and
times of divergences between groups.

Plate 3.1 shows their results for complete gen-
omes excluding the D-loop. This shows only sites
that are informative for construction of phylogen-
etic trees. Sites that are identical in all individuals,
or where a single individual differs from all the rest
are not informative because they give no informa-
tion about shared common ancestors. The sites
shown are polymorphic, i.e., there is more than one
base that occurs at this site with an appreciable
frequency in the total human population. The sites
are shown in order of decreasing frequency of the
polymorphism, not according to their position on
the genome. Sequence variants are shared by
related individuals because the original substitution
occurred in a common ancestor of the individuals.
For example, all individuals in the blue group in
Plate 3.1 possess A at the second site, in contrast
to all the other sequences, which have a G at this
point. Thus, there must have been a substitution
from a G to an A in a common ancestor of the blue
group. The “blockiness” of the data illustrates the
fact that mtDNA is inherited without recombina-
tion. Thus, the individuals with an A at the second
site also have a T at the third and fourth sites, show-
ing that several substitutions occurred in the same
line of descent. Recombination would tend to
obscure such patterns of correlations between sites.
The pattern of ancestry is also obscured when the
same substitution occurs more than once at a site.
For example, at the first site, there seems to have

been more than one independent substitution from
A to G. Sites like this give conflicting phylogen-
etic information from other sites, but as long as
there are sufficient segregating sites in the whole
sequence, it is likely that the true relationship will
be apparent.

The left side of Plate 3.1 shows the deduced phylo-
genetic tree. The early branching sequences (shaded
pink) are all African. The group shaded green is also
all African, and is the most closely related African
group to sequences from the rest of the world. The
yellow and blue groups include individuals from
many other parts of the world (e.g., Europe, China,
Australia) but no Africans. The most important
branch points on this tree are strongly supported
by bootstrapping (a method of judging the reliability
of nodes on phylogenetic trees that we will discuss
in Chapter 8). Thus, the data strongly suggest that
a relatively small population left Africa and spread
through the rest of the world, taking its mito-
chondrial DNA along with it. The estimate for the
age of the most recent common ancestor of all the
sequences in the study (i.e., Eve) is 170,000
+ 50,000 years ago, while the estimated date of
the most recent common ancestor of the non-
African sequences (i.e., the date of the migration out
of Africa)is 52,000 = 27,000 years ago.

A similar story is told by human Y chromosomes.
Underhill et al. (2000) studied 167 polymorphisms
in the non-recombining part of the Y chromosome
in a sample of over 1,000 men. These consisted
mostly of single nucleotide substitutions, together
with a few small insertions and deletions, and one
insertion of an Alu element. They also found that the
most divergent sequences were African. Thompson
et al. (2000) estimated the date for the most recent
common male ancestor, “Y-chromosome Adam”, to
be around 59,000 years ago, and the date for the
expansion out of Africa to be around 44,000 years
ago (with wide confidence intervals on both these
dates). There isno reason why Adam and Eve should
have existed in the same time and the same place,
because the lines of descent of the two different types
of DNA are independent of one another. Patterns
of migration of men and women over time may also
have been different.

Molecular evolution and population genetics ® 45

3.4.2 A model of the coalescence process

After this brief diversion into human evolution, let
us consider a simple theory for the coalescence pro-
cess. Suppose there are N women in the population,
and the population size is constant throughout time.
For simplicity, assume that all individuals are
equally fit, and therefore that they all have the same
expected number of offspring. This means that any
individual in the present generation is equally likely
to have had any of the individuals in the previous
generation as a mother. If we choose two random
individuals in the present generation, the probabil-
ity that they had the same mother according to this
model is 1/N, and the probability that they had dif-
ferent mothers is 1 — 1/N. The probability that their
most recent common ancestor lived T generations
agois

T-1
P(T):(l—l) 1 (3.1)

N N

This means that as we follow the two lines of descent
backwards, they must have had different mothers for
T — 1 generations and then the same mother on the
Tth generation. To a good approximation (see Eq. 35
in the Mathematical Appendix) this can be written as

P(T)= Lo

5 (3.2)

i.e., the distribution of times to coalescence of the
lines of descent of any two individuals is exponen-
tial, with a mean time of N generations. It can also be
shown that the mean time till coalescence of all N
individuals is 2N, i.e., for a constant non-expanding
population, we expect that the most recent common
ancestor lived roughly 2N generations ago.

We have so far spoken of genes passed down
in one sex only. However, the majority of our genes
are on the autosomes (i.e., non-sex chromosomes)
and are passed down through both sexes. We have
two copies of each autosomal gene, one of which
is descended from each of our parents. Thus, for a
population of size N, there are 2N copies of each
gene. However, more importantly, recombination
can occur in the autosomes. There are typically one

46 ©® Chapter3

or two crossover events per generation on every pair
of autosomes, i.e., there is a lot of reshuffling of gene
combinations. We cannot draw a simple genealo-
gical tree like Fig. 3.3 for a whole chromosome
because different parts of the chromosome will be
descended from different ancestors. If we are inter-
ested in just one gene on an autosome, then the tree
picture still makes some degree of sense. What is
relevant is the probability of crossover occurring
within the gene, which is usually very small,
because any one gene represents only a small pro-
portion of the whole chromosome. There are some
genes for which we have sequence data from many
individuals and we can use coalescence theory to
tell us something about the probability that recom-
bination events have occurred at different points
within the sequence. If there is more than one segre-
gating site in the gene, recombination can create new
sequence variants that have not been seen before.
In the following section, however, we are only con-
cerned with the spread of a single point mutation
through a population. In this case, we can follow back
the tree that describes the inheritance of this single
site in the DNA sequence. For this calculation it does
not really matter whether there is recombination in
the gene or not.

3.5 THE SPREAD OF NEW
MUTATIONS

3.5.1 Fixation of neutral mutations

Consider a point mutation that hasjust occurred in a
gene. One individual in a population now contains a
gene sequence that is different from all the other
members of the population. What happens to this
new sequence? In Fig. 3.3, the different shadings of
the circles represent different mutations. Mutation
number 1 (shaded gray) first arises at the second
generation in the figure. This mutation is transmit-
ted to several individuals and survives in the popula-
tion for a number of generations before extinction
occurs. This mutation does not survive to the present
generation because it does not arise on the lines of
descent of the gene copies in the present generation
(the thicker black lines in the figure). In contrast,

mutation 2 (shaded black) does arise on the line of
descent of the gene copies in the present generation.
This mutation has risen to a high frequency in the
population. Mutation 2 stands a large chance of
spreading to take over the whole population, i.e., of
becoming fixed.

Very few new mutations become fixed — most
disappear after only a few generations. If a muta-
tion is neutral, it is easy to calculate the probability,
Py that it will become fixed by considering the
tree diagram in Fig. 3.3. We know that we can trace
all individuals of the present generation back to
some single individual in an ancestral population.
Suppose a mutation occurred in the ancestral popu-
lation. There were N copies of the gene, and each one
was equally likely to mutate. The probability that the
mutation occurred in the gene copy that happened
to become the ancestor of the present generation
is therefore 1/N. The same argument works if we
think forwards from the present generation. If we go
sufficiently far forwards in time, only one of the pre-
sent generation will have surviving descendants.
Only mutations that occur in this one individual will
be fixed. The fraction of neutral mutations in the pre-
sent generation that will become fixed is therefore
P =1/N (3.3)

Suppose that the probability of a new mutation
arising at each site in a DNA sequence is u per genera-
tion in each copy of the gene. The mean number of
new mutations arising at a given site per generation
in the whole population is therefore Nu. The rate of
fixation of new mutations is the rate at which muta-
tions arise, multiplied by the probability that each
mutation is fixed:
g, = Nu X pg=1U (3.4)
This says that the rate of fixation of neutral mutations
is equal to the underlying mutation rate and is inde-
pendent of the population size. This is one of the most
fundamental results of neutral evolution theory
(Kimura 1983). However, for non-neutral mutations,
Py, is not equal to 1/N (see Box 3.1), and therefore it
isonly true that Ug, = U for neutral mutations.

3.5.2 Simulation of random drift and fixation

Neutral mutations spread through a population by
random drift. This means that the number of copies
of the mutation in the population changes only due
to chance effects. Suppose there are m copies of a
neutral mutant sequence in a population at one gen-
eration, and we would like to know the number n of
copies that there will be at the next generation. On
average, we expect that n = m; however, random drift
means that n could be more orless than m. We will use
a population genetics model known as the Wright—
Fisher model to investigate this effect. In this model,
it is assumed that each copy of the gene in the new
generation is descended from one randomly chosen
gene copy in the previous generation. Thus, each
gene in the new generation possesses the mutation
with probability a =m/N, and lacks the mutation
with probability 1 — a. The probability that there are
n copies of the mutation in the new generation is
therefore given by a binomial distribution (see
Section M.9 in the Appendix if you need a reminder):
P(n)=CNa"(1 —a)N™" (3.5)
From this distribution, the mean value of nis Na = m,
as expected. However, there is fluctuation about this
mean. This formula provides the basis for a com-
puter simulation of the fixation process shown in
Fig. 3.4. The simulation considers a population of
N =200 gene copies. At time zero, one copy of a
new sequence arises by mutation. We then calculate
the value of n at each subsequent generation by
choosing a random value with the probability dis-
tribution given by Eq. (3.5). The simulation contin-
ues until either the mutation becomes extinct (n = 0)
or it goes to fixation (n=N). The simulation was
repeated 2,000 times to follow the progress of 2,000
independent mutations. Figure 3.4 shows n as a
function of time for several of these 2,000 runs. The
vast majority of runs become extinct after only a few
generations, and hence are hardly visible on the
graph. One run is shown where n rises to quite a
high value but eventually disappears after about 75
generations. Another is shown in which fixation
occurs after about 225 generations. Out of 2,000

Molecular evolution and population genetics ® 47

200

—_

(O

o
T

100

Number of gene copies (n)

(O
o

— Fixation of a
neutral mutation

--- Extinction after a period
of high frequency

Fig. 3.4 Simulations of the spread

0 — . L . L . L) of neutral mutations through a
0 50 100 150 200 250 population under the influence of
Many runs Time (generations) random drift.
runs, it was found that fixation occurred 11 times. ~m(l+s) (3.7)
According to the theory, the probability of fixation is a= Nw ’

1/N, hence the expected number of fixations is
2,000 x 1/200 = 10. The observation is therefore
consistent with this expectation (see Problem 3.2).

3.5.3 Introducing selection

We can extend the simulation to deal with the case
of an advantageous mutation that has a fitness 1 + s,
with respect to the original sequence that has fitness
1. The constant s is known as the selection coefficient.
Remember that fitness is defined to be proportional
to the expected number of offspring: an individual
with the mutation is expected to have 1 + s times as
many offspring on average as one without.

If there are m copies of the mutation at some point
in time, then the mean fitness of the population is

m +s)+ (N —m)

W= N (3.6)

According to the Wright-Fisher model, each gene
copy is selected to be a parent of the next generation
with a probability proportional to its fitness. The
probability that a gene in the new generation pos-
sesses the advantageous mutation is

48 © Chapter 3

The distribution of the number of copies in the
next generation is still given by the binomial distri-
bution in Eq. (3.5), but with the new value of a. The
mean number of copies in the next generation is
now greater than m. Figure 3.5(a) shows the results
of simulations where the selection coefficient is
s=0.05. Even with this advantage, there are still
many runs of the simulation where the mutation
becomes extinct. One example where the mutation
becomes fixed is also shown.

The way that Py, depends on selection is dis-
cussed in more detail in Box 3.1. The most important
result in the Box is that when s is small, such that
s < 1/N, the spread of the mutation is more influ-
enced by random drift than it is by selection, and
the probability of fixation is virtually equal to 1/N,
as it is for neutral mutations. Mutations with small
s in this regime are called “nearly neutral”, and
behave essentially the same as neutral mutations.
This result means that the range of selective values
that behave as nearly neutral depends on the popu-
lation size. A mutation with a given s could thus
behave as an advantageous mutation in a large

Fig. 3.5 Simulations of the spread of
advantageous mutations through a
population. (a) For selection coefficient
s =0.05 both selection and random
drift are important. (b) Fors = 0.2

Number of gene copies (n)
)
S

(b)

selection dominates random drift. The 0
dashed lines show the predictions of the 0 50
deterministic theory in Box 3.2.

population and a nearly neutral mutation in a
smaller population.
InFig. 3.5(b), the selective advantage of the muta-
tion is increased to s =0.2. In this case, a greater
fraction of the runs become fixed (but by no means
all of them). In cases where a mutation goes to
fixation, the time it takes to do so becomes shorter,
the higher the value of the selection coefficient. This
can be seen by comparing the times to fixation in
Figs. 3.4, 3.5(a), and 3.5(b). If the selective advant-
age of the mutation is large, it spreads rapidly
through the population in the form of a selective
sweep. In this case, the spread can be approximated
by a deterministic theory, as described in Box 3.2.

For a deleterious mutation, the fitness of the
mutation is defined as 1 — sinstead of 1 + sbut other-
wise things are the same. The fixation probability for
a deleterious mutation is less than that for a neutral
mutation, as we might expect, but it is not altogether
zero. The way that P depends on selection for dele-
terious mutations is also discussed in Box 3.1.

A word of caution may be necessary when inter-
preting the simulations shown here. We chose a
rather small population size for convenience (to save
computer time and memory). For this reason, we
needed to use rather large selection coefficients in
order for the selective effect to be apparent. The case

2001 e
’ 5= 012 // i
150 I
100(- —t
50 L
1] O 3 |= = d 1 1 1
100 150 0 10 20 30 40 50 60

Time (generations)

of s =0.05 is behaving like a slightly advantageous
mutation here when N = 200, with a lot of random
drift evident in the curves in Fig. 3.5(a). However,
5% would be considered a rather big selective effect
in real life, because mutations of this degree of
advantage are probably rare, and because most
population sizes would be much larger than 200.
This is an example where it is useful to have both
simulations that show visually what is going on,
and analytical calculations that give us results
for parameter values where it is difficult to do
simulations. Simulations also allow us to check the
mathematical results, and to make sure that any
approximations that were made in the analytical
calculations were valid.

3.6 NEUTRAL EVOLUTION AND
ADAPTATION

Evolutionary biologists working at the whole-
organism level are used to thinking of selection as
the primary influence shaping the creatures that
they study. It is easy to find examples of characters
that must have adapted to their present forms from
simpler, or more general, forms due to the action
of natural selection (e.g., horses’ hooves, human

Molecular evolution and population genetics ® 49

Advantageous
mutations

Nearly neutral
mutations g

Deleterious
mutations

hands, flounders lying on their sides, camouflage
patterns on many animals). We can think of this
type of selection as “positive” selection, because it
acts to select new variants. When molecular sequ-
ences first became available, it was natural to assume

50 e Chapter3

that positive selection would be important in caus-
ing adaptations at the sequence level too. Adapta-
tionists are people who argue that positive selection
is the major driving force in molecular evolution.
In contrast, neutralists are people who argue that

neutral evolution is responsible for most changes at
the molecular level. Neutralists argue that mutation
is the driving force in molecular evolution and that
positive selection has a relatively minor role. In this
section, we consider these two points of view more
carefully.

An important technique developed in the 1960s
and 70s is the study of allozymes. These are altern-
ative alleles of proteins that can be separated by
electrophoresis due to differing charges. These stud-
iesrevealed that many protein loci are polymorphic.
This was somewhat unexpected according to the
prevailing adaptationist point of view, because
selection should remove lower fitness alleles at a
polymorphic locus relatively quickly, leaving only a
single allele. The allozyme technique only detects
a fraction of the sequence variation that is present,

because synonymous substitutions do not lead to
changes in the protein, and because amino acid
changes that do not alter the net charge on the pro-
tein are usually not detected either. It therefore
became an important issue to explain why many
allozyme loci are polymorphic.

Another important technique, which was devel-
oped in the 1970s and 80s, is the use of restriction
fragment length polymorphisms (RFLPs). Restric-
tion enzymes are nucleases that recognize particular
nucleotide sequences in DNA, and chop the DNA
at these points. Restriction enzymes will cut a long
section of DNA into fragments that can be separated
according to their lengths by electrophoresis. This
technique has often been used with mitochon-
drial DNA. When differences in fragment lengths
are observed between individuals, this reveals

Molecular evolution and population genetics ® 51

polymorphisms in the DNA bases at the restriction
sites. Both allozymes and RFLPs reveal only certain
types of sequence polymorphism. In recent years, it
has become possible to do DNA sequencing on a
large scale, and hence we are beginning to get large
data sets of complete DNA sequences of genes for
samples of individuals in populations. These studies
reveal complete information about the pattern of
single nucleotide polymorphisms in the genes stud-
ied. Atboth DNA and protein levels, it isimportant to
ask why sites are polymorphic and what this reveals
about the mechanism of molecular evolution.

In its simplest form, positive selection removes
deleterious alleles, and hence reduces the number of
polymorphic loci. Adaptationists therefore propose
more complicated selective scenarios for mainten-
ance of polymorphisms. One possibility is that there
may be alleles that are advantageous in certain
circumstances and disadvantageous in others. For
example, a species may inhabit two different areas
with different climates, and there may be different
alleles that are optimal in the two areas. Selection
would then lead to the maintenance of both alleles
in the population. Another possibility is that a het-
erozygous individual may have a higher fitness than
either of the homozygotes. This would lead to selec-
tion towards a state with equal frequencies of the
two alleles.

Although scenarios like this are probably true for
some genes, it seems unlikely that they are respons-
ible for the majority of polymorphisms that we see.
The neutralist explanation for polymorphisms is
simply that there is a constant process of creation of
new alleles by mutation and loss of old alleles when
they disappear due to random drift. Thus, at any
point in time, some loci will be polymorphic, without
the need for any particular selective scenario. The
neutralist explanation for variability within popula-
tions is simply that there is a relatively large muta-
tion rate. A useful measure of variability at a locus is
the heterozygosity. For a diploid population, the het-
erozygosity is the fraction of heterozygous indivi-
duals. A heterozygous individual obtains one allele
from each parent. If we assume that mating is ran-
dom with repect to the alleles at the locus, the two
alleles possessed by any individual will be randomly

52 e Chapter3

selected alleles from the population at the parents’
generation. Therefore, it is also possible to define
heterozygosity as the probability that two alleles
selected randomly from the population are different
from one another. The average heterozygosity main-
tained by mutation and random drift at a neutral
locus can be shown to be a function of Nu, where N
is the population size and u is the mutation rate. For
Nu > 1, the mean heterozygosity will be large and
most loci will be polymorphic. For Nu<< 1, the
mean heterozygosity will be very low, and there will
be few polymorphic loci.

One advantage of the neutral theory is that many
quantities can be calculated exactly. This means
that the neutral model can be used as a null hypoth-
esis against which to test real data. If it can be shown
that the data differ significantly from expectations
under the neutral model, then this demonstrates
that selection has played a role. A feature of the neut-
ral theory is that there are large fluctuations in
quantities of interest. We already saw that the mean
time to coalescence of two lineages is N generations,
but the distribution of coalescence times is exponen-
tial (Eq. 3.2). The distribution of times is not sharply
peaked around its mean value. The same effect hap-
pens with heterozygosity. The mean heterozygosity
is easy to calculate, but the distribution of heterozy-
gosities across loci has a complex shape that is
not sharply peaked around the mean (see examples
in Fuerst, Chakraborty, and Nei 1977 and Higgs
1995). This means that statistical tests for devia-
tions from neutrality tend to be quite complex, and
tend to require large data sets in order to be effective
(Watterson 1978, Tajima 1989).

Just as for within-population variation, there are
also adaptationist and neutralist explanations for
the variation of sequences between species. Adapta-
tionists would argue that most differences in protein
sequences between species are the result of posit-
ively selected amino acid changes in one lineage or
the other. The new sequence variant might function
better in the context of one species and not the other.
This context might include other molecules with
which the protein interacts in the cell, as well as
factors in the lifestyle and external environment of
the species that might cause selection on the protein.

Proteins in different species would thus become
selected for optimal function within those species,
and selection would be the force driving divergence
between species.

However, the picture that emerges when looking
at sequence alignments, such as the example of
BRCAL1 in Section 3.3, is that the most obvious type
of selection going on is not positive selection of new
advantageous variants, but stabilizing selection act-
ing to remove deleterious mutations and retain the
current version of the gene. As we saw above, we
tend to see a preponderance of synonymous to non-
synonymous substitutions, a preponderance of con-
servative amino acid changes over changes between
vastly different amino acids, and an avoidance of
frame shifts. Another example of stabilizing selec-
tion is the frequent occurrence of compensatory
pairs of substitutions in RNA genes, whereby the
sequence changes but the secondary structure
remains conserved (see Chapter 11). One thing to
come to light from the genome projects is how many
vertebrate proteins have recognizable homologs in
organisms as apparently diverse as yeast and bac-
teria. In other words, it is the similarities of sequences
between organisms that strikes one first, rather than
the specializations. Thus, it seems reasonable to con-
clude that sequences diverge despite the action of
stabilizing selection that is trying to keep them the
same. Neutralists therefore argue that it is mutation
that is the dominant force driving the divergence
between sequences, and that most of the differences
we see between sequences in different species are the
result of fixation of nearly neutral mutations by
chance in one or other lineage.

King and Jukes (1969) produced an influential
paper arguing for the importance of neutrality, and
the neutral theory has famously been developed and
championed by Kimura (1983). There has since
been a lot of criticism from adaptationists, who dis-
like the apparently large role of chance in neutral
evolution. It is nevertheless important to under-
stand exactly what the neutral hypothesis says.
Neutralists do not deny that selection happens. They
recognize the role of stabilizing selection in re-
moving deleterious mutations, and recognize that
occasionally advantageous mutations must occur.

However, they argue that (nearly) neutral muta-
tions are much more frequent than advantageous
ones, and hence that the majority of mutations that
manage to become fixed in a population are neutral.
Advantageous mutations are hard to spot because
they spread rapidly through a population and it is
difficult to catch one in the act. Once the mutation
has gone to fixation, there will be no variability
remaining in this part of the sequence. This is called
a selective sweep. When the advantageous muta-
tion goes to fixation, it may cause other mutations at
closely linked points in the sequence to hitch-hike to
fixation at the same time. The other mutations may
be neutral or even slightly disadvantageous. If they
are close to the original mutation, so that there is no
recombination between them during the time in
which the selective sweep is occuring, then they will
be dragged along with the advantageous mutation.

In recent years, the argument for and against
neutral evolution has died down, even if it has not
been fully resolved. Neutral mutations are seen as
part of a spectrum of possibilities, and the neutral
theory has an established role as a null model. Even
if the neutral hypothesis is true on a statistical basis,
it is nevertheless of interest to look for particular
examples in which gene sequences seem to have
been under directional selection in particular organ-
isms. One way of doing this is to look for genes in
which there is a large ratio of non-synonymous to
synonymous substitutions (more details in Section
11.2.3). Such genes are rare, although the BRCA1
gene is actually an example where there seems to
have been adaptive evolution in the lineage of
humans and chimpanzees since their divergence
from gorillas (Huntley et al. 2000). Kreitman and
Comeron (1999) have also reviewed recent studies
looking for evidence of selection acting in coding
sequences.

We will conclude this section with a brief mention
of the phenomenon known as codon bias. We
might expect that synonymous substitutions would
be a prime case where the neutral theory was likely
to apply. However, there is considerable evidence
that weak selection can also act between synonym-
ous codons. As a result, synonymous codons are
not all used with equal frequency in gene sequences,

Molecular evolution and population genetics ® 53

i.e., there is a bias in the usage of codons, such that
some codons are apparently preferred over others.
One reason for this is purely mutational. If mutation
rates between the four bases are different, then the
expected frequencies of the bases at the third codon
position will be different from one another, even in
the absence of selection. However, a key observation
is that codon usage sometimes differs between genes
in the same genome. It is often found that genes that
are highly expressed are more biased in their codon
usage (i.e., they use the preferred codons more fre-
quently) than less strongly expressed genes. This is
thought to be due to selection for increasing the

efficiency of the translation process. It is known that
certain tRNAs are present in the cell at higher con-
centration than others, and that the preferred
codons seem to correspond to the anticodons of the
tRNAs that are most frequent. Using the preferred
codons therefore means there is less time spent dur-
ing translation waiting for an appropriate tRNA to
come along. Codon bias is quite a subtle problem
because it arises as a result of weak selective effects
that may not be the same in all situations. For inter-
esting recent examples in this field, see Musto et al.
(1999), Coghlan and Wolfe (2000), and Duret
(2000).

54 e Chapter3

REFERENCES

Blackmore, S. 1999. The Meme Machine. Oxford, UK:
Oxford University Press.

Bulmer, M.G. 1987. Coevolution of codon usage and
transfer RNA abundance. Nature, 325: 728-30.

Cavalli-Sforza, L.L., Menozzi, P., and Piazza, A. 1996. The
History and Geography of Human Genes. Princeton, NJ:
Princeton University Press.

Coghlan, A. and Wolfe, K.H. 2000. Relationship of codon
bias to mRNA concentration and protein length in
Saccharomyces cerevisiae. Yeast, 16: 1131-45.

Crow, J. and Kimura, M. 1970. An Introduction to Popu-
lation Genetics Theory. New York: Harper & Row.

Dawkins, R. 1976. The Selfish Gene. Oxford, UK: Oxford
University Press.

Duret, L. 2000. tRNA gene number and codon usage in the
C. elegans genome are co-adapted for optimal translation
of highly expressed genes. Trends in Genetics, 16: 287-9.

Fuerst, P.A., Chakraborty, R., and Nei, M. 1977. Statistical
studies on protein polymorphism in natural popula-
tions. I. Distribution of single locus heterozygosity.
Genetics, 86: 455-83.

Gowen, L.C., Avrutskaya, A.V., Latour, A.M., Koller, B.H.,
and Leadon, S.A. 1998. BRCA1l required for
transcription-coupled repair of oxidative DNA damage.
Science, 281: 1009-12.

Higgs, P.G. 1995. Frequency distributions in population
genetics parallel those in statistical physics. Physical
ReviewE, 51:95-101.

Huntley, G.A., Easteal, S., Southey, M.C., Tesoriero, A.,
Giles, G.G., McCredie, M.R.E., Hopper, J.L., and Venter,
D.J. 2000. Adaptive evolution of the tumour supressor
BRCA1 in humans and chimpanzees. Nature Genetics,
25:410-13.

Tkemura, T. 1985. Codon usage and tRNA content in uni-
cellular and multicellular organisms. Molecular Biology
and Evolution, 2: 13-34.

Ingman, M., Kaessmann, H., Pdébo, S., and Gyllensten, U.
2000. Mitochondrial genome variation and the origin
of modern humans. Nature, 408: 708-13.

Karlin, S., Brocchieri, L., Bergman, A., Mrazek, J., and
Gentles, A.]. 2002. Amino acid runs in eucaryotic

proteomes and disease associations. Proceedings of the
National Academy of Sciences USA, 99: 333-8.

Kimura, M. 1983. The Neutral Theory of Molecular Evolu-
tion. Cambridge, UK: Cambridge University Press.

King, J.L. and Jukes, T.H. 1969. Non-Darwinian evolu-
tion. Science, 164: 788-98.

Kreitman, M. and Comeron, J.M. 1999. Coding sequence
evolution. Current Opinion in Genetics and Development,
9:637-41.

Madsen, O., Scally, M., Douady, C.J., Kao, D.J., DeBry,
R.W., and Adkins, R. 2001. Parallel adaptive radiations
in two major clades of placental mammals. Nature, 409:
610-14.

Miki, Y. et al. 1994. A strong candidate for the breast and
ovarian cancer susceptibility gene BRCA1. Science,
266:66-71.

Musto, H., Romero, H., Zavala, A., Jabbari, K., and
Bernardi, G. 1999. Synonymous codon choices in the
extremely GC-poor genome of Plasmodium falciparum.
Journal of Molecular Evolution, 49: 27-35.

Schlotterer, C. 2000. Evolutionary dynamics of micro-
satellite DNA. Chromosoma, 109: 365-71.

Stenson, P.D., Ball, E.V., Mort, M., Phillips, A.D., Shiel,
J.A., Thomas, N.S., Abeysinghe, S., Krawczak, M., and
Cooper, D.N. 2003. Human Gene Mutation Database
(HGMD): 2003 update. Human Mutation, 21: 577-81.
(http://www.hgmd.org)

Tajima, F. 1989. Statistical method for testing the neutral
mutation hypothesis by DNA polymorphism. Genetics,
123:585-95.

Thompson, R., Pritchard, J.K., Shen, P., Oefner, P.J., and
Feldman, M.W. 2000. Recent common ancestry of
human Y chromosomes: Evidence from DNA sequence
data. Proceedings of the National Academy of Sciences USA,
97:7360-5.

Underhill, P.A. et al. 2000. Y chromosome sequence vari-
ation and the history of human populations. Nature
Genetics, 26: 358-61.

Watterson, G.A. 1978. The homozygosity test of neutral-
ity. Genetics, 88:405-17.

Molecular evolution and population genetics ® 55

Models of sequence

evolution

CHAPTER PREVIEW

Models of the evolution of nucleic aci
methods as the basis of defining e
lihood of a set of sequences evol
describe the details of the

sequence alignment algori
describe the derivatio

4.1 MODELS OF NUCLEIC ACID
SEQUENCE EVOLUTION

4.1.1 Why do we need evolutionary models?

Whenever we have two similar-looking sequences,
it is natural to ask just how different they are. We
want to be able to ask questions like, “Is a human
gene more similar to a chimpanzee gene than a
gorilla gene?”, or “What is the rate of substitutions

@ Sequence 0 (b) G
Sequence 1 Sequence 2 G C

One substitution
happened -
one is visible

1: ACCTGTAATC
2: ACGTGCGATC

Fraction of sites that differ is
D=3/10

CHAPTER

that has occurred in the hu-
man and chimpanzee genes
since the species diverged?”.
To answer these questions we
need a quantitative model of
evolution.

The simplest way to mea-
sure distance between sequ-
ences is to align them one
below the other and just count what fraction of sites
is different in the two sequences. In Fig. 4.1(a), two
sequences, 1 and 2, have descended from a common
ancestor 0. The fraction of sites that differis D = 3/10
in this case. The difference will increase as a function
of time because substitutions accumulate in one
sequence or the other. If the time since divergence of
the sequences is short, then there will be few differ-
ences between the sequences. It is very likely that
each of the substitutions that occurs will happen at

© G (d) G
A C A A
Two substitutions

happened -
only one is visible

Two substitutions
happened -
nothing visible

Fig. 4.1 The accumulation of substitutions in two sequences descending from a common ancestor.

58 ® Chapter4

a different site in the sequence. Thus, each of the
substitutions is visible by comparing the two sequ-
ences. This is shown in Fig. 4.1(b), where a substitu-
tion from a G to a C has happened in one species.
Substitutions are assumed to occur randomly with a
constant rate. Hence, the average number of substi-
tutions occurring in a given time will be propor-
tional to the time, t, and D should increase linearly
with t when t is small.

If the time since divergence is slightly larger, then
it becomes possible that there has been more than
one substitution occurring at the same site. In
Fig. 4.1(c), there have been two substitutions. When
we compare the two present-day species, we see that
they are different, but we are only aware that one
substitution has occurred. In Fig. 4.1(d), two substi-
tutions have occurred from G to A, but there is no
visible difference between the present-day species.
The number of visible substitutions between two
sequences is always less than or equal to the number
of substitutions that have actually occurred. For this
reason, at larger times, D increases more slowly than
linearly with time. Now, if the time since divergence
of the sequences is extremely large, there will have
been many substitutions at every site. The sequ-
ences will therefore be completely randomized with
respect to their common ancestor. If we align two
random sequences containing equal frequencies of
the four bases, on average ¥s of sites will differ
between the two sequences, i.e., D tends to ¥4 when
the time since divergence is very large.

The problem with using D as a measure of dis-
tance between sequences is that it does not increase
linearly with time: it would be better if we had a
distance measure that was twice as big if the time
since the divergence was twice as large. Another
problem with D is that it is not additive. To under-
stand this, imagine that we knew the sequence of the
common ancestor O in Fig. 4.1(a). We could then
measure the distances D, and Dy, from the ancestor
to the two present-day sequences. It would be nice
if the distance from 1 to 2 were simply the sum of
the two distances to 0, i.e., if D;, =Dy, + Dg,. If
this were true, these would be called additive dis-
tances. However, if D is simply the fraction of sites
that differ, then the distances will not be additive.

Usually, D, , will be smaller than the sum of the other
two distances.

It is therefore useful to define an evolutionary dis-
tance that is both additive and a linear function of
time. The usual way to do thisis to define a distance d
to be the average number of substitutions that have
occurred per site between the two sequences. If sub-
stitutions occur randomly at a constant rate, then
the number of substitutions per site is directly pro-
portional to time. Also the number of substitutions
between 1 and 2 is by definition the sum of the num-
ber of substitutions from O to 1 and O to 2. Thus, disa
useful measure of evolutionary distance between
sequences; it is a quantitative way of telling us how
much evolution has happened between two sequ-
ences. However, dis not directly observable when we
look at two sequences, unlike D. To calculate d, we
need an evolutionary model, as we shall see below.

The next step from comparing pairs of sequences
is to compare whole sets of related sequences. The
natural way to represent the relationship between
sequences is on a phylogenetic tree. There are sev-
eral ways to draw trees, and we will leave the full dis-
cussion of this until the beginning of Chapter 8.
However, it is worth noting here that we often want
to draw trees where the branch lengths are pro-
portional to evolutionary distance. In that way, we
can see by looking at the tree where are the branches
on which most evolutionary change has occurred.
Quantitative measures of distance are therefore a
key part of tree drawing.

Evolutionary models are also essential for phylo-
genetic methods based on likelihoods (which we will
also discuss in Chapter 8). If we have a quantitative
model, we can calculate the likelihood that our set of
sequences would have evolved on any proposed
phylogenetic tree. We can therefore distinguish be-
tween alternative possible trees according to their
relative likelihoods.

The phylogenetic tree tells us the evolutionary
relationships between the gene sequences used, but
often we are making the assumption that the tree
also tells us the evolutionary relationships between
the species from which the genes came. When we do
this, we are assuming that the differences between
the species are larger than the differences between

Models of sequence evolution ® 59

sequence variants within one species. For this rea-
son it does not really matter which sequence we use
as a representative of the species. The models of evo-
lution that we use in this chapter are defined in
terms of rates of substitution. These substitutions
represent changes that have occurred in popula-
tions due to fixation of new sequence variants,
rather than simply changes in individual sequences
due to mutations. Thus the substitution rates are
determined by mutation, selection, and random
drift, as we discussed in Chapter 3, and not simply by
mutation rates. When discussing phylogenetic trees
we often do not need to think much about popula-
tion genetics. Nevertheless, it is important to realize
that the models used in phylogenetics are actually
describing the outcome of fixation processes going
on at the level of population genetics.

In addition to their use in molecular phylogenet-
ics, another motivation for developing evolutionary
models of protein sequences is that they can be used
to define scoring systems for sequence alignment.
We want to assign high scores to pairs of amino
acids that we expect will substitute frequently for
one another during evolution. In this way, the align-
ment with the optimal score should reflect the align-
ment that is evolutionarily most likely. The final
section of this chapter is therefore devoted to scoring
matrices for amino acids.

The material in this chapter merits its position
relatively near the beginning of the book because
it follows directly on from the introduction to mole-
cular evolution in Chapter 3, and because it is a
foundation for the basic bioinformatics methods of
sequence alignment (Chapter 6) and phylogenetic
methods (Chapter 8). However, this is one of the most
mathematical chaptersin the book. Some readers may
wish to skip the more mathematical sections below
and return to them again after seeing the applications
of the models introduced in subsequent chapters.

4.1.2 The Jukes—Cantor model

The simplest possible model of sequence evolution is
that of Jukes and Cantor (1969) —henceforward, the
JC model. The model describes one single site in an
alignment of DNA sequences. The base at this site

60 ©® Chapter4

can be either an A, C, G, or T. The model assumes
that all four bases have equal frequency and that
there is a rate of substitution o from any of the four
DNA bases to any other base.

As described above, the fraction of sites that differ
between two sequences, D, is directly observable by
comparing the two sequences, but does not count all
the changes that have happened, because there may
have been more than one substitution per site.
Therefore, we wish to calculate the evolutionary
distance, d, defined as the estimated number of sub-
stitutions that have occurred per site. According to
the model, the rate of a substitution from any one
base to each of the other bases is o.. The net rate of
change of a base to any other base is therefore 3o,
because there are three other bases. To calculate the
mean number of changes we simply multiply the
rate of change by the length of time. In Fig. 4.1(a)
the length of time on the branch leading to each of
the species is t, and hence the total amount of time
available for changes to occur is 2t. Thus, the mean
number of substitutions occurring per site is

d=2tx 30= 6ot (4.1)

However, in practice, we usually do not know t or
o with any certainty. Therefore, it is not possible to
calculate d directly from Eq. (4.1). Nevertheless, we
can get round this problem in the following way. In
Box 4.1 we calculate the way in which D depends on
time:
D=i—ie’8°‘t (4.2)

4 4

If t is very small we can expand the exponential to
first order in t, and hence D = 6ait. This confirms our
expectation that D increases linearly with ¢ initially.
When tislarge, the exponential term dies away, and
D tends to 34, as we expected from the argument
about random sequences given above. The depend-
ences of D and d on time are compared to one
anotherin Fig. 4.3(b).

We notice in Egs. (4.1) and (4.2) that both dand D
are functions of at. It is therefore possible to elim-

inate ot from these two equations. By rearranging
(4.2) we find

and by comparing with (4.1), we obtain:

—iln(I—éD]
4 3

This is the most important equation in this section.
We can use it to calculate the evolutionary distance
that we want, d, in terms of a quantity that we can
directly measure from the sequence, D, even though
we do not know the values of t or o.. The value of
d is known as the Jukes—Cantor distance between
the sequences. Figure 4.4 shows the way d depends

Models of sequence evolution ® 61

A 4 TimeO
k , Time t
A I Time t + 8t

Fig. 4.2 Illustration of a single line of descent — used for the
derivation in Box 4.1.

on D. If D is small, d=D, whereas if D>, d is
substantially greater than D, because there is a high
likelihood of multiple substitutions per site. The dis-
tance becomes infinite as D approaches 4. Examples
of calculations of the JC distance for real sequences
are given in Fig. 8.5 when we discuss the use of
evolutionary distances for phylogenetic methods.

4.1.3 More complex models of DNA
sequence evolution

The JC model is the simplest of a range of models of
sequence evolution that are often used in molecular
phylogenetics. Substitution rate models are required
to get evolutionary distances for input into distance

matrix methods (see Section 8.3), and they also form
the basis for maximum-likelihood methods (Section
8.6). A substitution rate model is defined by a rate
matrix, whose off-diagonal elements I define the
rate of substitution from state i (row) to state j (col-
umn). The matrix for the Jukes—Cantor model is:

A G C T

A =30 o o o
G o 3o o o (4.10)
C o o =30 o
T o o o 3o
The diagonal elements of the matrix, r;, are neg-

ative and are equal to the total rate of substitution
away from state i to anything else. This is given by
the sum of the elements on the same row. For any
given rate matrix, ry, the substitution probabilities
must satisfy the equation:
dp,

d_tu = Z Pyt

k

(4.11)

This can be derived using a similar argument to that
in Egs. (4.5) and (4.6) in Box 4.1. Solutions for the
functions P;(t) can be calculated for all the rate mod-
els proposed below.

() (b)
1.0 141
1.2
0.8 L
L 1.0F d)
g 0.6 o8k
5 Paa(®) L
E 60
S 04r .61
B 0.4
0.2 0
Pac(t) 021
I, Fig. 4.3 The quantities P ,(t), P,(t),
0 M ! ! | D(t), and d(t) arising from the solution
0 04 08 12 16 20 O 0.2 0.4 0.6 oftheJukes—Cantor model shown as a
ot function of ait.

62 ©® Chapter4

The next most simple model after JC is the Kimura
two-parameter (K2P) model (Kimura 1983). As it is
often observed in real data that transitions occur
more frequently than transversions, the K2P model
has a parameter o for the rate of transitions and a
parameter [for the rate of transversions. In general
these parameters are not equal, and usually o > f.
The rate matrix is:

A G C T
A —o-2pB o B B
G o —o— 2 B B (4.12)
C B B —o— 2P o
T B B o —o— 2B

An evolutionary distance formula can be calcu-
lated for this model. For a given pair of sequences, we
can count the fraction of sites that differ by a transi-
tion, S, and the fraction that differ by a transversion,
V. The total fraction of sites that differis D = S + V. It
can be shown that the estimated number of substitu-
tions per site in this model is:

d:-%ln(l—ZS—V)—iln(l—ZV) (4.13)

See Problem 4.1 at the end of the chapter for the
derivation of this result.

For the two sequences in Fig. 4.1(a), we have
§$=0.2,V=0.1,and D = 0.3. The distance given by
Eq. (4.13) is 0.402. The Jukes—Cantor distance for
the same sequences, from Eq. (4.4) is 0.383. Thus
the estimate of the number of substitutions per site
depends on the model of evolution that we use. One
of the main uses of evolutionary distances is for con-
struction of phylogenetic trees, and tree-building
methods can be sensitive to small changes in input
distances. We are therefore more likely to obtain reli-
able results if we use a model of evolution that is
appropriate for the sequences being studied.

An important property of real sequences that is
not accounted for by either of the above models is
that the frequencies of the four bases are often not
equal to one another. The model of Hasegawa,
Kishino, and Yano (1985), referred to as the HKY
model, introduces the four base frequencies wt,, w..,
n;and myinto the rate matrix:

A G C T
A —om;—P(r,+my) o B, Br,
G om, —om, —B(m+my) B, Br,
C Br, Brg —oumy,—B(m, +7,) o,
T Br, Brg o, —om,—B(m, +m;)

(4.14)

The substitution probability functions for the
HKY model have the property that P;(t) tends to ;
for very large times. In other words, the probability
of being in state j after a long time is equal to the
equilibrium frequency of base j, irrespective of the
starting state i. This model has parameters oo and 3 to
control rates of transitions and transversions. If the
four bases all have frequency /4, the HKY model
becomes equivalent to the K2P model.

The observed number of substitutions per unit
time from state i to state j is given by the probability
that a site is in state i multiplied by the rate of substi-
tution from i to j. The models in this section all have
the property of time reversibility:

TI:irij = Ter]-l.

(4.15)
This means that for any pair of states i and j, the
number of substitutions per site per unit time in the
forward direction is equal to the number of substitu-
tions in the reverse direction. It follows that for any
time ¢

T Py(t) = 1 Py(0)

(4.16)
and also that the base frequencies remain constant
in time on average. This property is important
for phylogenetic methods, and time reversibility is
almost always assumed. The most general rate
matrix that satisfies time reversibility is the gen-
eral reversible (GR) model, which has the following
rate matrix:

A G C T
A Oyl OycTle OlypTlp
G oymy, O OgrTyp (4.17)
C 0oyl Ol QorTly
*
T oymy Ogftg OgrTe

Models of sequence evolution ® 63

The diagonal elements (denoted * to save space)
are equal to minus the sum of the other elements on
the same row, as for all the other models. This model
has four frequency parameters, as for HKY, and six
parameters that control substitution rates, o, 0.,
etc. Whichever pair of bases is chosen, the elements
of this matrix satisfy Eq. (4.15). Since this model has
more free parameters than the others, it is in princi-
ple able to describe the evolution of real sequences
more accurately than the simpler models. These
models are defined in terms of parameters, and the
values of these parameters can be determined by
fitting the model to real sequence data, usually using
the maximum-likelihood criterion. This will be des-
cribed in Chapter 8.

4.1.4 Variability of rates between sites

So far we assumed that all the sites in the sequence
were evolving at the same rate, i.e., that the prob-
ability of a substitution occurring is the same at
each site. In fact, this is hardly ever true for real
sequences. Sites that are structurally or functionally
important tend to evolve more slowly than less
important sites. In the case of very strong selection it
may be that a site is invariant, i.e., unable to change
at all. Suppose there is a fraction f of sites that are
invariant, but the remaining sites evolve at a con-
stant rate according to the JCmodel. It can be shown
that the evolutionary distance becomes

3 4D
d=--1-) ln(l T f))

which reduces to the usual form for the JC distance
(4.4) when ftends to zero. A relatively small fraction
of invariant sites makes a fairly large difference to
the distance. Figure 4.4 shows this relationship
when f=0.25. Note that in Eq. (4.18), D is still
the observed fraction of sites that differ across the
whole molecule, and d is still defined as the aver-
age number of substitutions that have occurred per
site across the whole molecule. Since a fraction f
of sites have no substitutions, the average number
of substitutions at the sites which are variable is

/(1)

(4.18)

64 ® Chapter4

w
1

Invariant sites

N
[
T

N
T

Gamma
distributed rates

T
c
3
=
o
=
3

rate

d: evolutionary distance
(9]
T

©
n
T

D: fraction of sites that differ

Fig. 4.4 Evolutionary distances d as a function of observed
fraction of differences D according to the Jukes—Cantor model
with: (i) uniform rate of evolution at all sites; (ii) a fraction
f=0.25 of invariant sites; (iii) with rate variation across sites
described by a gamma distribution with a = 1. These are
shown in comparison to the uncorrected distance d = D
(dashed line).

In real sequences we find a range of rates at differ-
entsites, and it is not sufficient to simply class sites as
invariant or variable. Therefore it is desirable to
have a model to describe this distribution. The most
frequently used model is the gamma distribution,
defined in Section M.13.
f(r,a) = const x r¢-le=ar (4.19)
In this case, ris the rate of substitution at a given site
relative to the average rate of substitution in the
whole molecule, f(r,a) is the probability that a site
has a relative rate r, and a is a parameter that con-
trols the shape of the distribution. The shapes of
the gamma distributions for different values of a are
shown in Fig. M.5 in the Appendix. When a > 1, the
distribution is peaked with a maximum fairly close
to 1. The larger a, the smaller the degree of vari-
abililty of rates there is between sites. If a is very large,
it becomes a single spike at r = 1, i.e., all sites evolve
at a constant rate. When a = 1, the distribution is
a simple exponential. When a < 1, the distribution
has a high weight close to r = 0, meaning that there
are a significant number of sites that are almost
invariant. There is also a long tail at high values of
r, meaning that there are a significant number of

sites that evolve much more rapidly than average.
The evolutionary distance for the JC model when a
gamma distribution of rates is introduced is

d= %a((l —4p/3)ya —7) (4.20)

This function is also shown in Fig. 4.4 for the case
where a = 1. It can be seen that both the invariant
sites model and the gamma distribution model give
higher estimates of the mean number of subtitutions
per site for any given observed difference D than the
standard model of constant evolutionary rates.
Thus, if we ignore rate variability we get a system-
atic underestimation of the evolutionary distance.
The effect is small if the distance is small, but it
becomes very large for higher distances. This is of
practical importance, if we are interested in estimat-
ing dates of splits between groups on a phylogenetic
tree. Yang (1996) gives an instructive example of
the way the estimated divergence times between
humans and various apes depend on rate variability.

The gamma function is used because by introduc-
ing only one extra parameter to the model, a, we are
able to describe a variety of situations from very little
to very large amounts of rate variability between
sites. There is no reason why the distribution of rates
in a real sequence should obey the gamma distribu-
tion exactly, but the function is sufficiently flexible
that it can fit real data quite well. The optimal value
of a to fit a real data set can be found by maximum
likelihood. For more details, see Yang (1996) and
references therein.

4.2 THE PAM MODEL OF PROTEIN
SEQUENCE EVOLUTION

4.2.1 Counting amino acid substitutions

Whereas for a model of DNA sequence evolution we
need a4 x 4 matrix, for amodel of protein sequences
weneed a 20 x 20 matrix to account for substitutions
between all the amino acids. The original substi-
tution rate matrices for amino acids were termed
PAM matrices, where PAM stands for “point accepted
mutation”. An accepted mutation is one that spreads

through the population and goes to fixation. Per-
haps a better name for a PAM would be a single
amino acid substitution; however, the term PAM is
well established, and we stick to it here. The follow-
ing derivation of the PAM model of amino acid sub-
stitutions follows that given by Dayhoff, Schwartz,
and Orcutt (1978). At that time, relatively few pro-
tein sequences were available. Several groups have
since used much larger data sets to derive improved
PAM models, but the methods used have remained
similar. Dayhoff, Schwartz, and Orcutt made align-
ments of 71 families of closely related proteins.
Sequences in the same family were not more than
15% different from one another. They constructed
an evolutionary tree for each family using the par-
simony method. Parsimony is described in Section
8.7, but the principle is straight-forward to state
here — the selected tree is the one that minimizes the
total number of amino acid substitutions required.

As an example, consider the short protein align-
ment shown in Fig. 4.5. This is based on a real pro-
tein alignment, but in order to keep the example
simple, sites have been chosen so that only six of the
amino acids occur. The evolutionary tree is also
shown. The sequences A—G on the tips of the tree are
known, but the sequences 1-5 are chosen by a com-
puter program in order to minimize the total number
of substitutions over the whole tree. The required
substitutions are labeled in Fig. 4.5 on the branches
where they occur.

Having determined all the substitutions, we
obtain a matrix whose elements, Ay are the number
of times that amino acid i is substituted by amino
acid j. The parsimony method does not tell us in
which direction a change occurred (because it pro-
duces unrooted trees — see Section 8.1). Therefore
when a change between i and j is observed, we add
one to both Ajand A;. In the example, there is a
change between a K and a T on the branch between
nodes 2 and 3. If the root of the tree is as shown in
Fig. 4.5, then this change is from K to T; however, if
the root had been drawn such that sequence G were
the outgroup then the change would be from T to K.
We thus count one change in both directions. In the
example there are a total of seven substitutions and
the following Al.]. matrix results:

Models of sequence evolution ® 65

TLKKVQKT
TLKKVQKT
TLKKIQKQ
I 1 TKLQKQ
TITKLQKQ
TLTKIQKQ
TLTQIQKQ

oTmUn® >

@ ATLKKVQKT

@B TLKKVQKT

T:TLKKVQKT

@ CTLKKIQKQ
22TLKKIQKQ

Ve>|
Te=>Q

D:1 I TKLQKQ
4:TITKLQKQ

ETITKLQKQ
3TLTKIQKQ
FFTLTKIQKQ

55TLTKI1QKQ
GTLTQIQKQ

Fig. 4.5 A short protein sequence alignment and the
phylogenetic tree obtained for these sequences using the
parsimony method. Internal nodes 1-5 are labeled with the
deduced amino acid sequence at each point. Amino acid
substitutions are labeled on the branch where they occur.
Trees like this are the first stage of derivation of the PAM
model.

~
-
)
!
<

I - - 2 - 11
K - - -1 1 -
L 2 - - - - (4.21)
Q-1 - - 1 -
T 11 -1 - -
Vi1- - - - -

The A matrix obtained by Dayhoff et al. (1978)
involved all 20 amino acids and had 1572 substi-
tutions. In some cases it is equally parsimonious
for more than one different amino acid to occur on
an internal node. Where the internal node sequ-
ences were ambiguous, fractional substitutions were

66 © Chapter4

counted for each of the possible changes. Jones,
Taylor, and Thornton (1992) carried out a similar
method using all the sequences then available in
Swiss-Prot. They automatically clustered sequences
into groups of >85% similarity and used a distance
matrix method to obtain phylogenetic trees (see
Section 8.3). Their Au matrix contains 59,190 sub-
stitutions and is reproduced in Fig. 4.6 (above the
diagonal). All possible interchanges between amino
acids are observed at least once in this large data set.

Another reason why each substitution is counted
in both directions when calculating the A matrix is
that we are aiming to create a time-reversible model
of evolution, as discussed for DNA models in Section
4.1.2. The frequencies of the amino acids m, are
assumed to be constant through time on average.
Therefore we would expect to see equal numbers of
substitutions in both directions between any two
amino acids, i.e., we would expect Ai}' = A].I. on aver-
age. The number of observed substitutions from i to j
is proportional to the probability =, of being in state i
multiplied by the rate r;; of change from i to j given
that we are in state i. If we begin with a symmetric
matrix where Ay is set equal to Aj; then the evolu-
tionary model derived from it will satisfy Eq. (4.15)
and will be time reversible.

4.2.2 Defining an evolutionary model

As with the DNA models, Py(t) is the probability of
being in state j at time t given that we were in state
i at time 0. We will define the PAM1 matrix as
M= Pi].(St), where 8t is a small time value known as
1 PAM unit. For small times, we can assume that the
substitution probabilities are proportional to the
substitution rates (i.e., the probabilites vary linearly
with time for small times). Our estimate of the substi-
tution rate is proportional to the number of observed
substitutions, Ay divided by the total number of
times N, that amino acid i is seen in the data. Hence,

Ay L
Mii:kﬁ’ (fori#j) (4.22)

i

where A is a constant of proportionality to be deter-
mined. We have adopted the convention that M;;and

A|lR|N|[D[C[QlE[G|[H][IT[L[K[M[FE[P][s][T[W][Y[V
A |727] 247216386 106 | 208 | 600 [1183| 46 |173 257 200|100 51 | 901 [2413|2440| 11 | 41 [1766
R | -1 [F8 116 48 [125]750| 119|614 | 446 | 76 | 205 [2348] 61 | 16 | 217 413|230 |109 | 46 | 69
N | o] o 371433 32 [159]180|291 466|130 63 |758| 39 | 15 | 31 [1738]693| 2 [114] 55
D | W[[B|T5 13[130[2914] 577|144 37 | 34 [102] 27 | 8 [39 [244[151] 5 | 89 [127
c | = | 31| 9| 898401936 7 | 23|66 15 353| 66 | 38 |164]| 99
Q|1 I —3 75]1027] 84 | 635 20 314|858 | 52 | 9 |395|182]149| 12 | 40 | 58
E 0 :E: —4 | B |75 610] 41 [43 [65 [754| 30 [13 | 71 [156]142] 12 [15 [226
G 0 = 5 41 | 25 [56 [142] 27 [18 | 93 [1131]164| 69 | 15 [276
H | -2 o [TE] 2 |76] 26 [134| 85 | 21 | 50 [157]138] 76 | 5 |514| 22
I | o :E' 3 2| 33|33 [a1324] 75 [704]196] 31 [172]930] 12 | 61 [3938
L | -1 3 -4 3 4| -4 5 94 [974 (1093578 [436 172 82 | 84 |1261
K | -1 J_J -3 NS 3| 5 [103| 7 | 77 [228(398| 9 | 20 | 58
M | -1 23| 2|2][3[3]-2 (B T6 [49 23|54 [343] 8 [17 [559
Fl3|-4|3[s[B[4[5]5]0 -5 | B |78 36 [309] 39 | 37 |850]189
P a2 (2 [2 [[J]-2 2| 213 [81138[412] 6 | 22 | 84
s :H o [H [[- —E -1 E_{ 2 [2258 36 164219
T alalalalala ENE-IECRE 2 | 8 | 45526
W[-4 -5 | -5 HE--IEIENI - I EEEE -4 |05] 41 [27
Yy [3] -2 I:E::E:I:EE 4l 2 B[E 3 3094
v g 3= 2 [-3 1-2IERR -z R N a1]o 334

Fig. 4.6 Above the diagonal —numbers of observed substitutions, Ay, between each pair of amino acids in the data of Jones,
Taylor, and Thornton (1992). On and below the diagonal —log-odds scoring matrix corresponding to PAM250 calculated from
these data. Thisis calculated as §;;=10log, , R;;and rounded to the nearest integer. Cells shaded gray have positive scores,
meaning that these amino acids are more likely to interchange than would be expected by chance. Values written in white on a
black box correspond to amino acid substitutions that are possible via a single nucleotide substitution at one position in the codon.

r; represent substitutions from i to j in order to be
consistent with the definition of DNA models used in
the previous section, and also with the way the data of
Jonesetal. (1992) are presented in Fig. 4.6, and with
recent authors such as Adachi and Hasegawa (1996)
and Miiller and Vingron (2000). Unfortunately the
opposite convention was used by Dayhoffetal. (1978);
therefore some of the formulae used here have their
indices reversed with respect to the original paper.

The frequency of amino acid i in the data is
n;= N/N,,, where N, , is the total number of amino
acids in the data set. To determine A we adopt the
convention that 1 PAM unit is the time such that an
average of 1% of amino acids have changed. The
fraction of sites that have changed is

ZﬂiZMﬁ:ZZni%

i Jj#i i j#i

M _o01

tot

A,
Ny,

(4.23)

where A, is the total of all the elements in the Au
matrix. Hence

A=0.01N,

tot

/Ay, (4.24)

To complete the specification of the PAM1 matrix
we need to define the probability M, that amino acid
iremains unchanged in a time of 1 PAM unit. This is
simply
M;=1-3 M, (4.25)

j#i

The PAM1 matrix obtained by Jones et al. (1992)
is shown in Fig. 4.7. Values have been multiplied
by 100,000 for convenience. This means that the
sum of the elements on each row is 100,000. Dia-
gonal elements are all slightly less than one, and
off-diagonal elements are all very small. The two
highest non-diagonal elements in each row have been

Models of sequence evolution ® 67

AJR|[N]D][C F L]k [™M]F w v
A 08759 27 | 24 | 42 | 12 5 |19 28| 22|11 6 T | 4 |193
R | 41 losos2] 19 | & | 21 74 | 13 | 34 m 10| 3 18] 8 | 11
N | 43 | 23 |os70 6 92 | 26 | 12 [150| 8 | 3 0 | 23| 11
D |63 8 ﬂ;s% 2 24| 6 | 6 |17] 4 | 1 1|15 | 21
c | 44 |52]13] 5 [99450 171 8 [15] 3 [10] 28 16 m Py
Q |43 1543327] 2 130 4 | 64 11 2 | 8 | 12
E 8216 25 B 1 6 | 6 | 9 [102] 4 2 | 2 | 31
G B 70|33 66| 1 53| 6 |16] 3 8 | 2 | 32
H |17 [16a|171] 53 | 15 08867 10 | 49 | 31 | 8 | 18 Pl 18
I 2812216 | 3 4 11331 | 5 | 28 [149] 2 | 10 KEQ
L l24a]19]6 | 3] 3 12 90 | 101 53 | 40 | 16 | 8 | 8
K [28 XY o8| 14 | 1 12 5] 1 |11 3257] 1] 3| 8
M |36 22]14]10] 8 8 ogs4s| 18 | 8 3 | 6 |20
Flmnn s3] 2]wa]2]3]4]mn 10 99357 8 8 40
P s | 73 |e6| 12|16 26| 5 | 97|13 4 | 6 |09278 T | 4 | 14
s 214 30 | 44 | 22 | 19 [139| 17 | 21 | 54 | 28 | 7 | 38 | 140 4 | 20 | 27
T 100 22| 9 [21| 2024 [11 [134] 25 | 57| 49| 6 | 59 1| 6 | 76
w 132377 . 5 | 5 | 22 21 | 5 [o9esd 24 | 16
Y 30234310 4 5 | 4 6 | 43 | 12 | 11 99377 11
v 7 |16 13| 7 |20 35 7 | 7 ﬁ 11| 28| 67| 3 | 5 8772

AlrR[IN][DJclaole]ac [i el x[mM]ElP]s]TIw][yY][V
m 10.0770.051]0.043[0.052[0.020(0.0410.062[0.074]0.0230.053[0.091{0.059]0.024|0.040[0.051{0.069]0.059]0.014]0.032]0.066
m; |1.241{1.038]1.2931.068[0.550[1.0450.958[0.631(1.133[1.2730.672[0.899[1.1550.643[0.722[1.452]1.330{0.316]0.623]1.228

Fig. 4.7 PAM1 matrix calculated by Jones, Taylor, and Thornton (1992). Values are multiplied by 10° for convenience. Mii is
the probability that the amino acid in row i changes to the amino acid in column j in a small time corresponding to 1 PAM unit.
The two highest non-diagonal elements in each row are highlighted in black. These are the two most rapid substitution rates for
each amino acid. Frequencies 7, and relative mutabilities m, of each amino acid are shown at the bottom of the figure.

highlighted in black. These are the two highest sub-
stitution rates for each amino acid, e.g., A is more
likely to change to S and T than to the other amino
acids. We will consider more fully why some rates
are much larger than others in the section on log
odds matrices. For now we note that, unlike the
Aj; matrix, the M;; matrix is not symmetric. This is
because the frequencies of the amino acids are not
equal. The values of the amino acid frequencies
in the data of Jones et al. are given in Fig. 4.7. As
this model is time reversible we have ©,M i =M,
So for amino acids A and V, for example, we have
0.077 x 0.00193 = 0.066 x 0.00226 = 0.000149.

Since PAM1 corresponds to an average probab-
ility of 0.01 of amino acids changing, we would

68 ® Chapter4

expect all the diagonal elements to be 0.99 (i.e.,
99,000 on the figure) if each amino acid changed
at the same rate. However, some amino acids are
more likely to undergo substitutions than others.
Amino acids that change more rapidly than aver-
age will have a probability lower than 0.99 of re-
maining unchanged after a time of 1 PAM, whereas
those that change more slowly than average will
have a probability higher than 0.99 of remain-
ing unchanged. Using Eq. (4.22), the total prob-
ability of substitution from amino acid i to any other
amino acid in a time of 1 PAM unit is 1 — M,,. If we
divide this by the mean substitution probability
0.01, we obtain the relative mutability m; of amino
acid i:

m;= (1 - M,)/0.01 (4.26)

The relative mutabilities are given at the foot of
Fig. 4.7. A relative mutability of 1 corresponds to an
amino acid that changes at the average rate. The
least mutable amino acid is tryptophan (W) with
mutability m,, = 0.316, which is less than a third of
the average rate. The most mutable amino acid is
serine (S) with mg=1.452. The mutability values
reflect important properties of the amino acids (see
Section 4.3.2 below). Note that Jones et al. (1992)
and Dayhoff et al. (1978) used a different scale for
relative mutabilities where the mutability of alanine
is set to 100. The scale used here seems more logical
because there is nothing special about alanine.

4.2.3 Extrapolating the model to higher distances

The PAM1 matrix in Fig. 4.7 is the equivalent of one
of the evolutionary models for DNA discussed in
Section 4.1, except that the M;; matrix represents a
transition probability in a small discrete unit of time,
whereas the rate matrices r; represent rates of
change in a continuous time model. For two amino
acids that are not equal, the probability of substitu-
tion for a small time &t is

P,(8t) = 8t x 1= M (4.27)

while the probability of remaining unchanged is

P(8t)=1-) 8t xr,=M,

Jj#i

(4.28)

Choosing the value of A above is equivalent to choos-
ing a value of 8t so that there is a probability of 1% of
an amino acid changing in this time.

Now suppose we want to obtain the transition
probabilities for time 24t. It is not true that Pij(ZBt) =
2M1;- In order to calculate this probability we need to
consider all the intermediate states that could have
existed at time dt, and sum over them:

Py(281) = Y MMy (4.29)
k

Thus if we want to get from A to V in two steps, we
can go A—>A—V, or A»V—-V, or A>R—V, or any

of the other 17 possibilities. To calculate Pl.].(n6t) we
have to sum over the possible amino acids that could
occur at the n— 1 intermediate time points. To do
this we have to multiply the M matrix by itself n
times to obtain the matrix M" and take the ij element
of this matrix. This is written:

Py =M} =3 5.

ZMlkMkl .M, (4.30)

mj

where there are n — 1 indices to be summed over.

This completes the derivation of the PAM model.
The substitution probability matrices known as
PAM100, PAM250, etc. are simply the PAMI1
matrix M multiplied by itself 100 or 250 times. It is
straightforward to calculate these matrices by com-
puter. The number of times we multiply the matrix is
called the PAM distance. Box 4.2 gives more infor-
mation about PAM distances.

The method for deriving the PAM model began
with groups of closely related sequences. This is
important for several reasons. When sequences are
similar, it is easy to align them because there are
almost no gaps. In this case the alignment is very
insensitive to the scoring matrix we use — if we have
not yet derived a good scoring matrix we do not
want the alignments used to be sensitive to the
details of the rather poor scoring matrix we use to
align them. In addition, constructing phylogenetic
trees is generally more reliable for more closely
related sequences. The parsimony method weights
each type of amino acid substitution equally when
choosing the tree. Again, this avoids using an evolu-
tionary model that has yet to be calculated. When
counting the substitutions, it is assumed that no
more than one substitution has occurred per site on
any branch. For example, the K<>T substitution
between nodes 2 and 3 in Fig. 4.5 is assumed to be a
direct change and not via an intermediate route
such as K«>Q<«T. If sequences are similar to one
another, this is a reasonable assumption, but for
more distant sequences, there is no reason this
should be true and there would be little justification
for using parsimony. Likelihood-based methods of
estimating substitution matrices that avoid this
problem are discussed in Section 11.2.2.

Models of sequence evolution ® 69

70 ® Chapter4

N
N
T

s 2.0

Fig. 4.8 Therelationship) B
between the evolutionary _§ 1.6
distance d and the fraction of % |
sites that differ D according to ? 121
the PAM model of evolution. 5

Solid line, the empirical = B
relationship calculated from g 0.8

Dayhoffetal. (1978) data (Eq.
(4.31)); dashed line, the Kimura
distance formula (Eq. (4.32)).
Data points are calculated by the
Phylip package for a particular
set of aligned proteins using the
same evolutionary model.

<
IS

4.3 LOG-ODDS SCORING MATRICES
FOR AMINO ACIDS

4.3.1 PAM scoring matrices

We will now describe the way in which the PAM
model of evolution can be used to derive scoring
matrices for use in protein sequence alignment.
Consider two very long proteins that are n PAM
units apart. The fraction of sites at which the first
sequence has amino acid i and the second has amino
acid j is m,M ji- Now suppose we randomly reshuffle
the amino acids in each sequence. The frequency of
the amino acids remains the same but there is no
longer any evolutionary relationship between the
sequences. The fraction of sites at which the first
sequence is i and the second sequence is j is now just
m, 1. We define R as the ratio of these two values:

T, Mg Mg
i j
Thus Ryis the ratio of the number of times that an i is
aligned with a j in proteins evolving according to the
PAM model to the number of times that an i would
be aligned with a j in random protein sequences with

the same amino acid frequencies. If R;;> 1, then
amino acids i and j are more likely to be aligned with
each other according to the PAM model than they
would be by chance. Because the PAM model is
time reversible, the matrix of R values is symmetric
(Rij =R;). This is common sense because the prob-
ability that an i and a j are aligned with each other
cannot depend on which of the two sequences we
call sequence 1 and which we call sequence 2. Let
the amino acids at the k" site in the two proteins
be a, and b,, as in Box 4.2. The relative likelihood of
this pair of aligned sequences arising according to
the PAM model to the likelihood of the pair arising
if the amino acids were chosen at random is

L

relative likelihood = H Rakbk (4.35)
k=1

When deciding how to align two proteins, we
should choose the alignment that maximizes this
relative likelihood, i.e., we should choose the align-
ment that is most likely to arise according to our
evolutionary model. Algorithms for calculating the
optimum alignment will be discussed in Chapter 6.
For these algorithms, it is convenient to have an
alignment score that is a sum over sites, rather than

Models of sequence evolution ® 71

a product over sites like Eq. (4.35). To derive these
scores, we just take logs of the R; values. The score
for alignment of amino acid i with amino acid j is
S(i,j) = Clog, R;; (4.36)
Bisthebase oflogarithm that we choose to take, and
C is any arbitrary constant. These two constants
are chosen so that the scores are on a convenient
scale. We can write the score for alignment of the
two sequences (forgetting about gaps for the mom-
ent) as

L
alignment score = 2 S(ay. by)
k=1

(4.37)

The alignment that maximizes the sum in Eq. (4.37)
is the same as the alignment that maximizes the
relative likelihood in Eq. (4.35).

Leaving the alignment problem until Chapter 6,
let us now think more carefully about what these
scores mean. A matrix of scores calculated accord-
ing to Eq. (4.36) is called a log-odds matrix. The
log-odds matrix calculated for PAM250 using the
data of Jones et al. (1992) is shown in Fig. 4.6 (below
the diagonal). In this case both B and C are 10, and
the values shown are rounded to the nearest integer.
Positive scores indicate that the two amino acids are
more likely to be aligned with one another than they
would be by chance, and negative scores mean that
they are less likely to be aligned with one another
than they would be by chance. Positive scores are
shaded gray. Note that all the diagonal elements are
shaded, meaning that each amino acid is more likely
to be aligned with itself than it would be by chance.
The highest score is S(W,W) = 15. To see what this
means, we can invert Eq. (4.36) to give R;; = BS#//C.
In this case we have Ry, = 101%10 = 31.6, meaning
that a W is 31.6 times more likely to be aligned with
another W in proteins at PAM distance 250 than it
would be by chance. This reflects the fact that W has
a very low relative mutability — see Eq. (4.26) above.
Similarly, amino acids with high mutability like S
have low scores on the diagonal, meaning that an S
is only slightly more likely to be aligned with itself
than it would be by chance.

72 @ Chapter4

4.3.2 Relationship to the physico-chemical properties
of amino acids

The shaded off-diagonal elements in Fig. 4.6 are the
highest scores between non-identical amino acids.
These are the pairs of amino acids that are most
likely to be aligned with one another. They tend to be
pairs that have similar physico-chemical properties.
The few highest-scoring pairs are listed here.

* Y<F. Tyrosine and phenylalanine both have an
aromatic side group and differ only by the presence
of an OH group on the benzene ring in tyrosine.

* DE. Aspartate and glutamate both have an
acidic COO~ group and differ only by the presence of
an extra carbon in the side chain of glutamate.

* K<R. Lysine and arginine are both basic and
have relatively long side chains ending in positively
charged NH? or NHY groups.

* V&l Valine and isoleucine are both hydropho-
bic amino acids with medium-sized hydrocarbon
side chains. They differ by a single extra carbon in
isoleucine.

In contrast, amino acids that have different
physico-chemical properties tend to have negative
scores. For example, most scores between hydro-
philic and hydrophobic amino acids are negative. It
is also noticeable that the two most slowly evolving
amino acids, tryptophan and cysteine, have rather
unusual physico-chemical properties. Tryptophan
is the largest amino acid with a very bulky side
chain. If it is substituted by another side chain it
is likely that this will cause a substantial change in
the 3D structure of the protein. Hence it will most
likely be a deleterious mutation that will be elimin-
ated by selection. Cysteine residues have the ability
to form disulfide bonds, C-S—S—C, between different
parts of protein chains. The disruption of these
bonds would also be likely to cause a major effect
on the protein structure. Thus, the observed rate of
substitutions involving both W and C is small. These
amino acids have high scores on the diagonal but
negative scores for alignment with almost every-
thing else.

We spent a long time discussing the properties of
amino acids in Chapter 2. The plot from principal
component analysis (Fig. 2.10) is a good way of

summarizing the differences in the amino acid prop-
erties. Almost all the pairs of amino acids with high
PAM scores are close to one another on the PCA plot.
To see this, try making a copy of Fig. 2.10 and
joining all the pairs of points corresponding to the
shaded cells in Fig. 4.6. This confirms the fact that
evolution does take notice of amino acid properties.
It also confirms what we said in Chapter 3 regarding
the stabilizing action of natural selection, i.e., selec-
tion is acting against mutations that change the
amino acid properties too drastically, and prevent-
ing these changes reaching fixation. The only sig-
nificantly positive scores in the PAM matrix that
appear quite far from one another on the PCA plot
are CW and CY. We already said that cysteine is an
unusual amino acid that cannot easily be replaced
by anything else. The explanation for the high PAM
scores for CW and CY is probably due to the proxim-
ity of these amino acids in the genetic code, as we
now describe, rather than because of similarities in
physico-chemical properties.

Examination of Fig. 4.6 reveals that the structure
of the genetic code also has a role in the rates of
amino acid substitution. As can be seen from the
genetic code diagram in Table 2.1, it is possible for
some substitutions of amino acids to occur by the
substitution of a single nucleotide at one of the three
positions in the codon, whereas other amino acid
substitutions require more than one nucleotide sub-
stitution. We would expect the amino acid substitu-
tions that require only one nucleotide substitution
to occur more rapidly. In Fig. 4.6, the scores for the
amino acid pairs that can be substituted with a sin-
gle nucleotide change are highlighted in a black box.
It can be seen that all the pairs with positive scores
(gray cells) are also highlighted in black. Therefore,
there is no substitution that is frequently observed
that cannot be achieved by a single nucleotide
change. However, there are many zero or negative
scores that are also shaded black. Thus, not all the
substitutions that are possible via a single nucleotide
change are frequently observed. This shows that the
effect of the genetic code is moderated by the action
of natural selection on the amino acid proper-
ties. For example, the substitution from valine (V)
to glutamate (E) is possible by a single nucleotide

substitution from T to A at the second position. This
presumably occurs frequently as a mutation in the
population. However, selection is likely to eliminate
most of these changes because the physico-chemical
properties of the amino acids are too different. The
observed rate of V<>E substitutions is therefore low
because most of these mutations do not go to fixa-
tion, and the score S(V,E) is negative.

As an interesting aside, it appears that the struc-
ture of the genetic code is far from random. It is often
the case that amino acids with similar properties
are next to one another in the diagram (Table 2.1)
and therefore that they are accessible by a single
nucleotide change. As a result the average effect of
random point mutations on the physico-chemical
properties of a protein is less than one might expect.
This has been shown by comparing the real code
with many possible randomly reshuffled genetic
codes (Freeland et al. 2000). It is therefore argued
that the code has evolved by reshuffling the assign-
ment of codons to amino acids in order to minimize
errors. Although the canonical code is thought to
have arisen very early in evolution (before the split
of archaea, bacteria, and eukaryotes), and although
the process of codon reassignment is potentially very
disruptive to an organism, there are nevertheless
many small changes to the code that have occur-
red in isolated groups of organisms or organelles
since the canonical code was established (Knight,
Freeland, and Landweber 2001). Thus reshuffling of
the code due to selection for error minimization in
the early stages of life on earth is not impossible.

Returning to scoring matrices, we note that a log-
odds matrix can be derived for any PAM distance.
The PAM250 matrix shown in Fig. 4.6 represents a
relatively large distance. This means that there is a
substantial chance that an amino acid has changed
and therefore there are a fairly large number of
positive scores in the off-diagonal elements. For a
smaller PAM distance like 100 or less, there would
be a higher probability that each amino acid had
remained unchanged. Therefore the scores on the
diagonal of the matrix would be larger, and most of
the off-diagonal scores would be negative. The PAM
scoring matrices are used for pairwise sequence
alignments and for database searches. The matrices

Models of sequence evolution ® 73

are most effective at spotting similarities between
sequences that are at evolutionary distances com-
parable with the PAM distance of the matrix. Low
PAM number matrices are used to spot matches
with a high percentage identity between the sequ-
ences. High PAM number matrices are used to spot
matches between distantly related sequences, where
the residues may not be identical but the physico-
chemical properties of the amino acids are con-
served. Examples of alignments and database search
results using different PAM matrices are discussed in
Chapters 6 and 7.

4.3.3 BLOSUM scoring matrices

The BLOSUM matrices (Henikoff and Henikoff
1992) are another set of log-odds scoring matrices
that have much in common with PAM matrices,
although they are derived in a different way. In
particular, the scoring matrix is derived directly
from sequence alignments without the use of a phy-
logenetic tree, and without deriving an evolutionary
model.

The basics of the method can be explained using
the sequence alignment in Fig. 4.5. First we count
the number of times each amino acid appears and
hence obtain the frequencies m; of each amino acid in
the data set. Then we count the number of times Ay
that each amino acid is aligned with each other
amino acid. In Fig. 4.5 there are seven sequences.
The total number of ways of picking a pair of amino
acids from one column of the alignment is 7 X 6 =
42. The seventh column of the alignment is all K.
This column contributes 42 to Ayy. In the first col-
umn of the alignment we have six Ts and one I. This
column contributes 6 X 5 =30 to A, six to Ay and
six to A;. When the totals from all the columns are
added, the following matrix A i results:

I K L O T V
6

I - 16 - 6

K - 78 - 6 12 -

L 16 - 22 - - 4 (4.38)
Q - 6 - 62 10

T 6 12 - 10 44 -

v 6 - 4 - - 2

74 © Chapter4

This differs from the Aj; matrix calculated by the
PAM method (Eq. (4.21)) in that we are counting
pairs of aligned amino acids instead of numbers of
substitutions. Thus we have non-zero entries on the
diagonal. There are also some entries like Ay, that
are non-zero in Eq. (4.38) but are zero in Eq. (4.21).
This is because V and L amino acids are aligned with
each other at site 5, whereas the parsimony method
used in Fig. 4.5 found that there were substitutions
Vel and I«L at site 5 but no direct substitution
VL. The two methods treat the same alignment
data in different ways and thus result in different
scoring matrices.

We can now obtain the fraction of aligned pairs
that are of type ij:

q=—"1 (4.39)
tot

where A, , is the total of all the elements in the Ay
matrix. From this we can directly obtain the relative
frequency of ij pairs in the aligned proteins com-
pared with what we would expect for randomly
reshuffled proteins with the same base frequencies:

_ %
= >y (4.40)
This quantity Rj;is directly comparable to the R; that
we calculated for the PAM model in Eq. (4.34). We
can use it to calculate a log-odds scoring system
using Eq. (4.36) in the same way.

The mathematics of this method is much simpler
than for the PAM method because we can go directly
from the data to the log-odds matrix without need-
ing to derive an evolutionary model (M;) first. There
are nevertheless some disadvantages. The result
that we obtain is sensitive to the presence of groups
of very closely related sequences in the alignment.
These sequences will be almost identical and will
contribute a large amount to the numbers on the
diagonal of the Au matrix. In contrast, groups of
almost identical sequences do not affect the PAM
method because these appear very close to one
another on the phylogenetic tree and very few sub-
stitutions are required on these branches of the tree.
Real sequence data are usually obtained in a very

“patchy” way, with a lot of sequences available for a
few well-studied groups and only a few sequences
available from other groups. It is therefore necessary
to develop a systematic way of accounting for the
distribution of distances between the sequences in
the alignments used for the BLOSUM method.

Henikoff and Henikoff (1992) used alignments of
protein domains from the Blocks database (see Section
5.5.5). These are reliably aligned regions of proteins
without gaps. Within each alignment sequences
were grouped into clusters that have a percentage
identity greater than a certain cut-off value (e.g.,
80% or 62%). When counting the number of paired
amino acids for the A matrix, sequences in the same
cluster are not counted. When counting pairs
between clusters, sequences in the same cluster are
weighted as a single sequence (i.e., if there were two
clustered sequences, each would count half the
weight of a single distinct sequence). The log-odds
matrix that results from clustering sequences at a
given percentage is known as the corresponding
number BLOSUM matrix. Hence BLOSUMSO0 only
includes substitutions between sequences that are
less than 80% similar, and BLOSUM®62 only includes
substitutions between sequences that are less than
62% similar. Lower BLOSUM number therefore rep-
resents lower similarity, whereas lower PAM number
represents greater similarity.

The scaling of the scores used in BLOSUMG62 is
S(i.j) = 2 log,R;;. This means that the scores are in
“half-bit” units. A bit is a factor of two, and a score of
1 in the matrix corresponds to a factor of V2 inre-
lative likelihood. The highest score is S(W,W) =11,
which corresponds to Ry, = 2'1/2=45.2. This is
not too different from what we got with PAM250.
Table 4.1 compares three log-odds scoring systems
derived by different methods and using different sets

of sequence alignments. The numerical details of the
scoring systems are different, hence if we use them
for sequence alignments, we may obtain slightly dif-
ferent results. However, the most important features
of these scoring matrices are the same. The sets of
the most conserved and least conserved amino acids
and the most significant positive scores between
non-identical amino acids are very similar in the
three cases. This gives us confidence that the scoring
systems are really calculating something funda-
mental about the process of protein sequence evolu-
tion and the way in which natural selection acts on
the physico-chemical properties of the amino acids.
When we are searching for similarities between
sequences, it is easy to spot sequences that are very
similar. The difficulty arises in spotting relationships
in the “twilight zone” of sequence similarity where
the resemblance between the sequences is only
slight. It has been argued that the BLOSUM series
of matrices is more effective for use in database
search algorithms than the PAM series because it is
based directly on comparison of distant sequences
(Henikoff and Henikoff 1993). The PAM method, on
the other hand, counts substitutions in closely
related sequences only, and then predicts what will
happen for more distant sequences by extrapolation
of the evolutionary model to longer times. It may be
that this extrapolation is not very reliable (Benner,
Cohen, and Gonnet 1994). The disadvantage of
BLOSUM is that since it is not based on an evolu-
tionary model it cannot be used for calculating
evolutionary distances and phylogenetic trees.
The reason that the PAM matrix only uses similar
sequences is because it relies on parsimony to count
the substitutions. Maximum likelihood methods of
estimating evolutionary models do not have this
restriction (see Section 11.2.2 for further details).

Models of sequence evolution ® 75

Table 4.1 Important features of amino acid substitution matrices.

76 ® Chapter4

proteins is an estimate of the numbe
per site, as with DNA sequence dis
conventionally mutiplied by 10!
of n corresponds to n/100 sub

The PAM substitution
late log-odds scoring m
ence alignment algori
as the logarithm of

REFERENCES

Adachi, J. and Hasegawa, M. 1996. A model of amino acid
substitution in proteins encoded by mitochondrial DNA.
Journal of Molecular Evolution, 42: 459-68.

Benner, S.A., Cohen, M.A., and Gonnet, G.H. 1994.
Amino acid substitution during functionally con-
strained divergent evolution of protein sequences.
Protein Engineering, 7: 1323-32.

Dayhoff, M.O., Schwartz, R.M., and Orcutt, B.C. 1978. A
model of evolutionary change in proteins. In Atlas of
Protein Sequence and Structure, 5(3): 345-52. Washing-
ton DC: National Biomedical Research Foundation.

Felsenstein, J. 2001. PHYLIP Phylogeny Inference Pack-
age version 3.6. Available from http://evolution.genetics.
washington.edu/phylip.html.

Freeland, S.J., Knight, R.D., Landweber, L.F., and Hurst,
L.D. 2000. Early fixation of an optimal genetic code.
Molecular Biology and Evolution, 17: 511-18.

Hasegawa, M., Kishino, H., and Yano, T.A. 1985. Dating
of the human-ape splitting by a molecular clock of mito-
chondrial DNA. Journal of Molecular Evolution, 22:
160-74.

Henikoff, S. and Henikoff,].G. 1992. Amino acid substitu-
tion matrices from protein blocks. Proceedings of the
National Academy of Sciences USA, 89: 10915-19.

Henikoff, S. and Henikoff, J.G. 1993. Performance evalu-
ation of amino acid substitution matrices. PROTEINS:
Structure, Function and Genetics, 17:49-61.

Jones, D.T., Taylor, W.R., and Thornton, J.M. 1992. The
rapid generation of mutation data matrices from protein
sequences. CABIOS, 8:275-82.

Jukes, T.H. and Cantor, C.R. 1969. Evolution of protein
molecules. In H.N. Munro (ed.), Mammalian Protein
Metabolism, pp. 21-123. New York: Academic Press.

Kimura, M. 1983. A simple method of estimating evolu-
tionary rates of base substitutions through comparative
studies of nucleotide sequences. Journal of Molecular
Evolution, 16: 111-20.

Knight, R.D., Freeland, S.J., and Landweber, L.F. 2001.
Rewiring the keyboard: Evolvability of the genetic code.
Nature Reviews Genetics, 2: 49-58.

Miiller, T. and Vingron, M. 2000. Modeling amino acid
replacement. Journal of Computational Biology, 7: 761—
76.

Schmidt, H.A., Strimmer, K., Vingron, M., and von
Haeseler, A. 2000. Tree-Puzzle version 5.0 available
from http://www.tree-puzzle.de/.

Yang, Z. 1996. Among-site rate variation and its impact
on phylogenetic analyses. Trends in Ecology and Evolu-
tion, 11: 367-72.

Models of sequence evolution ® 77

78 ® Chapter4

Models of sequence evolution ® 79

80 ® Chapter4

Information

CHAPTER

resources for genes

and proteins

CHAPTER PREVIEW

In this chapter, we describe some of the major se
able for nucleic acids and proteins. We b
databases first arose from the need to stor
led to the need for consistent file forma
primary DNA and protein databas
focus on protein family data. In e
tion included and the structur

5.1 WHY BUILD A DATABASE?

Historically, databases have arisen to satisfy diverse
needs, whether to address a biological question of
interest to an individual scientist, to better serve a
particular section of the biological community, to
coordinate data from sequencing projects, or to facil-
itate drug discovery in pharmaceutical companies.
The workhorses of modern biology, databanks now
number in the hundreds and house information of
allkinds. Indeed, a special issue of the journal Nucleic
Acids Research, with an online molecular biology
database catalog (Baxevanis 2003), is devoted every
year to the documentation of ongoing and new
database initiatives, and there is even a database of
databases, DBCat (Discala et al. 2000).

So how did this avalanche of data arise? The first
databases that emerged concentrated on collecting
and annotating nucleotide and protein sequences
generated by the early sequencing techniques. Once
sequence repositories were established, more ana-
lytical resources were developed, both to catalog

family and functional rela-
tionships among proteins, and
to provide diagnostic tools for
sequence classification. Such
resources now play key roles
in genome annotation.

With the advent of
automated, high-throughput
techniques, whole-genome
sequencing projects became
commonplace. Because of the need to document
information relating to specific organisms, and to
better manage the data, the fruits of these activities
were soon harvested in species-specific databases. At
the same time, scientists saw the importance of plac-
ing the genomic data in wider biological and medical
contexts: e.g., to facilitate comparative analysis of
genomes and to help assign gene functions more
precisely, knowledge of molecular and cellular bio-
logy was captured in metabolic pathway and mole-
cular interaction databases; and, to examine aspects
of disease systematically, the structure of human
genes was cataloged in compendia of genes and
genetic disorders.

The deluge of available genomic information is set
to have a major impact on biological and medical
research. The accumulated data are already allow-
ing scientists to search for novel genes and proteins,
to evaluate their roles as drug targets, and to invest-
igate why individuals respond in different ways to the
same drug regimes. The scale of information gather-
ing world-wide is daunting; the challenge will be to
integrate it all into a coherent picture, to use the

Information resources for genes and proteins ® 81

genome sequences of humans and other species to
help us understand the complexities of biology, and
ultimately to provide insights into how individual
genetic variations result in disease.

Clearly, sequencing entire genomes of diverse
organisms and acquiring a rough draft of the
human genome represent major technical achieve-
ments. But merely increasing the amount of infor-
mation we collect does not in itself bestow an
increase in knowledge, or endow us with a mira-
culous understanding of genomes. A lot of work is
required to turn raw data into biological insight:
e.g., genes must be located and the coding regions
translated to yield their protein products; functions
must be assigned; and, if the structure is known, the
function must be rationalized in structural terms,
otherwise prediction or modeling techniques must
be used to derive feasible models. All of these tasks
depend on having computational access to biolo-
gical databases in which the data are both reliable
and comprehensive.

The databases in common use today each have
different scopes and different objectives. Primary
DNA sequence repositories, such as EMBL, GenBank,
and DDB]J (described in Section 5.3), are those that
attempt to keep a comprehensive record of all
sequenced DNA as it becomes available. As primary
databases are all-inclusive, they are inevitably fairly
shallow in terms of the information they contain.
By contrast, secondary (or protein family) databases
aim to combine information from several different
primary database entries and to provide added in-
formation not present in their primary sources. Pro-
tein family databases (some of which are described
in Section 5.5) are based on the recognition of
conserved regions (or motifs) in multiple sequence
alignments — Chapter 9 describes the methods used
to recognize these patterns of conservation. There is
alist of Web addresses for the resources referred to in
this chapter at the end of this book.

5.2 DATABASE FILE FORMATS

Database entries have well-defined file formats: this
is important so that data can be read by computer

82 @ Chapter5

and extracted automatically. Computers need to
know what type of information to expect in an entry
and where to find it. Some examples of file formats
are discussed in the rest of this chapter: all have a few
things in common. Some sort of “accession num-
ber” is always included; this is a unique identifier,
assigned when the entry is originally added to the
database, and should not change. Accession num-
bers are easily searchable and indexable by com-
puters, but are meaningless to most people. Some
databases therefore have a second identifying (ID)
code that is more comprehensible (e.g., the Swiss-
Prot codes discussed in Section 5.4). ID numbers
don’t stop there, though. For example, biological
sequences may have entries in several different
databases, each with their own numbering system —
cross-referencing the accession numbers between
them is therefore important; some sequences have
multiple parts and may need ID numbers for the
separate sections, such as parts of a sequenced
genome containing more than one gene, or eukary-
otic genes containing multiple introns and exons.
Furthermore, some sequences change: e.g., if they
are resequenced by a second group, or mistakes are
found and later corrected. We need a way of keeping
track of all this, and the result is usually a stack of IDs
at the top of the file.

Another thing we need in a database is a descrip-
tion of what the entry is. In a sequence database, at
the very least, we need the name of the gene, but we
would probably also like to know the organism it
came from, who sequenced it and when, perhaps
some information about its structure and function,
and whether there are papers describing research
related to it. Different databases handle this type of
information in different ways. There is no single
right way to do it, but it is important to be consistent.
The better organized the database file format, the
easier it will be to use the information at a later
stage.

In many sequence databases, it is necessary to
scroll way down the file before reaching the sequ-
ence itself! Usually, there is a specified number of
characters per line, and sometimes lines are bro-
ken into groups of 10 characters. Numbers at the
beginning and end of lines help us to know where we

are in a sequence. Many bioinformatics software
packages also have their own sequence formats. One
of the simplest is FASTA format, which simply in-
cludes a line with “>” preceding the sequence acces-
sion number/ID/description, and another line with
the actual sequence. The human prion protein in
FASTA format looks like this:

>gi1190469 |gb|M13667.1 | HUMPRPOA

Human prion protein 27-30 mRNA
CGAGCAGCCAAGGTTCGCCATAATGACTGCTCTCGGTCGTGAGGAGA
GGAGAAGCTCGCGGCGCCGCGGCTGCTGGATGCTGGTTCTCTTTGT
GGCCACATGGAGTGACCTGGGCCTCTGCAAGAAGCGCCGAAGCCTG
+ lots more lines of sequence . . .

In this example, the first line contains various
sequence ID numbers, but this is not obligatory. In
fact, you can put more or less anything you like after
the > and most bioinformatics software will still read
it as a FASTA sequence. In contrast, GenBank and
Swiss-Prot formats are much more complicated (see
Figs. 5.1 and 5.3). As programmers soon find out,
it is much easier to write a program to read a FASTA
sequence than it is to extract a sequence from a
GenBank file. However, simple formats have dis-
advantages for long sequences — having a sequence
thousands of bases long with no gaps, carriage
returns, or numbering system is not necessarily a
good idea. Different formats have different object-
ives. For databases, we want readability and a lot
of information associated with the sequence. For
sequence analysis software, we need ease of input
and output.

There are usually certain key features that are
obligatory in sequence files in order for software
to read them and recognize them for what they are:
e.g., the initial > is obligatory in FASTA format;
and EMBL and GenBank records must have // to
terminate each entry. Small errors in file formats
are a prime reason why people have problems
getting bioinformatics software to work. There are
surprisingly many different formats; so many, in
fact, that specialist software has been written just
to convert sequences from one format to another —
Don Gilbert’s Readseq program is available on the
Web from several places (e.g., http://www.ebi.

ac.uk/readseq/index.html). If you are writing your
own programs, then it is a good idea not to invent
any more sequence formats, unless you absolutely
have to!

The preceding discussion about file formats refers
to what are called “flatfiles” by computer scientists.
This just means that the information is stored in sim-
ple text files. A program that wants to use informa-
tion in a file has to read through it, find the right line
and the right piece of text, and put this information
into an internal variable that can be used by the pro-
gram. This process is termed “parsing”, and is where
the file format is essential. If you know that the
sequence will begin on a line following the label
SQ (as it does in Swiss-Prot and EMBL), then it is
easier to find it. If you know that the organism name
is on the line beginning ORGANISM (as it is in
GenBank), this helps when trying to write a program
to locate sequences from a particular species. In fact,
retrieval of information from databases is a non-
trivial process, and specialized systems are available
for doing it, such as the SRS Sequence Retrieval Sys-
tem (Etzold, Ulyanov, and Argos 1996), and the
Entrez system at the NCBI (Schuler 1996). We turn
now to details of some of the most commonly used
databases.

5.3 NUCLEIC ACID SEQUENCE
DATABASES

Nucleic acid sequences offer a starting point for
understanding the structure, function, and develop-
ment of genetically diverse organisms. A testament
to their central importance in modern biology has
been the simultaneous effort in different parts of
the world to collect, process, and disseminate them.
As mentioned in Chapter 1, biological databanks
began to emerge in the early 1980s, to store infor-
mation generated by applications of the then new
sequencing techniques. The first of these collected
and annotated nucleotide sequences, namely EMBL
and GenBank in 1982. These were followed in
1986 by the DNA Data Bank of Japan (DDBJ) and
their collaborative repository, the International
Nucleotide Sequence Database (INSD). In the

Information resources for genes and proteins ® 83

following sections, we will review these resources
and, to give a flavor of the type of information they
house, we will examine the format of a typical
GenBank entry. We begin with the world’s first
nucleotide sequence repository, EMBL.

5.3.1 EMBL

The EMBL database, also known as EMBL-Bank
(Kulikova et al. 2004), is Europe’s primary collection
of nucleotide sequences. Its first public release was
in June 1982, with 568 entries. The database is
maintained at the European Bioinformatics Insti-
tute (EBI) in Hinxton, the UK outpost of the Euro-
pean Molecular Biology Laboratories (EMBL), whose
headquarters are in Heidelberg, Germany (note
that future references to “EMBL” will signify the
database, while “the EMBL” will denote its parent
organization). To populate the database, data are
collected from genome sequencing centers, indivi-
dual scientists, the European Patent Office (EPO),
and via exchange from partners of the INSD (see
Section 5.3.7).

Initially, EMBL used sequences published in the
scientific literature as its principal source of infor-
mation. Today, however, electronic submissions via
the Web are the more usual practice. Web sub-
mission is important, as the protocols for data entry
help standardization and error minimization. The
vast majority of data are transferred directly from
major sequencing centers, and the database is
consequently growing at a staggering rate — in
February 2004, it contained 30,351,263 entries
(comprising 36,042,464,651 nucleotides), repres-
enting >150,000 organisms, but with model organ-
isms dominating.

Owing to its enormous size and to ease its man-
agement, EMBL is split into divisions, most of which
are taxonomic (e.g., prokaryotes, fungi, plants,
mammals); others are based on the types of data
being held, such as expressed sequence tags (ESTs),
sequence tagged sites (STSs), genome survey sequ-
ences (GSSs), high-throughput genomic (HTG) data,
and unfinished high-throughput cDNA (HTC) sequ-
ences—see Table 5.1.

84 ® Chapter5s

Table 5.1 The divisions of GenBank.

Division

PRI
ROD
MAM
VR

5.3.2 The structure of EMBL entries

Entries in the database are structured so as to be both
human and computer readable. Free-text descriptions
are held within information fields that are struc-
tured systematically for ease of access by computer
programs — query software need not then search the
full file, but can be directed to those fields that are
specific to the nature of the query. Data included in
an entry are stored on different lines, each beginning
with a two-character code indicating the type of
information contained in the line. There are more
than 20 different line types, storing for example,
the entry name, taxonomic division, and sequence
length (the ID line); a unique accession number (AC
line), the primary and only stable means of identify-
ing sequences from release to release; a description
(DE) of the sequence that includes designations of
genes for which it codes, the region of the genome
from which it is derived, or other information that
helps to identify the sequence; literature references
(RN, RP, etc.); database cross-references (DR) that
link to related information in other resources; free-
text comments (CC); keywords (KW) that highlight

functional, structural, or other defining characteris-
tics that can be used to generate cross-references;
and the Feature Table (FT), which houses sequence
annotations, including signals or other characteris-
tics reported in the literature, locations of protein
coding sequences (CDS), ambiguities or features
noted during data preparation, and so on.

Translations of protein-coding regions included
as CDS features are automatically added to TrEMBL,
from which curators then create annotated Swiss-
Prot entries. EMBL is thus cross-referenced to both
TrEMBL and Swiss-Prot, both of which share EMBL's
general format (more detailed examples of these
databases are described in Section 5.4).

Information can be retrieved from EMBL using
SRS (Etzold, Ulyanov, and Argos 1996); this links
the principal DNA and protein sequence databases
with a variety of specialist resources (which house
motif, structure, mapping, and other information),
and also provides links to the biomedical literature.
The system allows searches of a number of different
fields, including sequence annotations, keywords,
and author names. In addition to text-based inter-
rogation, EMBL may also be searched with query
sequences via the EBI's Web interfaces to BLAST,
FASTA, and other rapid search programs.

5.3.3 GenBank

GenBank (Benson et al. 2004) is the genetic sequ-
ence database maintained at the National Center for
Biotechnology Information (NCBI), Bethesda, USA.
Its first public release was in December 1982, with
606 entries. Sequence information is incorporated
from: direct author submissions; large-scale sequenc-
ing projects; the Genome Sequence Data Base, Santa
Fe, USA; the United States Patent and Trademark
Office (USTPO) and other international patent offices;
and via exchange from partners of the INSD.

The database is growing at a prodigious rate,
largely through inclusion of EST and other high-
throughput data from sequencing centers: for
example, ESTs constituted ~63% of Release 139
in February 2004, which contained 30,968,418
sequence records (36,553,368,485 bases). In this

release, Homo sapiens was the most highly repres-
ented species, the next most represented species, in
terms of the number of bases, being Mus musculus,
Rattus norvegicus, Danio rerio, and Zea mays. Owing
toits size, and the diversity of data sources available,
GenBank files are split into sections that roughly
correspond to taxonomic groups, but divisions for
ESTs, GSSs, HTGs, and so on are also included, as
summarized in Table 5.1. Although perhaps some-
what artificial groupings, separation of the informa-
tion into discrete divisions can be useful for various
reasons: e.g., it facilitates fast, specific searches by
restricting queries to particular database subsets;
and it allows searches to be directed to the higher
quality annotated sequence sections, avoiding
contamination of results with lower quality high-
throughput data.

Information can be retrieved from GenBank using
NCBI'’s Entrez retrieval system, which combines data
from DNA and protein sequence databases with,
for example, genome mapping, phylogenetic, gene
expression, and protein structure information. It
also gives access to MEDLINE, whose citations and
abstracts are the primary component of the National
Library of Medicine’s PubMed database. This integ-
rated system, with its direct links to the literature and
additional sequence sources, adds enormously to
GenBank’s richness as a biological data repository.
In addition to text-based interrogation, GenBank may
also be searched with query sequences using NCBI's
Web interface to the BLAST suite of programs.

A GenBank release includes the sequence files,
indices created on different database fields (e.g.,
author, reference), and information derived from
the database (e.g., GenPept, a repository of trans-
lated CDSs in FASTA format). For convenience, the
data were once released on CD-ROM, but as the
release grew, the number of CDs required to contain
it became unwieldy. Thus, today, GenBank is avail-
able solely via FTP.

5.3.4 The structure of GenBank entries

Of the files distributed in each release, the most com-
monly used is probably the sequence file, containing

Information resources for genes and proteins ® 85

Lacus HUMPRPOA 2420 bp mANR linear
DEFINITION Human prion protein 27-30 mRNA, complete cds.
ACCESSION M13667
VERS IO M131667.1 GI:150486%
KEYHORDS amyloid; pricr protein; sialoglycopratein.
SOURCE Human, cDNA to mRNA, clones lambda [3.6,7)

ORCANISM Home sapiens Sukaryota, Metazga; Chordata: Craniata

ammalia; Eutheria; Primates; Catarrhini,; Hominidae;

REFERENCE 1 ibases 1 to 2420}

AUTHORS Liao,¥.C., Lebo R V., Clawson.G A. and Smuckler B.A.

TITLE
implicatioas

Human prion proctein cDNA

malecular cloning,

SOURNAL gcience 233 (4761), J64-367 (1388)
MEDLINE 86261773
PIEMED 30146583
COMMENT
FEATURES Location/Qualifiers
soures 1..2420
forganism="Homo sapiens"
fdb_xrefz"taxon:960&"
genes 1..2a20
/genes="BRNP"
mANA <1..24920

/gene="PREE"

/product ="Prp mRNA"
cos 77..814

/gene="PRNP"

/note="pricon protein®

fcodon_start=1

/protein_id="AAR1SE54.

fdb_xref-"GI:190470"

1

Verrebrata;
Homo

chromosamal mapping

PRI 12-JUL-1994

Zurelaostomi

and biglagical

A single prion protein gene is found on chromcsome 20 per haploid genome.

/rranslarion="MLVLFVATWSDLGLCKKR PKPGGWNTGGSRY PGOGSEGCNRY PR
QGOGOWE] PHGECHSQ PHOGGWAY FHOGGWGD PROGEHGOGGCTHSONN KPS KO KTNM
KHMAGAAAGAVVGCLOCYMLOSAMSRE [THFCSDYEORY YRENMHRY PNOVYYRPMDE
¥SNQNNFVHOCYN [TIKQHTVTI TTTKGENFTETDVAMMERVVEQMCITQYERESQAYY
GRGSSMVLFSSPPVILLISFLIFLIVGY

BASE COUNT
QRIGIN

BES a 500 ¢ 583 g
171 bp upstream of Smal site;
1 cgagrageca aggrhogooca taatgacoge
61 gogoogoggo bgotggatge rggrkorcke
121 caagaagege cogaagectg gaggatggaa

2341 rgcoargLLot EgLLTCghta Latadaaaaia

BE8 T

chromosore 20.

coioggiogt gaggagagaa
tgrggccaca £ggagrgact
CACEgggggc agccgatace

tLgtasargt ttaatarctg

Fig. 5.1 Example GenBank entry for
the human prion protein, illustrating

gaagrrocgog

Cagonctene the use of keywords, sub-keywords,
£9999c2a99 and the Feature Table. For convenience,
actgazatta the nucleotide sequence has been

2441 aacgagccaa gatgagoacs
i

the sequence itself and associated annotation. Many
Web systems link to this file, so it is instructive to
examine its structure in some detail.

Each entry consists of a number of keywords, asso-
ciated sub-keywords, and an optional Feature Table.
In Fig. 5.1, the keywords are LOCUS, DEFINI-
TION, ACCESSION, VERSION, KEYWORDS, SOURCE,
REFERENCE, COMMENT, FEATURES, BASE COUNT,
and ORIGIN. The LOCUS keyword introduces a
short label for the entry (here, HUMPRPOA); this
line summarizes other relevant facts, including the
number of bases, source of sequence data (mRNA),
section of database (PRI), and date of submission.
The DEFINITION line contains a concise descrip-
tion of the sequence (in this example, human prion
protein).

Following this, the ACCESSION line gives the
accession number, a unique, constant code assigned
to each entry (here M13667), and the associated
VERSION line indicates the version of any sequence
revisions. This line also includes a nucleotide iden-
tifier (GI:1904.69), intended to provide a unique refer-

86 ® Chapter5

abbreviated (. ..).

ence to the current version of the sequence informa-
tion; this allows the sequence to be revised while
still being associated with the same locus name and
accession number.

The KEYWORDS line introduces a list of short
phrases, assigned by the author, describing gene
products and other relevant information about
the entry (in this example, amyloid; prion protein;
sialoglycoprotein). The SOURCE record provides
information on the source from which the data
have been derived; the sub-keyword ORGANISM
illustrates the biological classification of the source
organism (Homo sapiens, Eukaryota, etc., as shown
in the figure). REFERENCE records indicate the por-
tion of sequence data to which the cited literature
refers; sub-keywords, AUTHORS, TITLE, and JOUR-
NAL, provide a structure for the citation; the MED-
LINE sub-keyword is a pointer to an online medical
literature information resource, which allows the
abstract of a given article to be viewed.

The COMMENT field is a free-text section that
allows any additional annotations to be added to the

entry (here, the copy number of the gene and its
chromosomal location are described). The FEA-
TURES keyword marks the Feature Table, whose
purpose is to describe the properties of the sequence
in detail, such as the gene name (PRNP), coordin-
ates of its coding sequence (77..814), and so on.
Within the Table, database cross-references are
made through the “/db_xref” qualifier (here, we see
links to a taxonomic database (taxon:9606) and to
its sequence translation in GenBank's peptide data-
base (GI:190470)). This example is not exhaustive,
but indicates the type of information that can be rep-
resented in the Feature Table.

The entry continues with the BASE COUNT re-
cord, which details the frequency of the different base
types in the sequence (here, 669A, 500C, 583G,
668T). The ORIGIN line notes, where possible, the
location of the first base of the sequence in the gen-
ome. The nucleotide sequence itself follows, and the
entry terminates with //.

5.3.5 dbEST

Expressed sequence tags (ESTs) are the product of
automated partial DNA sequencing on randomly
selected complementary DNA (cDNA) clones. ESTs
are an important research tool, as they can be used
to discover new genes, to map genes to particular
chromosomes, and to identify coding regions in
genomic sequences. This fast approach to cDNA
characterization has been particularly valuable for
tagging human genes (at a fraction of the cost of
complete genomic sequencing) and for providing
new genetic markers.

Given their importance as a biological resource
and research tool, a significant portion of GenBank
is devoted to the storage of ESTs — its EST division
is termed dbEST (Boguski, Lowe, and Tolstoshev
1993). In February 2004, dbEST contained more
than 20 million sequences from more than 580
different organisms; the top five organisms repres-
ented in the database were H. sapiens (~5.5 mil-
lion records), M. musculus (~4.0 million records),
R. norvegicus (580,000 records), Triticum aestivum
(500,000 records), and Ciona intestinalis (490,000
records). The 20 most abundant organisms, in terms

Table 5.2 Top 20 organisms in dbEST in January 2004.

Organism

of their contributions to dbEST in January 2004, are
listed in Table 5.2.

One of the drawbacks of the increasing levels
of automation demanded by high-throughput
sequencing approaches is the tendency to generate
errors. In fact, errors are a serious problem in all
databases, not least because once they find their way
into a resource, they tend to propagate — and the
more popular the database, the more widespread the
propagation!

A notable example of the incorporation of errors
into dbEST occurred between August 1996 and
February 1997, when it was discovered that up to
1.5% of 892,075 ESTs submitted by Washington
University Genome Sequencing Center were mis-
labeled as to species origin. More than 100 96-well
plates were found in which cDNAs from both mouse
and human were present or that contained cDNAs
incorrectly labeled as human or mouse. As a result,
ESTs generated from these plates were tagged with
a warning, and a further 657 apparently incor-
rectly labeled reads from eight plates were removed

Information resources for genes and proteins ® 87

completely. This was an important reminder of the
pitfalls of automation, and sequence validation soft-
ware was subsequently implemented to minimize
the possibility of future errors of this type.

5.3.6 DDBJ

The DNA Data Bank of Japan (Miyazaki et al. 2004)
began in 1986 at the National Institute of Genetics
(NIG) in Mishima. DDBJ functions as part of the
INSD and receives its principal input from a variety
of sequencing centers, but especially from the inter-
national human genome sequencing consortium.
The database is thus growing rapidly — the number
of entries processed in 1999 alone exceeded the total
number processed in the preceding 10 years, and the
database doubled in size between July 2000 and July
2001! To cope with the deluge, the curators use in-
house software for mass sequence submission and
data processing, which helps both to improve con-
sistency and to reduce the proliferation of errors.
The Web is also used to provide standard search
tools, such asFASTA and BLAST.

In February 2004, DDBJ held 30,405,173 entries
(36,079,046,032 bases). To better manage its in-
creasing size, the database has been organized into
species-oriented divisions, which facilitate more
efficient, species-specific information retrieval. In
addition, the database includes an independent divi-
sion for the patent data collected and processed by
the Japanese Patent Office, the USPTO, and the EPO.

Finally, just as translations of CDSs in EMBL
are automatically added to TrEMBL, from which
curators then create Swiss-Prot entries, so transla-
tions of DDBJ are automatically added to the Japan
International Protein Information Database (JIPID),
which in turn feeds the International PIR-PSD (see
Section 5.4).

5.3.7 The INSD

Sequence data are being generated on such a mas-
sive scale that it is impossible for individual groups to
collate them. As a consequence, in February 1986,
EMBL and GenBank, together with DDBJ in 1987,
joined forces to streamline and standardize the pro-

88 @ Chapter5

EMBL
EBI, Europe

GenBank
NCBI, USA

Fig. 5.2 The tripartite International Nucleotide Sequence
Database (INSD), comprising EMBL (Europe), GenBank
(USA), and DDB]J (Japan).

cesses of data collection and annotation. Each now
collects a portion of the total sequence data reported
world-wide and, to achieve optimal synchronization,
new and updated entries are exchanged between
them daily via the Internet.

The result of this tripartite collaboration is the
International Nucleotide Sequence Database (INSD)
(Fig. 5.2). This ensures that the participating data-
banks share virtually the same quantity and quality
of data, and means that users need only submit to
one of the resources to have their sequence reflected
in all of the others. The databases, which primarily
collect data via direct submission from individual
laboratories and large-scale sequencing projects,
now incorporate DNA sequences from over 150,000
different organisms, and new species are being
added at a rate of more than 1400 per month.

As we have seen, within each of the databases, to
add value to the raw data, characteristics of the
sequences are stored in Feature Tables. To improve
data consistency and reliability, and to facilitate
interoperation and data exchange, a major goal of
the INSD was therefore to devise a common Feature
Table format and common standards for annotation
practice. The types of feature documented in the
common format include regions that: perform par-
ticular functions; affect the expression of function or
the replication of a sequence; interact with other
molecules; have secondary or tertiary structure;
and so on. Regulating the content, vocabulary, and
syntax of such feature descriptions ensures that the
data are released in a form that can be exchanged

efficiently and that is readily accessible to analysis
software.

5.4 PROTEIN SEQUENCE DATABASES
5.4.1 History

As we have seen from the above discussions, as soon
as sequences began to emerge from applications of
the earliest sequencing methods, scientists began to
collect and analyze them. In fact, the first published
collection of sequences was Margaret Dayhoff’s
1965 Atlas of Protein Sequence and Structure (Dayhoff
1965). By 1981, the Atlas listed 1660 proteins, but
this was a “database” in paper form only, and scient-
ists wishing to use the information had to type the
data into computers by hand. Burdensome though
this task was, two important databanks evolved
from this approach.

In 1984, Dayhoff’s Atlas was released electro-
nically, changing its name to the Protein Sequ-
ence Database (PSD) of the Protein Identification
Resource (PIR). The first release contained 859
entries; by June 2002, the collection had grown
more than 300-fold to almost 300,000 entries. To
cope with this vast expansion and ease its mainten-
ance, a collaboration was formed between PIR, the
Munich Information Center for Protein Sequences
(MIPS), and JIPID. The resulting PIR-International
PSD is now one of the most comprehensive compen-
dia of sequences publicly available, drawing its data
from many sources, including sequencing centers,
the literature, and directly from authors.

During this period, Amos Bairoch had begun to
establish an archive of protein sequences, initially
based on Dayhoff’s Atlas and later on its electronic
version. EMBL had become available in 1982, and
Bairoch obtained a version in 1983 containing 811
sequences. His innovation was to couple the struc-
tured format of EMBL entries (Section 5.3.2) with
sequences from the PIR-PSD. This painstaking
endeavor eventually gave rise to the first public
release of Swiss-Prot in 1986, which contained
over 4,000 sequences; by February 2004, a 36-fold
increase in size saw that number rise to over
143,790.

In the following sections, we will briefly review
some of these resources and, because it is based
closely on the structure of EMBL, we will take a
closer look at the format of a typical Swiss-Prot
entry.

5.4.2 PIR

The Protein Sequence Database was developed
at the National Biomedical Research Foundation
(NBRF) in the 1960s, as mentioned above, essenti-
ally as a byproduct of Dayhoff’s studies on protein
evolution. Since 1988, the PSD has been maintained
collaboratively by PIR-International, an association
of macromolecular sequence data collection centers
that includes PIR, JIPID, and MIPS.

More recently, PIR-PSD (Wu et al. 2003) has been
incorporated into an integrated knowledge base of
databases and analytical tools: this includes PIR-
NREF, a comprehensive database for sequence
searching and protein identification — by Febru-
ary 2004, PIR-NREF contained 1,485,025 non-
redundant sequences from PIR-PSD, Swiss-Prot,
TrEMBL, RefSeq, GenPept, and PDB. An interesting
feature of PIR-PSD is its emphasis on protein family
classification, a reflection of its origins in Dayhoff’s
evolutionary work. The database is thus organ-
ized hierarchically around this family concept, its
constituent proteins being automatically clustered
based on sequence similarity. Within superfamilies,
sequences have similar overall length and share a
common architecture (i.e., contain the same num-
ber, order, and types of domain). The automated
classification system, which places new members
into existing superfamilies, and defines new clusters
using parameters such as sequence identity, overlap
length, and domain arrangement, is augmented by
manual annotation — this provides superfamily
names, brief descriptions, bibliographies, lists of
representative and seed members, and domain and
motif architectures characteristic of the superfamily.

Linking sequences to experimentally verified data
in the literature helps both to improve the qual-
ity of annotation provided by the database and
to avoid propagation of errors that may have re-
sulted from large-scale genome-sequencing projects.

Information resources for genes and proteins ® 89

Accordingly, a bibliography submission system has
been developed to help the scientific community to
submit, categorize, and retrieve literature for PSD
entries. This, and many other tools for database
interrogation, data mining and sequence analysis, is
provided via the PIR Web site.

5.4.3 MIPS

The Munich Information Center for Protein Sequ-
ences (MIPS) supports national and European sequ-
encing and functional analysis projects, develops
and maintains genome-specific databases (e.g., for
Arabidopsis thaliana, Neurospora crassa, yeast), de-
velops classification schemes for protein sequence
annotation, and provides tools for sequence analysis
(Mewes et al. 2002). One of its central activities is to
collect and process sequence data for the tripartite
PIR-International PSD.

As with PIR, a feature of the database is its auto-
matic clustering of proteins into families and super-
families based on sequence similarity. For family
classification, an arbitrary cut-off of 50% identity is
used — this means that resulting “families” need not
necessarily have strict biological significance. Regions
of local similarity within otherwise unrelated pro-
teins are annotated as domains. Clusters (whether at
family, superfamily, or domain level) are annotated
(e.g., with protein names, EC numbers, or keywords),
and are accompanied by their alignments, which
are also annotated (e.g., with domains, sequence
motifs, active sites, post-translational modifications
(PTMs)). All of these resources, and a variety of ana-
lysis tools, are accessible via the MIPS Web server.

5.4.4 Swiss-Prot

From its inception in 1986, Swiss-Prot was pro-
duced collaboratively by the Department of Medical
Biochemistry at the University of Geneva and the
EMBL. After 1994, the database transferred to the
EMBL’s UK outstation, the EBI, and April 1998 saw
further change with a move to the Swiss Institute of
Bioinformatics (SIB). The database is thus now
maintained collaboratively by the SIB and the EBI
(Boeckmann et al. 2003).

90 @ Chapter5

Sequence information is housed in Swiss-Prot in
a structured manner, adhering closely to the EMBL
format. The most important features of the resource
lie in the minimal level of redundancy it contains,
the level of cross-referencing to other databases,
and the quality of its annotations. In addition to
the sequence itself, the annotations include biblio-
graphic references and taxonomic data, and, wher-
ever possible, the function of the protein, PTMs,
domain structure, functional sites, associated dis-
eases, similarities to other proteins, and so on. Much
of this information is gleaned from the primary lit-
erature and review articles, but use is also made of
a panel of experts who have particular knowledge
of specific families.

A great deal of useful information about the char-
acteristics of the sequence is held in the Feature
Table. This includes details of any known or pre-
dicted transmembrane domains, glycosylation or
phosphorylation sites, metal or ligand-binding sites,
enzyme active sites, internal repeats, DNA-binding
or protein—protein interaction domains, and so on.
Specially written browsers allow this information to
be viewed graphically, yielding a bird’s-eye view of
the most important sequence features.

Swiss-Prot offers added value by providing links
to over 30 different databases, including those that
store nucleic acid or protein sequences, protein
families or structures, and specialized data collec-
tions. As illustrated in Fig. 5.3, it is therefore poss-
ible, say, to retrieve the nucleic acid sequence
(EMBL) that codes for a protein, information on
associated genetic diseases (OMIM), information
specific to the protein family to which it belongs
(PROSITE, PRINTS, InterPro), and its 3D structure
(PDB). Swiss-Prot thus provides a hub for data-
base interconnectivity. The extent of its annotations
sets Swiss-Prot apart from other protein sequence
resources and has made it the database of choice
for most research purposes. By February 2004, the
database contained 143,790 entries.

5.4.5 The structure of Swiss-Prot entries

An example Swiss-Prot entry is shown in Fig. 5.3.
As with EMBL, each line is flagged with a two-letter

D PRIO_HUMAN STANDARD; PRT; 253 AA.

aC PQ4156;

oT 01-NOV-1986 {(Rel. 03, Created)

DT 0l-NOV-1986 (Rel 903, Last sequence update)}

oT 15-JUN-2002 (Rel. 41, Last annotation update}

DE Major prion protein precursor (Prp} (PrP27-30) (PrP33-35C) (ASCR) (CD230 antigen) .
GHM PRNP .

oS Home sapiens {Human) .

ocC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
oC Mammalia; Eutheria; Primates: Catarrhinl; Hominldae; Homo,

OX NCBI_TaxID=9%606;

RN 1]

RP SEQUENCE FROM N.A.

RX MEDLINE=86300093; PubMed=1755672; [NCBI, ExPASy, EBI, Israel, Japan)
RE Kretzschmar H.A., Stowring L.E., Westaway D., Stubblebine wW.H.

RA Prusiner 5.B., Dearmond S . J.;

RT "Molecular cloning of a human prion protein cDNA.";

RL DMNA 5:315-324 (1988) .

cC -1- FUNCTION: THE FUNCTION OF PRP IS NOT XKNOWN. PRP 1S ENCODED IN THE HOST GENCME AND IS
cc EXPRESSED BOTH IN NORMAL AND INFECTED CELLS.

cc -!- SUBUNIT: PRP HAS A TENDENCY TO AGGREGATE YIELDING PQLYMERS CALLED "RODS".

cc -!- SUBCELLULAR LOCATION: Attached to the membrane by a GPI-anchor.

cC -f- PQLYMORPHISM: THE FIVE TANDEM QCTAPEPTIDE REPEATS RECGION IS HIGHLY UNSTABLE. INSERTIONS CC
QR DELETIONS QOF OCTAPEPTIDE REPEAT UNITS ARE ASSOCIATED TO PRION DISEASE.

cC -!'- DISEASE: PRP IS FOUND IN HIGH QUANTITY IN THE BRAIN OF HUMANS AND ANIMALS INFECTED WITH CC
NEURODEGENERATIVE DISEASES KNOWN AS TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES OR PRION

cC DISEASES, LIKE: CREUTZFELDT-JRKOB DISEASE (CJD), GERSTMANN-STRAUSSLER SYNDROME (GSS)

cc FATAL FAMILIAL INSOMNIA (FFI} AND KURU IN HUMANS; SCRAPIE IN SHEEP AND GOAT; BOVINE

ce SPONGIFORM ENCEPHALOPATHY (BSEB) IN CATTLE; TRANSMISSIBLE MINK ENCEPHALOPATHY (TME);

cc CHRONIC WASTING DISEASE (CWD) OF MULE DEER AND ELK; FELINE SPONGIFORM ENCEPHALOPATHY

cc (FSE} I¥ CATS AND EXOTIC UNGULATE ENCEPHALOPATHY (EUE] IN NYALAR AND GREATER KUDU. THE

folod PRION DISEASES ILLUSTRATE THREE MANIFESTATIONS OF CNS DEGEMNERATICN: (1) INFECTIQUS (2)

cc SPORADIC AND (3) DOMINANTLY INHERITED FORMS. TME, CWD, BSE, FSE, EUE ARE ALL THOUGHT TD CC
OCCUR AFTER CONSUMPTION OF PRION-INFECTED FOODSTUFFS.

DR EMBL; Ml3667; AAAL9662.1; -. [EMBL / GenBank / DDBJ] (CoDingSequence]

DR PIR,; S14078; S51la078

DR PDB; 1QM3; 16-DEC-95. [ExPASY / RCSB}
DR Ensembl: P04lSE.

DR MIM; 606688; -. [NCBI / EBI]

DR InterPro; I[PROOOBLY; Prion.

DR pfam; PF00377; prien; 1.

DR PRINTS; PRO0J41; PRION.

DR PROSITE: PS00291; PRION_1; 1.

DR PROSITE; PS0070&; PRION_2; 1.

DR proDom [Domain structure / List of seq. sharing at least 1 domain]
BR BLOCKS; P0415s.

KW Prion; Brain; Glycoprotein; GPI-anchor; Repeat; 3D-structure; Palymorphism; Disease mutarion.
FT 5 1GNAL 1 22

FT CHAIN 23 230 MAJOR PRION PROTEIN.

FT PROPEP 231 253 REMOVED IN MATURE FORM (BY SIMILARITY).
FT LIPID 230 230 GPI-ANCHOR (BY SIMILARITY).

FT CARBOHYD 181 181 N-LINKED (GLCNAC...} (PROBABLE].

FT CARBOHYD 197 197 N-LINKED (GLCNAC...)} (PROBABLE).

FT DISULFID 175 214

FT DOMAIN S1 $1 5 X 8 AA TANDEM REPEATS OF P-H-G-G-G-W-G-C.
FT REPEAT 51 59 1.

FT REPEAT 60 67 2.

FT REFEAT €8 75 3.

FT REPEAT 76 83 4

FT REPEAT 84 91 5.

FT VARIANT 102 102 P -» L (IN GSS AND EOAD) .

FT /FTIA=VAR_006464

BT VARLANT 238 238 P -» 5.

FT /PTId=VAR_0C8754.

FT CONFLICT 118 118 MISSING (IN REF. 3}.

5Q SEQUENCE 253 AA; 27661 MW; 41DBS96BARAE64R4 CRCE4;
MANLGCWMLY LEFVATWSDLG LCKKRPKPGG WNTGGSRYFG QGSPGGNRYP PQGGEGWGQP
HGGAGWGOPHG GGWEOFHGGG WOQPHUGCGWG QGGGTHSQOWN KPSKPKTNMK HMAGAAAAGH
VVGGLGGYML GSAMSRPIIH FGSDYEDRYY RENMHRYPNQ VYYRPMDEYS NQNNFVHDCY
NITIKQHTVYT TTTKGENFTE TDVKMMERVYV EQMCITQYER ESQAYYQRGS SMVLFSSPRPV
ILLISFLIFL IVG

/

Fig. 5.3 Excerpt from the Swiss-Prot entry for the human prion protein, illustrating the EMBL-like structured format,
with extensive annotations and database cross-references (note: dotted lines denote points at which, for convenience,
material has been excised). Compare the GenBank entry for human prion protein illustrated in Fig. 5.1. The characteristic
tandem octapeptide-repeat region thought to be associated with various prion diseases has been highlighted in bold.

code. The first is an identification (ID) line, and the
last a // terminator. The ID codes, which attempt to
be informative and people-friendly, take the form
PROTEIN_ SOURCE, where PROTEIN is an acronym
that denotes the type of protein, and SOURCE
encodes the organism name. The protein in this
example, PRIO_HUMAN, is clearly of human origin
and, with the eye of experience, we can deduce that
itis a prion protein.

Unfortunately, ID codes are not fixed, so an addi-
tional identifier, an accession number, is also pro-
vided, which should remain static between database
releases. The accession number is provided on the
AC line, here P0O4156, which, although meaning-
less to most normal humans, is nevertheless com-
puter readable (some database curators also have
a disturbing capacity to be able to read accession
numbers!). If several numbers appear on the same
AC line, the first, so-called primary accession num-
ber, is the most current.

Next, the DT lines provide information about the
date of entry of the sequence to the database, and
details of when it was last modified. The description
(DE) line, or lines, then informs us of the name, or
names, by which the protein is known — here Major
prion protein precursor (PrP), PrP27-30, PrP33-
35C, ASCR and CD230 antigen. The following lines
give the gene name (GN), the organism species (0S),
and organism classification (OC) within the biolo-
gical kingdoms.

The next part of the file provides a list of refer-
ences: these can be from the literature, unpublished
information submitted directly from sequencing pro-
jects, data from structural or mutagenesis studies,
and so on. The database thus houses information
that is difficult, or impossible, to find elsewhere. For
human prion protein, 30 references are provided,
but for convenience, only one of these is shown in
Fig. 5.3.

Following the references are found comment (CC)
lines. These are divided into themes describing the
FUNCTION of the protein, its SUBUNIT structure,
SUBCELLULAR LOCATION, DISEASE associations,
and so on. Where such information is available, the
CC lines also indicate any known SIMILARITY or
relationship with particular protein families. In this

92 @ Chapter5

example, we see that the function of the prion pro-
tein is unknown, it tends to polymerize into rod-
shaped fibrils, and its sequence is characterized by
tandem octapeptide repeats that are believed to be
associated with various degenerative diseases.

Database cross-reference (DR) lines follow the
comment field. These provide links to other re-
sources, including for example, the primary DNA
repositories, protein family databases, and specialist
databases. For human prion protein, we find links to
nucleotide and protein sequence databases (EMBL,
PIR), to the protein structure databank (PDB), to
the online Mendelian Inheritance in Man (MIM)
mutation database, and to the InterPro, PRINTS,
Pfam, PROSITE, etc., family resources.

Directly after the DR lines, keywords (KW) are
listed, followed by the Feature Table (FT). The latter
highlights regions of interest in the sequence, in-
cluding signal sequences, lipid attachment sites,
disulfide bridges, repeats, known sequence vari-
ants, and so on. Each line includes a key (e.g.,
REPEAT), the location in the sequence of the feature
(e.g., 51-59), and a comment, which might, for
example, indicate the level of confidence of a particu-
lar annotation. For the prion example, the lipid
attachment site is flagged BY SIMILARITY, indicat-
ing that the assignment has been made in silico
rather than in vitro and must therefore be viewed as
an unverified prediction.

The final section of the file includes the sequence
itself (SQ), encoded for the sake of efficiency using
the single-letter amino acid code. The stored sequ-
ence data correspond to the precursor form of the
protein, before post-translational processing — thus
information concerning the size or molecular weight
will not necessarily correspond to values for the
mature protein. The extent of mature proteins or
peptides may be deduced from the Feature Table,
which indicates regions of a sequence that corres-
pond to the signal (SIGNAL), transit (TRANSIT),
or pro-peptide (PROPEP). The keys CHAIN and
PEPTIDE are used to denote the location of the
mature form.

The above is not an exhaustive example, but
should provide a flavor of the richness of Swiss-Prot
annotations. For a more comprehensive guide to the

type of information typically included in the data-
base, and for details of the differences between the
Swiss-Prot and EMBL formats, readers are referred
to Appendix C of the Swiss-Prot user manual avail-
able on the ExPASy Web server.

5.4.6 TrEMBL

Owing to the extent of its annotations, Swiss-Prot
has become one of the most popular and widely used
databases. However, the price paid for its manual
approach is a relatively slow rate of growth (it is less
than half the size of PIR-PSD). Therefore, to increase
its sequence coverage, a computer-generated sup-
plement was introduced in 1996, TrEMBL, based
on translations of CDSs in EMBL (Boeckmann et
al. 2003). In February 2004, TrEMBL contained
1,075,779 entries.

TrEMBL has two main sections: (i) SP-TrEMBL
(Swiss-Prot-TrEMBL), which contains entries that
will eventually be incorporated into Swiss-Prot,
but have not yet been manually annotated (these
are given Swiss-Prot accession numbers); and (ii)
REM-TrEMBL (REMaining-TrEMBL), which con-
tains sequences that are not destined to be included

D Q46533
AL 046593;

PRELIMINARY ; PRT;

in Swiss-Prot — these include immunoglobulins
and T-cell receptors, fragments of fewer than eight
amino acids, synthetic sequences, patented se-
quences, and codon translations that do not encode
real proteins.

SP-TrEMBL is partially redundant, as many of
its entries are just additional reports of proteins
already in Swiss-Prot. To reduce redundancy, and
automatically add annotation, a rule-based system
has been designed that uses existing Swiss-Prot
entries as a template. This approach can only be
applied to sequences with obvious relatives in Swiss-
Prot (more sophisticated expert systems are required
to increase the coverage by automatic annotation);
nevertheless, it provides a basic level of information
that offers a stepping-stone for further information
retrieval.

TrEMBL shares the Swiss-Prot format described
above, and was designed to address the need for a
well-structured Swiss-Prot-like resource that would
allow rapid access to sequence data from genome
projects, without having to compromise the quality
of Swiss-Prot itself by incorporating sequences with
insufficient analysis and annotation. A typical
TrEMBL entry is illustrated in Fig. 5.4 — comparison

257 AA.

T 0l-JUN-1998 {TrEMBLrel. (6, Created}

DT 01-JUN-1998

(TrEMBLrel. 06. Last sequence update)

oT 01-DEC-2001 (TrEMBLrel. 19, Last annotation update)

DE Prion protein.

ON ERP-

ol Canis familiaris

(Dog) .

ac Eukaryota; Metazoa, Chordata; Craniata, Vertebrata; Euteleostomi;
QC Mammalia; Eutheria; Carnivora; Fissipedia; Canidae; Canis.

Ox NCBI_TaxID=9615;

RN 111

RE SEQUENCE FROM N.A.

RA Doyle D., Rogers M.S.;

RT "Dog prion protein gene.';

RL Submitted (JAN-1998) to the EMBL/GenBank/DDBJ databases.

DR EMBL; AF042843:

Fig. 5.4 Excerptfrom the TrEMBL DR
entry for the canine prion protein,

HS55¢F: P04925;

illustrating the EMBL-like structured DR Pfam; PFO0377;
format, with automatically generated DR PRINTS: PROG34L;
annotations and database cross- OR

references — there are no annotation-

rich CC or FT fields (note: dotted lines S0 SEQUENCE

denote points at which several DR

lines have been excised). Compare the
Swiss-Prot entry for human prion

protein illustrated in Fig. 5.3. 1

1hG2Z.
DR InterPro; IPROOQAL7; Prion.

DR InterPro; Graphical view of domain structuxe.
prion; 1.

257 AA;
MVKSHIGCWI LLLFVATWSD VGLCKKRPKP GQOWNTGGGSR YPGQGSPOGN RYPPQGCCCW
GQPHGGGWGQ PHGGOWGQPH GGGWGQPHGG GOWGQGGGSH SQWGKPNKPK THMKHVAGAA
AAGAVVGGLG GYMLGSAMSR PLIHEGNDYE DRYYRENMYR YPEQVYYRPY DQYSHONNFVY
RDCVNITVKQ HTVTTTTKGE NFTETDMKIM ERVVEQMCVT QYQKESEAYY QRGASAILFS
PEPVILLISL LILLIVG

AABS%743 .1: -. [EMBL / GenBank / DDBJI

[HSSP ENTRY / SWISS-IDIMAGE / PDA]

[CoDingSequencel

PRION.

DR PROSITE; PS0O0291: PRION_1: 1.
PROSITE; PS007Q6; PRION_2; 1.
DR ProDom [Domain structure / List of seg. sharing at least 1 demain)

27793 MW; DAaEA77764519676C CRCGS

Information resources for genes and proteins ® 93

with the (truncated) Swiss-Prot entry shown in Fig.
5.3 highlights the difference in the extent of anno-
tation provided by each of the resources. Note that
there is no comment (CC) field and no Feature Table,
the hallmarks of richly annotated Swiss-Prot entries.
As shown, the bulk of the automatically added
annotation is largely in the form of bibliographic
and database cross-references.

5.4.7 PIR-NRL3D

NRL3D (Garavelli et al. 2001) is produced by
PIR-International from sequences and annotations

ENTRY 2PRP

#rype complete
TITLE prion protein 90 231 - golden hamster
ALTERNATE NBMES sha rprp$0-231

extracted from 3D structures deposited in the Protein
Databank (PDB). The titles, biological sources, and
keywords of its entries have been modified from the
PDB format to conform to the nomenclature stan-
dards used in the other PIR databases. Bibliographic
references and MEDLINE cross-references are in-
cluded, together with secondary structure, active
site, binding site, and modified site annotations and,
whenever possible, details of experimental methods,
resolution, R-factor, etc.

The format of a typical PIR-NRL3D entry is illus-
trated in Fig. 5.5. The example shows the sequence,
together with relevant literature references and

PDB_TITLE solution WMR structure of recombinant syrian hamster prion protein rprpi{90-231}%,

15 structures
ORGANISM
#formal _name Mesocricetus auratus
#common_name goldan hamscer
#cross-references taxon:10036

#note expressed ia E.coll, strain 27c7, ATCC:

REFERENCE AGBE53

fauthors James, T.L.; Liu, H.; Ulyanov, N.B.;

55244, genentech derived vector system

Farr-jones, §.

#submission submitted to the Brookhaven Protein Data Bank. October 1997

#cross-references PDB:2PRP
REFERENCE TNOS0S26

#authors James, T.L.: Liu, H.; Ulyanov, N.B.

Groth, D.; Mehlhorn, [.; Prusiner, S§.B.; Cohen,
#journal Proc. Natl. Acad. Sci. U.8.a. {1997)
#title Solukion structure of a l42-residue

infectious fragment of the scrapie iscform.
DETERMINATION NMR

#resolution not applicable
KEYWORDS brain; glycoprotein; prion; scrapile
FEATURES

55-87

fregion helix (right hand alpha}}l
85-104

Bregion helix (right hand alpha}\
111-137

#region helix (right hand alpha)\
40-42, 72-74
#region beta sheeth

90-125
fdisulfide bonds
SUMMARY
#length 142
#moleculary_weight 162421
SEQUENCE
g 10 15 20
IL3QGGGTHNQOQWNRKPSKPKTNMEHHM
IVAVVGEGLGGYMLGSAMSREPMMHTPEG
ELY RENMNRY PNQVYYRPVDOQYNNDZQ Q
SLVYVNITIKQHTVTTTTKGENTFTETD
IZLVEQMCTTQYQKESQAYYDGRRS

-z
mzoaY

30
AAALAG
WEDRY
FVHDC
IMERV

rarr-jones, $.; Zhang, H.; Dopnne, D.G.; Kaneko, K.;

F.E.

94 :10086

recompinant prion protein corresponding to the

Fig. 5.5 PIR-NRL3D entry for the hamster prion protein, showing the sequence, together with relevant bibliographic references
and structural annotations. Note that the sequence is truncated by comparison with those in the GenBank, Swiss-Prot, and

TrEMBL entries illustrated in Figs. 5.1, 5.3, and 5.4.

94 @ Chapter 5

structural annotations from PDB entry 2PRP. By
comparison with some of the other sequence data-
bases (e.g., as shown in Figs. 5.1, 5.3, and 5.4), the
extent of annotation is limited; nevertheless, it pro-
vides a direct link between sequence, structure,
experimental data, and the literature.

PIR-NRL3D is a valuable resource, as it makes
data in the PDB available both for keyword interro-
gation and for similarity searches. Sequence infor-
mation is extracted only for residues with resolved
3D coordinates (as represented in PDB “ATOM”
records) and not for those that are structurally
undefined. Accordingly, the sequence shown in
Fig. 5.5 represents a C-terminal fragment of the
prion protein, without the disordered N-terminal 90
residues, which contain the characteristic octapep-
tide repeat (cf. Figs. 5.1, 5.3, and 5.4).

5.4.8 UniProt

In an effort both to rationalize the currently available
protein sequence data and to create the ultimate,
comprehensive catalog of protein information, the
curators of Swiss-Prot, TrEMBL, and PIR have
recently pooled their efforts to build UniProt, the
Universal Protein Resource (Apweiler et al. 2004).
UniProt comprises three components, each of which
has been tailored for specific uses: the UniProt
Knowledgebase (UniProt) is the central point of
access for annotated protein information (including
function, classification, cross-references, and so on);
the UniProt Non-redundant Reference (UniRef)
databases combine closely related sequences into a

Table 5.3 Some of the major protein
family databases: in each case, the data
source is noted, together with the type

of data stored. PROSITE

Profiles
PRINTS

single record to speed searches; and the UniProt
Archive (UniParc) is a comprehensive repository
that accurately reflects the history of all protein
sequences. This unified endeavor, which brings
together the major protein sequence data providers,
is a significant achievement and should make sequ-
ence analysis, for all levels of user, far easier in the
future. UniProt is accessible via the EBI's Web inter-
face for text and similarity searches.

5.5 PROTEIN FAMILY DATABASES
5.5.1 Therole of protein family databases

In addition to the numerous sequence databases,
there are also many protein family databases (some-
times termed pattern or secondary databases) derived
from the fruits of analyses of the sequences in the
primary sources. Because there are several different
sources, and a variety of ways of analyzing sequ-
ences, the information housed in each of the family
databasesis different —and their formats reflect these
disparities. Although this appears to present a con-
fusing picture, Swiss-Prot and TrEMBL have become
the most popular data sources, and most family
databases now use them as their basis. Some of the
main resources are listed in Table 5.3.

From inspection of Table 5.3, it is evident that the
type of information stored in each of the family
databases is different. Nevertheless, these resources
have arisen from a common principle: namely, that
homologous sequences may be gathered together in
multiple alignments, within which are conserved

® 95

Information resources for genes and proteins

Single-motif
methods

Fuzzy regex
(eMOTIF)

I

Exact regex

(PROSITE)
=
N - L -
Identity matrices
(PRINTS)
Weight matrices Multiple-motif
(Blocks) methods

regions that show little or no variation (Fig. 5.6).
Such regions, or motifs (Attwood 1997), usually
reflect some vital biological role (i.e., are somehow
crucial to the structure or function of the protein).

Alignments have been exploited in various ways
to build diagnostic signatures, or discriminators, for
different protein families, as illustrated in Fig. 5.6
(Attwood 2000a,b, Attwood and Parry-Smith
1999). An unknown query sequence may then be
searched against a database of such signatures to
determine whether it contains any of the prede-
fined characteristics, and hence whether it can be
assigned to a particular family. As these resources
are derived from multiple sequence information,
searches of them are often better able to identify dis-
tant relationships than are searches of sequence
databases; and, if the structure and function of the
family are known, they theoretically offer a fast
track to the inference of biological function.
However, none of these databases is complete; they
should therefore be used to augment rather than to
replace sequence database searches. Some of the
major family databases in common use are outlined
in the following sections.

96 ® Chapter5s

Full-domain

alignment methods

Profiles
(Profile Library)

HMMs
(Pfam)

Fig. 5.6 Illustration of the three
principal methods for building family
databases, based on the use of single
motifs, multiple motifs, and full-domain
alignments.

5.5.2 PROSITE

The first protein family database to have been de-
veloped was PROSITE, in 1989, with 202 entries. It
is maintained collaboratively at the University of
Geneva and the Swiss Institute for Experimental
Cancer Research (ISREC) (Hulo et al. 2004). In
February 2004, it documented 1245 families,
domains, and functional sites. The rationale behind
its development was that a protein family could be
characterized by the single most conserved motif
within a multiple alignment of its member sequ-
ences, as this would likely encode a key biological
feature (e.g., an enzyme active site, ligand- or metal-
binding site). Searching a database of such features
should therefore help to determine to which family
a new sequence might belong, or which domain/s
or functional site/s it might contain.

Within PROSITE, motifs are encoded as regular
expressions (or regexs), often referred to as patterns.
Sometimes, a complete protein family cannot be
characterized by a single motif, usually because
its members are too divergent. In these cases,
additional regexs are designed to encode other well-

1D PRION_1; PATTERN.

AC P500291;

DT APR-1990 (CREATED}; DEC-1992 [DATA UPDATE); JUL-1958 (INFO UPDATE).
DE Prion protein signature 1.

PA A-G-A-A-A-A-G-A-V-V-G-G-L-G-G-Y.

NR /RELEASE=40.7,103373;

NR /TOTAL=44 {44) ; /POSITIVE=44{44); /UNKNOWN=0(0}, /FALSE POS=0(0)},

NR /FALSE_NEG=0;

/PARTIAL=0;

cC /TAXO-RANGE=??E??; /MAX-REPEAT=1;

DR P40245, PRIO_AQTTR, T; Pa0246, PRIO_ATEGE, T; PS144&, PRIO ATEPA, T;
OR PLO279, PRIO_BOVIN, T; P40247, PRIO_CALJA, T; P40246, PRIO CALMO, T;
DR P79141l, PRIO_CAMDR, T; ©46501, PRIO_CANFA, T; PS52Z113, PRIO_CAPHI, T;
DR P40249, PRIO_CEBAP, T; P40250, PRIO CERAE, T; Q25145, PRIO_CERAT, T;
DR P75142, PRIO_CEREL, T; QS5172, PRIO_CERMO, T, Q95174, PRIO_CERPh, T;
DR Q95176, PRIO_CERTO, T; P27177, PRIO_CHICK, T; B40251, PRIO COLGU, T;
DR Q60506. PRIO_CRIGR, T; Q60468, PRIO_CRIMI, T; 018754, PRIC_FELCA, T,
DR P40252, PRIO_GORGO, T; PO4L56, PRIO _HUMAN, T; P40254, PRIC MACFA, T,
DR P40255, PRIQ_MANSP, T; B04273, PRIO_MESAU, T; P04%25, PRIO_MOUSE, T,
DR P52114, PRIC_MUSPF, T; P4J244, PRIO_MUSVI, T; P47852, PRIC_ODOHE, T,
DR Pa025), PRIC_PANTR, T; P49927, DRIO_PIG T; P40256, PRIO DPONPY, T;
DR P40257, DRIO_PREFR, T; Q95211, BRIC_RABIT, T; PL38S2, PRIO RAT , T;
DR P40258, PRIO_SAISC, T; P23907, PRIO_SHEEP, T Q9Z0T1, PRIQ_SIGHI, T,
DR G95270, PRIO_THEGE, T: PS51780, BRIC_TRIVU, T; P40242, PRPL_TRAST, T;

Fig. 5.7 Example PROSITE entry, DR QO}BBO. PRP2_BOVIN, T; Pa0243, PRPZ_TRAST, T;

) § I 1DKO; 1DXL: LQLX; 1QLZ; 10MO; 1QML; 1B10;
showing one of two data files for the DO POOCO0263;
prion protein family. /7

conserved parts of the alignment. When a set of
regexs is achieved that is capable of capturing all, or
most, of the characterized family from a given ver-
sion of Swiss-Prot, without matching too many, or
any, false positives, the results are manually anno-
tated prior to deposition in PROSITE.

Entries are deposited in PROSITE in two distinct
files. The first of these houses the regex and lists
all matches in the parent version of Swiss-Prot; as
shown in Fig. 5.7, the data are structured in a man-
ner reminiscent of Swiss-Prot entries, where each
field relates to a specific type of information.

Each entry contains both an identifier (ID), which
is usually some sort of acronym for the family (here,
PRION_1, indicating that more than one regex has
been derived), and a unique accession number
(AC), which takes the form PSO0000. The ID line
also indicates the type of discriminator to expect
in the file —the word PATTERN here tells us to expect
a regular expression. A title, or description of the
family, is contained in the DE line, and the regex
itself resides on PA lines. The following NR lines
provide technical details about the derivation and
diagnostic performance of the regex (for this rea-
son, they are probably the most important lines to
inspect when first viewing a PROSITE entry — large
numbers of false-positive and false-negative results
are indicative of a poorly performing regex). In the

example shown in Fig. 5.7, we learn that the regex
was derived from release 40.7 of Swiss-Prot, which
contained 103,373 sequences; it matched a total
of 44 sequences, all of which are true-positives — in
other words, this is a good regex, with no false
matches.

The comment (CC) lines provide information on
the taxonomic range of the family (defined here as
eukaryotes), and the maximum number of observed
repeats of the pattern (here just one). Following
the comments are lists of the accession numbers
and Swiss-Prot ID codes of all the true matches to
the regex (denoted by T), and any “possible”
matches (denoted by P), which are often fragments,
of which there are none in this example. There are
no false-positive or false-negative matches here, but
when these do occur, they are listed after the T and
P matches and are denoted by the letters F and
N, respectively (the number of false and missed
matchesis also documented in the NR lines).

Where structural data are available, 3D lines are
used to list all relevant PDB identifiers (e.g., 1DXO,
1DX1, etc.). Finally, the DO line points to the associ-
ated family documentation file (here PDOC00263),
and the file ends with a // terminator.

The second type of PROSITE file is the documenta-
tion file, which provides details of the family (its
structure, function, disease associations, etc.) and,

Information resources for genes and proteins ® 97

{rooCDO263}

{e500291; PRION 1}

{#500706; PRION_2}

{BECIN}

kR R R R R R A KRR AR R R
* Prion protein signatures *
AN ENT AR AR AR AR AR AR AR AR AR F
pPrion protein (PrP} [1,2,3)
animals

disease (CJD),

is a small glycoprotein found in high gquantity in the brains of humans or
infected with a number of degenerative neurological diseases
scrapie or bovine sponglform encephalopathy

such as Kuru, Creutzfeldr-Jacob

(BSE} . PrP is encoded in the host genome and

expressed both in normal and infected cells. It has a tendency to aggregate yielding polymers called rods.

Structurally, PrP consists of a signal peptide,
of a short motif (PHGGGWGY in mammals,
~140 residues that contains a disulfide bond.

Finally comes a
translationally removed when PrP is attached to the extracellular

followed by an d-terminal domain containing tandem repeats
PHNPGY in chicken),

itself followed by a highly conserved domain of
C-terminal hydrophobic domain post-
side of the cell membrane by a GPIL-

anchor. The structure of PrP is shown schematically below:

b o maaaa bW R RN e el eaaaeoaoooo- wwww e +
|$ig| Tandem repeats | C c s|
L T Fo oo |-------- J----]+----- +
$omm - - - + |
GPI

'C': conserved cysteine involved in a disulfide bhonad.
txr: position of the patterns.

As signature pattern for PrP,

we selected a perfectly conserved alanine-

and glycine-ricn region of 16

residues as well as a region centered on the second cysteine iavolved in the disulfide bond.

-Consensus pattern: A-G-A-A-A-A-G-A-V-V-G-G-L-G-G-Y

-Sequences known to belong to this class detected by the pattern: ALL.

-Ocher sequence(s) detected in SWISS-PROT: NONE.

-Consensus pattern: E-x- [ED] -x-XK- [LIVM] (2) -x- [KR} - [LIVM]) (2) -x- [QE} -M-C-x{(2) -Q-Y

[C is involved in a disulfide bond}

-Sequences known to belong to this class detected by the pattern: ALL.

-Other sequence(s) detected in SWISS-PROT: NONE.
-Last update: November 1997 / Texr revised.

[1] Stanl N., Prusiner §.B.
FASEB J. 5:2799-2807(1991}.

{ 2] Brunori ™., Chiara Silvestrini M., Pocchiari M.
Trends Biochem. Sci. 13:309-313{1%88).

[31 Prusiner §.B.
Annu. Rev. Microbicol. 43:345-374(1989). (g1]

http://bioinformatics.weizmann.ac.il/hotmolechase/entries/prp.htm

{END}

Fig. 5.8 Example PROSITE entry, showing the documentation file for the prion protein family.

where known, a description of the biological role of
the chosen motif/s and a supporting bibliography; as
shown in Fig. 5.8, this is a free-format text file. As
evident from the figure, the structure of the docu-
mentation file is much simpler than that of the data
file. Each entry is identified by its own accession
number (which takes the form PDOC00000), and
provides cross-references to the accession number
and identifier of its associated data file or files — in this
example, two regexs have been derived for the fam-
ily, and hence there are links to two data files

98 @ Chapter 5

(PS00291 and PSO0706). A free-format description
of the family and its regex(s) then follows, and the file
concludes with relevant bibliographic references.
The database is accessible for keyword and sequence
searching via the ExXPASy Web server.

5.5.3 PRINTS

From inspection of sequence alignments, it is clear
that most protein families are characterized not
by one, but by several conserved motifs. It therefore

makes sense to use many, or all, of these to build
“fingerprints” of family membership. The technique
of fingerprinting was first developed in 1990 — the
rationale behind its development was that single-
motif approachesin general, and regexs in particular,
are often not sufficiently powerful to characterize
certain families unambiguously. Fingerprints inher-
ently offer improved diagnostic reliability over
methods of this type by virtue of the mutual context
provided by motif neighbors: in other words, if a
query sequence fails to match all the motifs in a
given fingerprint, the pattern of matches formed by
the remaining motifs still allows the user to make a
reasonably confident diagnosis.

Fingerprinting was readily applicable to a diverse
range of proteins, and effectively complemented the
results stored in PROSITE, especially in situations
where particular regexs failed to provide adequate
discrimination. As a result, a prototype database
was developed in 1990; this matured during the
years that followed, such that, in 1993, the first
public release was made of a compendium of pro-
tein fingerprints, containing 107 entries — this was
PRINTS (Attwood and Beck 1994). PRINTS is now
maintained at the University of Manchester, UK,
and in February 2004 contained 1850 entries
(Attwood et al. 2003). The database is released in
major and minor versions: minor releases reflect
updates, bringing the contents in line with the
current version of the source database (a Swiss-
Prot/TrEMBL composite); major releases denote
the addition of new material to the resource. At each
major release, 50 new families are added to the data-
base and, where necessary, old entries are updated.

Within PRINTS, motifs are encoded as ungapped,
unweighted local alignments derived from an iterat-
ive database-scanning procedure (the methods used
to derive fingerprints and regexs differ markedly,
and are described in detail in Chapter 9). When a set
of motifs is achieved that is capable of capturing all,
or most, of the family from a given version of Swiss-
Prot and TrEMBL, without matching too many, or
any, false positives, the results are manually annot-
ated prior to deposition in PRINTS.

Today, PRINTS is the most comprehensive fully
manually annotated protein family database avail-

able. Nevertheless, overall the database is still small
relative to the number of protein families that exist,
largely because the detailed documentation of
entries is extremely time consuming. However, the
extent of manually crafted annotations sets it apart
from the growing number of automatically derived
resources, for which there is little or no biological
documentation and/or result validation, and in
which family groupings may change between data-
base releases.

5.5.4 The structure of PRINTS entries

PRINTS is built as a single text file — see Fig. 5.9. The
contents are separated into specific fields, relating to
general information, bibliographic references, text,
lists of matches, and the motifs themselves — each
line is assigned a distinct two-letter code, allowing
the database to be indexed for rapid querying
(Attwood et al. 1997). Each entry begins with a 12-
character identification code (an acronym that
describes the family — here, simply PRION), and an
accession number, which takes the form PROO00O.
Following this is a description of the type of entry —
the term “COMPOUND” indicates that the fingerprint
contains several motifs, the number being indi-
cated in parentheses (8 in this example). Details of
the creation and latest update information are then
given, followed by a descriptive title, and cross-refer-
ences to other databases (e.g., InterPro, PROSITE,
etc.), allowing users to access further information
about the family in related resources. References are
then provided, which relate to an abstract of the
family describing its function and structure (where
known), its disease associations, evolutionary rela-
tionships, and so on. Each abstract also contains a
technical description of how the fingerprint was
derived, including, where possible, details of the
structural and/or functional relevance of the motifs
— here, the motifs encode a number of hydrophobic
regions and the characteristic octapeptide repeats.
Fingerprint diagnostic performance is indicated
via a summary that lists how many sequences made
complete matches and how many failed to match
one or more motifs — the fewer the partial matches,
the better the fingerprint (in this example, 37

Information resources for genes and proteins ® 99

PRICN

PROOI4 1

COMPOQUND (B)

19-0CT-1992, UPDATE 7-JUN-199%

Prion protein signacure

[NTERPRQ; IPROQOBL7

PROSITE; PS0Q0G291 PRION_1: PS00706 PRION_2
PFAM; PFDQ377 prion

1. STAHL, N. AND PRUSTNER, S5.B.
frions and prion proteins.
FASEB J. 5 279%-2807 (1991} .

2. BRUNGQRI, M., CHIARA SILVESTRINI, M. AND POCCHIARI, M.
The scrapie agent and the prion hypothesis.
TRENDE BICCHEM.SCI. 13 20%9-313 (198B}).

1. PRUSINER, S.B.
Scrapie prioas.
ANMU.REV.MICROBIOL. 43 345-374 {1289},

Prion protein (PrP] is a small glycoprotein found in high guanticy in cthe brain of animals i1afected with

certain degenerative neurological diseases, such as sheep scrapie and bovine spongiform encephalopathy (8S5€),

and the human dementias Creutzfeldi-Jacob disease {CJD} and Gerstmann-Straussler syndrome (GSS). PrP is

encoded 1n the host genome and is expressed both in normal and infected cells. During infectipn, however, Che
Pr? molecules become altered and polymerise, yielding fibrils of modified PrP protein.

PrP molecules have been found on the cuter surface of plasma membranes of nerve cells, te which they are

anchored Ehrough a covalent-linked glycolipid, suggesting a role as a membrane recepcar. PrP 15 also expressed

in gther tissues, indicating that 1t may have different functions depending on its location. The primary

sequences of PrP's from diffecent scurces are highly similar: all bear an N-terminal domain conta:ning multbiple
candem repeacs of a Pro/Gly rich octapepcide; sites Qf Asn-linked glycosylaticn; an esseatial drisulphide bondg;
and 1 hydrophaobic segments. These sequences Show some similarity to a chicken glycoprotein, thought to be an
acecylcholine receptor-inducing activicy (ARIA)] molecule. It has been suggested that changes in the octa-

peptide reoeat region may indicate a predispositlon to disease, but it 15 not known for certain whether the

repeat can be used as a filngerprini to indicate susceptibility.

PRION is an #-element fingerprint that pravides a signature for the prion proteins. The fingerprint was derived
Erom an initial alignment of 5 sequences: the motlfs were drawn from conserved regions spanning virtually che

tull aligrment length, including the 3 hydrophobic domains and the octapeptide repeats {(WGQPHGGG) . Two

iterations on OWLLB.0 were required to reach convergence, at which point & Ctrue set comprising 9 sequences was
1dentified. Several partial matches were also found: these include a fragment (PRIG_RAT) lacking part of the

sequence bearing the first motif, and the Pre homologue found in chicken - this matches well with only 2 of the

3 hydrophobic motifs (i and S) and one of the other conserved reglrons (6}, bul has an N-terminal signature

; based on a sextapeptide repeat (YPHNPG] rather than the characteristic Prd octapepcide.

: An update on 5PTR)7 _3f identified a true set of 37 sequences. and 1 partial match.

SUMMARY INFORMATION

37 codes 1nvolving 8 elements
0 ceodes involving 7 elemencs
0 codes involving 6 elements
0 codes invalving S elemencs
0 ccdes nvolving 4 elements
1 codes i1nvolving 3 slements
Q0 codes involving 32 elements

COMPOSITE FINGERPRINT INDEX

8| 37 37 37 37T 3T 37 371 37

10 0 a [0 0 0 a

5| 0 0 o o [0 o]

5/ o [a o o u 0 o

4l 0 0 9 0 [a 0 9

it o 9 0 1 1 0 9

ET] 0 o o 0 0 [0

b e

‘ 1 2 3 q 5 [T 8

PRIO_COLGU PRIO_MACFA PRIO_CEREL PRIO_ODOHE
PRLO_GORGO PRIO_PANTR PRIO_HUMAN 046648
PRIO_SHEER BRIO_CALJA PRIO_BOVIN PRP2_BOVIN
PRIC_ATEPA PRIO_SAISC PRIO_PREFR PRIC_PONPY
: 075942 PR]OicAPHI PRIDicEBAP PRIO_CAMDR
PRIC_FELCA PRPL_TRAST PRIO_RABIT BREZ_TRAST
PRIC_PIG PRIC_CANFA PRIO_CRIGR PRIO_CRIML
QL5216 PRIC_RAT PRIC_CERAE PRIO_MUSPF
PRIO_MUSWI PRIG_MESAU PRIOWMDUSE 046593
PRIO_TRIVU

Codes involving 3 elements
PRIC_CHICK

e PRIO_COLGU MAJQR BRICN PROTEIN PRECURSOR (PRP} (PRP27-10) (PREII-IEC

- COLOBUS GUEREZA

LL; PRIO_MACFA MAJOR PRICN PROTEIN PRECURSCR {PRP) {PRF27-30) (PRP3I3-35C) - MACACA FASCICULA
Lt: PRIC_CEREL MAJOR PRION PROTEIN PRECURSOR {PRP} - CERVUS ELAPHUS (RED DEER)
Lt: PRIQ_ODOHE MAJOR PRION PRCTEIN PRECURSCR {PRP) - ODOCOILEUS HEMIONUS (MULE DEER) {BLACK-

Lt; PRIO_GORGQ MAJOR PRION PROTEIN PRECURSOR {PRP) (PRF27-30) (PRP3II-235CH - GORILLA CORILLA
LL: PRIG_PANTR MAJOR PRION PROTEIN PRECURSOR [PRE) (PRP27-30} (PRPI3-35C - PAN TROGLODYTES
LL; PRIQ_HUMAN MAJOR PRION PROTEIN PRECURSOR [(PRE) (PRP27-10) {FRP3ID-15C) (ASCR) - HOMO SAPI
e,

Lr; PRIO_CHICK MAJOR PRION PROTEIN HOMOLCG PRECURSOR [(PR-LPY ([ACETYLCHOLINE RECEPTOR-INDUCIN
bb;

bb;

sh; SCAN HISTORY

Shy -==-=-------

dn; OWL18_0 2 3Q MEINGLE
dn; OWL1% 1 1 10 NSINGLE
dn; OWL26 0 1 160 NSINGLE
dn; OWL29_1 1 150 NSINGLE
dn; SPTR3I7_SE 2 13a NSINGLE
bb:

bb;

1m; INITIAL MOTIF-SETS

Y R et

ic; PRIONL

1l; 18

1t; Prion protein mocif I - 1

1d; WMLVLFVATWSOLGLT PRIO_HUMAN 7 7
1d: WILVLFVAMWSDVGLC PRIO_BOVIN 9 9
1d; WILVLEVAMWSDVGLC PRIO_SHEER 2 9
id; WILVLFVAMWSDVGLD BRIP_BOVIN 9 3
id: WLLALFVAMWTOVGLC PRIO_MESAU 7 7
1d; WLLALFVTMWTDVGLC BRIO_MOUSE 7 7

Do

Fig. 5.9 Example PRINTS entry, showing the fingerprint for the prion protein family. For convenience, only the first motif is
depicted. The two-letter code in the left-hand margin separates the information into specific fields (relating to text, references,

motifs, etc.), which allows indexing of the data for rapid querying.

sequences matched all eight elements of the finger-
print, and one sequence matched only three motifs,
indicating that this is a good fingerprint). The table
that follows the summary breaks down this result to
indicate how well individual motifs have performed,
from which it is possible to deduce which motifs are
missing from any partial matches — here, we dis-
cover that the reported partial hit failed to match
motifs 2, 3,4, 7,and 8.

After the summary are listed the ID codes of all full
and partial true- and false-positive matches, fol-
lowed by their database titles. In this case, the data
show that the partial match is a chicken prion pro-
tein — referring to the technical description reveals
that the reason it fails to match the fingerprint
completely is that its sequence is characterized by a
different type of tandem repeat. The scan history
then indicates which version of the source database
was used to derive the fingerprint, and on which
versions it has been updated, how many iterations
were required, what hit-list length was used, and
the scanning method employed (Parry-Smith and
Attwood 1992).

The final field relates to the motifs themselves, list-
ing both the seed motifs used to generate the finger-
print, followed by the final motifs (not shown) that
result from the iterative database search procedure.
Each motifis identified by its parent ID code with the
number of that particular motif appended — for con-
venience, only initial motif 1 (PRION1) is shown in
Fig. 5.9. After the code, the motif length is given,
followed by a short description, which indicates the
relevant iteration number (for the initial motifs, of
course, this will always be 1). The aligned motifs
themselves are then provided, together with the cor-
responding source database ID code of each of the
constituent sequence fragments (here only sequ-
ences from Swiss-Prot were included in the initial
alignment, which contained a total of six sequ-
ences). The location in the parent sequence of each
fragment is then given, together with the interval
(i.e., the number of residues) between the fragment
and its preceding neighbor — for motif 1, this value
is the distance from the N terminus.

An important consequence of storing the motifs in
this “raw” form is that, unlike with regexs or other

Information resources for genes and proteins ® 101

such abstractions, no sequence information is lost.
This means that a variety of scoring methods may be
superposed onto the motifs, providing different scor-
ing potentials for, and hence different perspectives
on, the same underlying data. PRINTS thus provides
the raw material for a number of automatically
derived databases that make use of such approaches.
As a consequence of being generated using more
automated procedures, however, these resources
provide little or no family annotation. They there-
fore further exploit PRINTS, by linking to its
manually generated family documentations, which
help to place conserved sequence information in
structural or functional contexts. This is vital for the
end user, who not only wants to discover whether a
sequence matches a set of predefined motifs, but also
needs to understand their biological significance. A
number of these, and other, automatically derived
databases are described in the following sections.
In its original form, PRINTS is accessible for key-
word and sequence searching via the University of
Manchester’s Bioinformatics Web server.

5.5.5 Blocks

In 1991, the diagnostic limitations of regexs led
to the creation of another multiple-motif resource,
at the Fred Hutchinson Cancer Research Center
(FHCRC) in Seattle — this was the Blocks database
(Henikoff et al. 2000). Originally, Blocks was based
on protein families stored in PROSITE; today, how-
ever, its motifs, or blocks, are created automatically
by finding the most highly conserved regions of
families held in InterPro (or by using PRINTS’ motifs
directly — see Section 5.5.6). Different motif-
detection algorithms are used and, when a con-
sensus set of blocks is achieved, they are calibrated
against Swiss-Prot to ascertain the likelihood of
a chance match. Various technical details are noted,
and the blocks, encoded as ungapped local align-
ments, are then deposited in Blocks.

Figure 5.10 illustrates a typical block. The struc-
ture of the database entry is compatible with that
used in PROSITE. An ID line provides a general code
by which the family may be identified (here Prion);
this line also indicates the type of discriminator to

102 @ Chapter5

expect in the file — in this case, the word BLOCK tells
us to expect a block. Each block has an accession
number, which takes the form IPBOO0000X (where
IPB indicates that the block is derived from a family
in InterPro, and X is a letter that specifies which the
block is within the family’s set of blocks, e.g.,
IPBOOOS817E is the fifth prion block). The AC line
also provides an indication of the minimum and
maximum distances of the block from its preceding
neighbor, or from the N terminus if it is the first in a
set of blocks.

A title, or description of the family, is contained in
the DE line. This is followed by the BL line, which
provides an indication of the diagnostic power and
some physical details of the block: these include an
amino acid triplet (here CQY), which are the con-
served residues used as anchors by one of the motif-
detection algorithms; the width of the block and the
number of sequences it contains; and two scores that
quantify the diagnostic power of the block — strong
blocks are more effective than weak blocks (strength
less than 1100) at separating true-positives from
true-negatives. Following this information comes
the block itself, which indicates: the Swiss-Prot
and TrEMBL IDs and accession numbers of the
constituent sequences; the start position of the
fragment; the sequence fragment itself; and a score,
or weight, that provides a measure of the closeness of
the relationship of that sequence to others in the
block (100 being the most distant). The file ends
with a // terminator.

In February 2004, Blocks contained 4944 entries
from InterPro 6.0, indexed to Swiss-Prot 41.0 and
TrEMBL 23.0; Blocks-format PRINTS, of course,
contains the same number of entries as the version
of PRINTS from which it was derived — see Section
5.5.6. Both databases are accessible for keyword
and sequence searching via the Blocks Web server.

5.5.6 Blocks-format PRINTS

In addition to the Blocks database, the FHCRC Web
server provides a version of the PRINTS database in
Blocks format. In this resource, the scoring methods
that underlie the derivation of blocks have been
applied to each of the aligned motifs in PRINTS.

ID Prion; BLOCK

AC IPBOODB17E; distance from previous block={(1,2)

DE Prion protein

BL CQY; width=10; segs=63; 99.5%=1496; strength=1395

PRIO_CAMDR|P79141 (218) ITQYQREYQASYGRGASVIFSSPPVILLIS 41
PRIO_MOUSE|P04925 (214) VTQYQKESQAYYDGRRSSSTVLFSSPPVIL 29
PRIO TRIVU|P51780 (220) ITQYQAEYEAAAQRAYNMAFFSAPPVTLLF 44
PRIC_CHICK|P27177 (238) VQQYREYRLASGIQUHPADTWLAVLLLLLT 18
PRIO_BOVIN|P10279 (226) ITQYQRESQAYYQRGASVILFSSPBVILLI 6
PRPZ_BOVIN|Q01880 (218) ITQYQRESQAYYQRGASVILFSSPBEVILLI 6
PRIO_CAPHI|P52113 (218) ITQYQRESQAYYQRGASVILFSPPBEVILLI 7
PRIO_CANFA|Q46501 (217) ITQYQRESEAYYQRGASVILFSSPEVILLV 11
PRIO_CEREL|P79142 (218) [TQYQRESEAYYQRGASVILFSSPBVILLI 6
PRIQ_FELCA|018754 (218) VTQYQKESEAYYQRRASAILFSSPEVILLI 8

PRIO_HUMAN|P04156
PRIO_AOTTR|P40245
PRIQO_ATEGE|P40246
PRIO_ATEPA|P51446
PRIO_CALJA|P40247
PRIO_CALMO|P40248
PRIO_CEBAP|P40249
PRIO_CERAE|P40250
PRIO_CERAT|Q95145

(
(
(
(
(
(
(
(
(
(
(215) ITQYERESQAYYQRGSSMVLFSSPPVILLI
(207) ITQYEKESQAYYQRGSSMVLFSSPPVILLI
{ 199) ITQYERESQAYYQRGSSMVLFSSPPVILLI
{ 214) ITQYERESQAYYQRGSSMVLFSSPPVILLI
{ 214) ITQYEKESQAYYQRGSSMVLFSSPPVILLI
(208) ITQYEKESQAYYQRGSSMVLFSSPPVILLI
(214) ITQYERESQAYYQRGSSMVLFSSPPVILLI
(207) ITQYEKESQAYYQRGSSMVLFSSPPVILLI
{ 200) ITQYEXESQAYYQRGSSMVLFSSDPPVILLI
PRIO_CERMO|Q95172 { 208) ITQYEKESQAYYQRGSSMVLFSSPPVILLI
PRIO_CERPA[Q95174 (208) ITQYEKESQAYYQRGSSMVLFSSPPVILLI
PRIO_CERTO|Q95176 (208} ITQYEKESQAYYQRGSSMVLFSSPPVILLI
PRIO_COLGU|P40251 (215) ITQYEKESQAYYQRGSSMVLFSSPPVILLI
PRIO_GORGO|P40252 (215) ITQYERESQAYYQRGSSMVLFSSPPVILLI
PRIO_PANTR|P40253 ({ 215) ITQYERESQAYYQRGSSMVLFSSPPVILLI
PRIOﬁMACFA|P40254 { 215) ITQYEKESQAYYQRGSSMVLFSSPPVILLI
PRIO_MANSP|P40255 (208) ITQYEKESQAYYQRGSSMVLFSSPPVILLI
PRIO_PONPY|P402S6 (215) ITQYERESQAYYQRGSSMVLFSSPOVILLI
PRIQO_PREFR|P40257 (215) ITQYEKESQAYYQRGSSMVFFSSPPVILLI
PRIO_SAISC|P40258 (222) ITQYEKESQAYYQRGSSMVLFSSPPVILLI
PRIO_MUSPF|PS2114 (219) VTQYQQESEAYYQRGASAILFSPPPVILLI
PRIO_MUSVI|P40244 (219) VIQYQRESEAYYQRGASAILFSPPPVILLL
PRIO_ODOHE|P47852 (21B) ITQYQRESQAYYQRGASVILFSSPPVILLI
PRIO _FPIG|P49927 (219) ITQYQKEYEAYAQRGASVILFSSPDLVILLI
PRIO_RABIT|Q95211 (214) ITQYQQESQAAYQRAAGVLLFSSPPVILLI
FRIQ_SHEEP|P23907 { 218) ITQYQRESQAYYQRGASVILFSSPPVILLI
PRIO_THEGE|Q95270 { 200) ITQYQKESQAYYQRGSSIVLFSSPPVILLI
PRP1_TRAST|P40242 { 226) ITQYQRESEAYYQRCASVILFSSPEVILLI
PRP2_TRAST|P40243 (218) ITQYQRESEAYYQRGASVILFSSPEVILLI &
PRIO_CRIGR|Q60506 (215) VTQYQKESQAYYDCGRRSSAVLFSSPPRVILL 15
FRIO_CRIMI|Q60468 (215) VIQYQKESQAYYDGRRSSAVLFSSPPVILL 15
FRIO_MESAU|P04273 (215) TTQYQKESQAYYDORRSSAVLFSSPBRVILL 18
2

~} b

= O HF PO COUN OO OO RN YOy
[=]

PRIO RAT|P13852 { 215} VTOYQKESQAYYDGRRSSAVLFSSPEVILL 15
QIUPI9 { 215) ITQYERESQAYYQRGSSMVLESSPRVILLI &
075542 [247) ITQYERESQAYYQRGSSMVLFSSPOVILLL 6
Q15216 { 207) ITQYERESQAYYQRGSSMVLESSPOVILLI &
046593 { 215) VTQYQKESEAYYQRGASAILFSPPEVILLI &
Q9TVOL1 { 218) ITQYQRESQAYYQRGASVILESSPOVILLY 6
Q9TUOT { 218) ITQYQRESQAYYQRGASVILFSSPOVILLI &
Q9TTUS { 218) ITQYQRESQAYYQRGASVILFSSPPVILLI &
Q9TSF8 { 216) ITQYQQESQAAYQRAAGVLLFSSPPVILLI 17
046648 { 218) ITQYQRESQAYYQRGASVILFSSPPVILLI §
Q02841 (218) ITQYQRESQAYYQRGASVILFSSEPVILLI §
062670 { 218) ITQYQRESEAYYQRGASVILFSSEPVILLI 6
QOMZUB { 218) ITQYQRESQAYYQRGASVILFSSPPVILLI 6
QOMZUE { 226) ITQYQRESQAYYQRGASVILFSSPPVILLL §
P97895 (204) TTQYQKESQAYYDGRRSSAVLFSSFPVILL 18
Q920T3 { 215) VTQYQKESQAYYDGRRSSAVLFSSEPMILL 19
Q9QYTY [214) VTQYQKESQAYYDGRRSSSTVLFSSPOVIL 29
Q9I9F1 { 232) VQQYREYRLASGIQLHPADTWLAVLLLLTT 41
Q9I19F2 { 232) VQQYREYRLASGIQLHPADTWLAVLLLLTT 41
Fig. 5.10 Example Blocks entry, Q9ICo { 237) MQQYQQYQLASGVKLLSDPSLMLI IMLVIF 100
showing the fifth block used to Q9I8G1 { 238) VQQYREYRLASGIQLHPADTWLAVLLLLTT 41

characterize the prion protein family. //

ID
AL

PRICON; BLOCK

DE Prion protein signature

BL adapted; width=16; seqgs=37; 95.5%=717;
PRIO_COLGU|P40251 { 57 WGEQPHCGGWGQPHGGG
PRIO_MACFA|P40254 { 57) WGQPHGGGWGQFPHGGG
PRIO_CERELIP?9142 { 60) WGQPHGGGWGQPHGGG
PRIO_ODOHE1947852 { 60} WGQPHGGGWGQPHGGG
PRIO_GORGO[P40252 [57) WGQPHGGGWGQPHGGG
PRIO_PANTR|P40253 (57) WGQPHGGGWGQPHGEG
PRIO_HUMAN|PO4156 { s™T) WGQPHGGGWGRPHGGS
046648 (60} WGQPHGGGWGQPHGGG
PRIO_SHEEP]F23907 (60) WGQPHGGGWGQPHGGH
PRIO_CALJA|P40247 { 56) WGQPHGGGWGQPHGGG
PRIO_BOVIN|P10279 { 60) WGQPHGGGWGQPHGGG
PRPZ_BOVIN[QOISBU { 8Q) WGQPHGGGWGQPHGGG
PRIO_ATEPA|P51446 { 58&) WGQPHGGGWGQPHGGG
PRIO _SAISC|P40258 { 56) WGQPHGGGWGQPHGGG
PRIO~PREFR}P40257 { 57) WGQPHCGGWGQPHGGG
FRIO _PONPY|P40256 (57) WGQPHGGGWGQPHGES
Q75942 (57} WGQPHGGGWGQPHGGS
PRIO_CAPHI&PSleB { 80) WGQPHGGGWGOPHGGG
PRIO_CEBAP|P40249 { 56} WGQPHGGGWCGQPHGGS
PRIO_CAMDR|P79141 { 80) WGQPHGGGWGQPHGGG
PRIO_FELCA|018754 { &60) WGQPHGGGWGQPHGGG
PRPl_TRAST|940242 { 60) WGQPHGGGWGQPHGGG
PRIO_RAEIT|095211 { 57) WGQPHGGGWGEQPHGGG
PRPZ_TRAST|P4D243 { 60) WGQPHGGGWGQPHVGG
PRIO_PIG|949927 { 60} WEQPHGGGWGQPHGGG
PRIO_CANFA (60) WOQPHGGGWGQPHGGG
PRIO_CRIGR\QEGSOG { 57) WGQPHGGGWGOPHGGS
PRIOfCRIMI{Q60468 { 57} WGQPHGGGWGQPHGGS
Q15218 (57} WGQPHGGGWGQPHGGG
PRIOHRATiPlJBSZ {57 WGQPHGGGWGQPHGGG
PRIO_CERAE|P40250 (57) WGEQPHCGGWIQPHGGG
PRIO_MUSPF|PS5211l4 (60) WGQPHGGGWGQPHGGG
PRIO_MUSVI|P40244 { &0} WGEQPHGGGWGQPHGGG
PRIO_MESAU|PO4273 { 57) WGOPHGGGWGQPHGGE
PRIO_MOUSE|PO4925 { 56} WGQPHGGGWGQPHGGS
046593 (60} WOQPHGGGEWGQPHGGEG
PRIO_TRIVU%PSlTSO { 60C) HPQGGGTNWGQPHPGG

//

Figure 5.11 illustrates a typical motif in Blocks
format. The structure of the entry is identical to that
used in Blocks, with only minor differences occur-
ring on the AC and BL lines. On the AC line, the
PRINTS accession number is given, with an ap-
pended letter to indicate which component of the
fingerprint it is (in the example, PRO0341C indic-
ates that this is the third motif). On the BL line, the
triplet information is replaced by the word “adap-
ted”, indicating that the motifs have been taken
from another resource.

104 @ Chapter 5

PROC3I41C; distance from previous block=(1, 4)

strength=1708

9
9
9
9
S
S
9
9
9
9
9
9
9
9
9
g
S
g
9
9
9
9
9
18
]
S
S
9
9
9
9
9
9
9
23 Fig. 5.11 Example Blocks-format
-] PRINTS entry, showing the third block
100 used to characterize the prion protein

family.

Because the Blocks databases are derived auto-
matically, the blocks are not annotated. Never-
theless, relevant documentation may be accessed
via links to the corresponding InterPro and PRINTS
entries. A further important consequence of the
direct derivation of the Blocks databases from
InterPro and PRINTS is that they offer no further
family coverage. However, as different methods are
used to construct the blocks in each of the databases,
it is worthwhile searching both these and the parent
resources.

5.5.7 Profiles

An alternative philosophy to the motif-based
approach of protein family characterization adopts
the principle that the variable regions between con-
served motifs also contain valuable information.
Here, the complete sequence alignment effectively
becomes the discriminator. The discriminator,
termed a profile, is weighted to indicate where inser-
tions and deletions are allowed, what types of
residue are allowed at what positions, and where the
most conserved regions are. Profiles (alternatively
known as weight matrices) provide a sensitive
means of detecting distant relationships, where only
few residues are conserved —in these circumstances,
regexs cannot provide good discrimination, and will
either miss too many true-positives or will catch too
many false ones.

The limitations of regexs in identifying distant
homologs led to the creation of a compendium of
profiles at the Swiss Institute for Experimental
Cancer Research (ISREC) in Lausanne. Each profile
has separate data and family-annotation files whose
formats are compatible with PROSITE data and
documentation files. This allows results that have
been annotated to an appropriate standard to be
made available for keyword and sequence searching
as an integral part of PROSITE via the ExPASy Web
server (Hulo et al. 2004). Those that have not yet
achieved the standard of annotation necessary for
inclusion in PROSITE are made available for search-
ing directly via the ISREC Web server.

Figure 5.12 shows an excerpt from a profile data
file. The file structure is based on that of PROSITE,
but with obvious differences. The first change is seen
on the ID line, where the word MATRIX indicates
that the type of discriminator to expect is a profile.
Pattern (PA) lines are replaced by matrix (MA)
lines, which list the various parameter specifications
used to derive the profile: they include details of the
alphabet used (i.e., whether nucleic acid {ACGT}
or amino acid {ABCDEFGHIKLMNPQRSTVWYZ});
the length of the profile; cut-off scores (which are
designed, as far as possible, to exclude random
matches); insertion and deletion penalties, insert—
match—delete transition penalties; and so on. The I

and M fields contain position-specific profile scores
for insert and match positions, respectively.

As in PROSITE, the pattern itselfis followed by NR
lines that depict the diagnostic performance of the
pattern in terms of the number of true- and false-
positive and false-negative results. In the example in
Fig. 5.12, which illustrates part of the profile entry
for WD-40 repeats, 1367 matches were made to the
profile, from a total of 352 proteins — note that the
number of matches differs from the number of pro-
teins (indicated in parentheses) because sequences
may contain multiple copies of the WD-40 domain.
Ofthe 1367 matches, 1362 (from 348 proteins) are
known to be true-positives; one is known to be false;
25 true WD-40-containing proteins were missed;
one sequence made a partial match; and for four
matches (from three proteins) it is unknown whe-
ther or not they are true family members.

Following the NR lines, a comment field (CC) pro-
vides further details about the profile, such as the
author (here K. Hofmann), the taxonomic range of
the family, the maximum number of observed
repeats (here 15), keywords that describe the type of
matrix (protein_domain), and so on. The familiar
database cross-reference (DR) field then tabulates
the database IDs and accession numbers of all true-
positive (T), true-negative (N), unknown (?), and
false-positive (F) matches to the profile in the ver-
sion of Swiss-Prot indicated in the NR lines (in this
case, 40.7).

Where structural data are available, 3D lines list
all relevant PDB identifiers (e.g., 1SCG, 1AOR, etc.).
Finally, the DO line points to the associated docu-
mentation file (here PDOC00574), which is a text
file with identical format to that already described
for PROSITE (Fig. 5.8). The file ends with a //
terminator.

In addition to protein families and domains,
profiles can be used to represent a number of other
sequence features. These “special” profiles are dis-
tinguished by additional information on the MA
and/or CC lines. For example, MA TOPOLOGY=
CIRCULAR and CC /MATRIX_TYPE=repeat_region:
these lines identify a circular profile that will pro-
duce one match for a repeat region consisting of
several tandem repeated units. Profiles of this type
® 105

Information resources for genes and proteins

NAR35% 233555558233 2333 553333 RETFss s 8833 R83RE

oooooogodna
MMAO®DAODTAIAONMN

DR
DR
DR
CR
DR
DR
CR
DR
DR
OR
DR
DR
DR
DR
ib

/i

WD _REPEATS_2; MATRIX.

PS50082;

DEC-2001 {CREATED}; DEC-2001 (DATA UPDATE); DEC-2001 (INFO UPDATE) .

Trp-Asp (WD) repeats profile.

fGENERAL‘SPEC: ALPHABET="'ABCDEFGHIKLMNPQRSTVWYZ'; LENGTH=42;

/DISJOINT: DEFINITION=PROTECT; WN1=5; N2=38;

/NORMALIZATICN: MODE=1; FUNCTION=LINEBAR; R1=1.0511; R2=0.03341820; TEXT='-LogBE';

/CUT_GFF: LEVEL=0; SCORE=222; N_SCORE=8.5; MODE=l; TEXT='!";

/CUT_OFF: LEVEL=-l; SCORE=163; N_SCORE=6.5; MODE=1; TEXT='?';

/ODEFAULT: D=-20; [=-20; Bl=-50; El=-50; MI=-105; MD=-105, IM=-145; DM=-105, MO=-10;

/1: Bl=0; BI=-105; BD=-105;

/M: SY='L'; M=-9, -18,-20,-21,-14,6,-23,-12,4,-18,10,4,-15,-20,-14,-14,-14, -6,1,-16,3, -15;
/M: M=-5, -21,-2,0,-17,-13,-6,-16,-1,-15,-%,0,-11,0,-1,0,-1,-13, -25, -1¢, -1;

/M: 8Y='G'; M=2,-5,-22,-6,-7,-22,L8,-12,-24,-10, -20,-13,-1,-14,-9,-12,2,-7,+17, -24, -15, -9;
/M: SY='H'; M=-14,0,-27,0,0,-19,-16,57,-25,-7,-19,-5,6,-15,5,-2,-6,-13,-24,-27,8, -1;

/M. S§Y='5'; M=-4,1,-21,0,3,-20,-21,-8,-18,0,-17,-11,2,-9,1,-1,4,3,-14,-28,-13,1;

/M. SY='B'; M=-2,4,-21,4,1,-22,-1,-6,-22,-3,-20,-13,4,-13,-1,-6,3,-4,-17,-27, -15, -1;

/M: M=-2,-7,-23,-7,-3,-186,-9,-11,-16, -6, -17,-12, -5, -5, -5,-7,-1,-3, -14, -17, -11, -5;

/M: SY='V'; M=-3,-26,-12,-30,-26,-1,-29,-26,25,-21,11,9,-23,-25, -23,-21,-12,-3,30,-26,-7,-26;
/M: BY='T'; M=-7,-5,-17,-10,-9%,-7,-16,-8,-11,-7,-10,-7,0,-19,-7,-4,-1.4,-9,-16, -4, -8;

fM: SY='5'; M=2,-2,0,-4,-6,-19,-7,-12,-20,-10,-19,-1¢,-1,-17,-7,-11,8,2,-11,-31,-17, -7

/M. 8Y='V'; M=-3,-25,-10,-2%,-23,2,-27,-23,18,-23,17,11,-23, -26, -21,-20, -14, -5, 20, -24., -5, -23;
/M. S¥='R'; M=5,-1,-15,-3,-2,-20,-11,-10,-17,-2,-16,-11,-2,-14,-2,-4,4,-1, -10, -25, -14,-2;

/M: SY='F'; M=-12,-26,-24,-31,-24,25,-24,-19,0,-22,1,-2,-22,-25,-23,-18,-19,-11,-3,25_16, -22;
/M: §¥Y='§'; M=-2,3,-16,1,-3,-17,-9,3,-17,-8,-18,-12,8,-15,-3,-8,9,2,-14,-31,-11,-3;

/M: SY='P'; M=-6,-6,-28,-3,1,-23,-12,-8,-20,-4,-22,-15,-5,24,-3,-8,-2,-6,-21,-27,-18.-3;

/M: SY='D'; M=-8,14,-22,16,4,-21,-10,-2,-22,-3,-20,-164,10,-22,-2,-6,3,-1,-18,-30,-13,1;

JT: I=-12; MI=-15; MD=-25;, IM=-15; DM=-25;

/M: S¥='G'; M=-2,-1,-19,-1,-3,-19,13,-8,-20,-7,-18,-12,2,-8,-5,-8,2,-6,-16,-21,-15, -4; D=-5;
/1: DM=-25;

/M: SY='N'; M=-&,1,-20,-1,0,-1i7,-9,-4,-17,0,-16,-10,4,-8,1,1,1,-2,-15,-22,-10,0; D=-5;

/1: DM=-25;

/M: SY='Y'; M=-9,-15,-21,-18,-13,1,-23,-7,0,-10,3,2,-12, -22, -9, -6, -12, -5, -1,-11,6,-12; D=-5;
/1: DM=-25;

/M: SY='L': M=-8,-27,-18,-31,-23,13,-29,-21,19,-25,23,13,-23,-26,-22,-20,-19,-7,15,-16,2, -23;
/M: BY='V'; M=B.-21,-13,-27,-21,0,-19,-21,10,-20,8,4,-19,-22,-19, -20, -8, -3, 14, -19, -6, -20;

/M: 8Y='T'; M=8,-6,-8,-10,-%,-13,-5,-15,-11,-12,-15,-11,-1,-123,-9,-13,20,21,-1,-32, -15, -9;
/M. 8Y='G'; M=10,-10,-9,-14,-16,-21,22,-30, -22,-16, -19,-14,-5,-13, -16,-18,6, -5, -11, -26, -213, -16;

/M: 8¥='8'; M=5,-3,-13,-5,-8,-19,11,-12,-23,-13, -23, -16,2, -15, -8, -14,146,3, -14,-29, -17, -8,

/M: M=-4,-2,-21,-2,-1,-16,-10,-7,-17,-4,-14,-9,-2,-14,-3, -4,-1, -4, -14,-18, -8, -2;

/M: SY='D'; M=-16,39,-28,52,16,-35,-8,0,-35,0,-28,-26,19,-11,1,-8,2,-7,-27,-27,-19,9:
/M: 8Y='G'; M=-5,-1,-22,-4,-6,-22,11,-5,-27,-1,-23,-13,6,-16,-4,1,1,-8,-22,-24,-16, -5;
/M: 8Y¥='T'; M=-3,-2,-17,-6,-4,-14,-16,-8,~11,-4,-12,-7,0,-15,-2,-4,6,11,-7,-27, -9, -3;
/M S¥='1'; M=-2,-27,-14,-32,-25,0,-30,-26,27.-24,17,12,-23,-24,-22,-21,-15,-5,26,-23 -6,-25;
/M SY="R'; 19,-7,-23,-10,-3,-15,-15,-5,-16,12, -14,-5,-3,-17,2,18, -7, -6, -12, -20, -5, -2;

/M SY='I'; M=-7,-27,-18,-31,-24,6,-30,-22,23,-24,19,13, -23.-26, -21,-20,-17,-6,22,-20,-1, -24;

/RELEASE=40.7,103373;

/TOTAL=1167{352); /POSITIVE=1362(348); /UNKNOWN=4(3); /FALSE POS=1(Ll};
/FALSE_NEG=25; /PARTLAL=1;

/MATRIX_TYPE=protein_domain;

/SCALING_DBR=reversed;

/AUTHOR=K Hofmann;

/TAKQ-RANGE=??EP?; /MAX-REPEAT=15;

/FT _KEY=REPEAT; /FT DESC=WD;

015491, ANIH_HUMAN, T; Q52747, ARLA_HUMAN, T; 015143, ARLB _HUMAN, T;
Q4Wv3i2, AR1B MOUSE, T; OBBE56, ARLB_RAT , T; P78774, AR41_SCHPO, T;
P26449, BUB3_YEAST, T; Q9FMUS, CG48_ARATH, T; Q9Y5J1, CG4B_HUMAN, T,
P78750, CG48_SCHPO, T, 014011, CWF8_SCHRO, T; Q92466, DDB2_HUMAN, T
Q09019, DMWD_HUMAN, T; Q08274, DMWD_MOUSE, T; QL65%%, DYI2_ANTCR, T;
Q62871, DYI2_RAT , T, QOUI4&, DYIJ_HUMAN, T; Q2424s, DYIN DROME, T;
045487, EMAL_CAEEL, T; Q9VUI3, EMAL_DROME, T; P57775, FBW4_HUMAN, T;
Q9JMJ2, FBW4_MOUSE, T; Q9%6%8, LYST HUMAN, T; P33215, NED1_MOUSE, T;
P25182, YCW2 YEAST, T; Q0%99C, ¥SS51_CAEEL, T, Q12220, DIP2_YEAST, T:
014727, APAF_HUMAN, T; Q9UNX4, WODR3I_HUMAN, T; P7444%2, Yla3_SYdNYl, T;
055029, COPP_MOQUSE, P;

P318128, AR41_YEAST, N; PS0851, CC4H_HUMAN, N; P42000, CG48_CAEEL, N;
Q9V7PL, CG48_DROME, N; 014576, DYI1 HUMAN, N; OB848S, DYI1l MOUSE, N:
Q613100, DYI1 RAT , N; Q39578, DYIZ_CHLRE, N; Q13409, DYI2_HUMAN, N;
QBE487, DYI2 _MOUSE, N; Ql6960, DYI3_ANTCR, N, P27766, DYIJ_CHLRE, N;
P54703, DYIN DICDI, N; Q9UKB7, FBW3_HUMAN, N; P25365, SED4_YEAST, N;
Q03010, UME1l_YEAST, N; P33231, VP4l_LYCES, N; QUP2SS, WDR8_HUMAN, N;
Q9.JM28, WDR8_MOUSE, N; QSBZH6, WDRB_HUMAN, N; Ql2363, WTML_ YEAST, N;
Q12206, WTM2 YEARST, N; Ql0437, YDE3_SCHPQ, N; P436Q1, YFJ1_YEAST, M;
QIRRKS, YO34 _DEIRA, N;

P40560, PALL_YBAST, ?;

£22219, VPLlS_YEAST, ?; P38163, SNI2_YEAST, °?
15CG; 1AOR; 1B9X; 1B9Y; 1GG2; 1GP2; LTBG;
eDOCO0574,;

P13595, NCAP_LASSJ, F;

HMMER2 . C [2.29]
NAME prion

ACC PFQQ2377

DESC fPrion protein

LENG 244
ALPH Amino
RF no
CcSs no
MAP yes

COM hmmbuild -F EMM_ls.ann SEED.ann
coM hmmcalibrate --seed 0 HMM_ls.ann

NULE 595 -1558 BS 338 -2%4 453 -1158 197 24% %02 -1085 -142 -21 -313 4% 531 201 384 -1358 -644

NSEQ 3

DATE Wed May 1 15:45:02 2002
CKSUM 4026

GA -61.0 -61.0

TC -60.7 -60.7

NC -69.3 -6%.3

XT -8455 -4 -1000 -1000 -8455 -4 -B455 -4
NULT -4 -8455

EVD -152.902084 0.1517513
HMM

/

Fig. 5.13 Excerpt from a Pfam entry, illustrating some of the technical parameters stored for the prion protein family.

include: ANK_REP_REGION, for ankyrin repeats;
COLLAGEN_REP, for the G-X-X collagen repeat;
and PUM_REPEATS, for the pumilio RNA-binding
domain. In addition, CC/MATRIX_TYPE=com-
position denotes a profile for compositionally biased
regions, e.g., PRO_RICH, proline-rich region (such
profiles exist for each amino acid).

5.5.8 Pfam

Just as there are different ways of using motifs to
characterize protein families (e.g., depending on the
scoring scheme used), so there are different methods
of using full sequence alignments to build family dis-
criminators. An alternative to the use of profiles is to
encode alignments using hidden Markov models
(HMMs). These are statistically based mathematical
treatments, consisting of linear chains of match,
delete, or insert states that attempt to encode the
sequence conservation within aligned families
(more details in Chapter 10).

In 1994, a collection of HMM:s for a range of pro-
tein domains was created at the Sanger Institute
—this was the Pfam database. Today, Pfam (Bateman

etal. 2004) comprises two distinct sections: (i) Pfam-
A, which contains automatically generated (but
often hand-edited) seed alignments of representative
family members, and full alignments containing
all members of the family detected with an HMM
constructed from the seed alignment using the
HMMER?2 software; and (ii) Pfam-B, which is a fully
automatically generated supplement derived from
the ProDom database (Corpet et al. 2000). Full
alignments in Pfam-A can be large (many contain
thousands of sequences) and, as with Pfam-B,
because they are generated fully automatically, are
not always reliable. In February 2004, Pfam con-
tained 7316 entries.

The methods that generate the best full align-
ments vary for different families; the parameters are
therefore saved so that the result can be reproduced.
This information, coupled with minimal annota-
tions (sometimes just a descriptive family title),
database and literature cross-references, etc., seed
and full alignments, and the HMMs themselves,
form the backbone of Pfam-A. Some of the technical
documentation for the prion entry is illustrated in
Fig. 5.13.

Fig. 5.12 (opposite) Excerpt from a PROSITE profile entry, illustrating part of the profile used to characterize WD-40 repeats.

Information resources for genes and proteins

e 107

The first line of the file indicates the version of the
software used to create the HMM, and the NAME tag
provides a code by which the entry can be identified
(here prion). Each entry also has an accession num-
ber, which takes the form PFOO000, and a descript-
ive title (DESC) indicating the name of the protein
domain or family. The length of the domain is also
given (LENG) and the alphabet specified (here,
Amino).

Details of how the HMM was constructed are pro-
vided on the COM lines, the number of sequences
used in the seed alignment on the NSEQ line (here 3),
and the date of its creation on the DATE line. A vari-
ety of cut-off values are stored on the GA (gather-
ing), TC (trusted), and NC (noise) lines, respectively.
Various statistical parameters then follow (includ-
ing data relating to the extreme value distribution
(EVD)) prior to the HMM itself (not shown). The file
ends with a // terminator.

Although entries in Pfam-A carry some annota-
tion (e.g., including brief details of the domain, its
structure and function (where known), links to
other databases), extensive family annotations are
not provided. However, where available, additional
information is incorporated directly from InterPro
(much of which is derived from PROSITE and
PRINTS). Pfam is available for keyword and sequ-
ence searching via the Sanger Institute Web server.

5.5.9 eMOTIF

Another automatically generated database is
eMOTIF, produced at Stanford University (Huang
and Brutlag 2001). The method used to create this
resource is based on the generation of regexs from
ungapped motifs stored in the Blocks and PRINTS
databases. Rather than encoding the exact informa-
tion observed at each position in these motifs,
eMOTIF adopts a “permissive” approach in which
alternative residues are tolerated according to a set
of prescribed groupings, as illustrated in Table 5.4
(Neville-Manning, Wu, and Brutlag 1998). These
groups correspond to various biochemical proper-
ties, such as charge and size, theoretically ensuring
that the resulting motifs have sensible biochemical
interpretations.

108 ® Chapter 5

Table 5.4 Sets of amino acids and their properties used in
eMOTIE.

Small
Small hydroxyl
Basic

Aromatic

eMOTIF is created as a single text file, in which
each line corresponds to a unique record. Within
these records, the fields denote: the expected false-
positive frequency of the regex (i.e., the probability
that the regex will match a sequence of the same
length by chance); the accession number of the par-
ent motif and its descriptive name; the regex itself;
and its sensitivity (i.e., the percentage of sequences
matched from the parent motif). eMOTIF entries are
sorted by their expected false-positive frequencies,
such that the regex with the smallest value resides at
the beginning of the file.

Although eMOTIF’s use of residue groups is more
flexible than the exact-residue matching character-
istic of PROSITE, its inherent permissiveness brings
with it an inevitable signal-to-noise trade-off: i.e.,
the regexs not only have the potential to make
more true-positive matches, but will also match
more false-positives. Note should therefore be made
of the various stringency values when interpreting
the results of eMOTIF searches. The database is
accessible from Stanford University's Biochemistry
Department Web server.

5.6 COMPOSITE PROTEIN PATTERN
DATABASES

5.6.1 InterPro

While there is some overlap between them, the con-
tents of PROSITE, PRINTS, Profiles, and Pfam are

different. Furthermore, diagnostically, the resources
have different areas of optimum application, owing
to the different strengths and weaknesses of their
underlying analysis methods: e.g., regular expres-
sions are unreliable in the identification of members
of highly divergent superfamilies (where HMMs and
profiles excel); fingerprints perform relatively poorly
in the diagnosis of very short motifs (where regexs do
well); and profiles and HMMs are less likely to give
specific subfamily diagnoses (where fingerprints
excel). Thus, while all of the resources share a
common interest in protein sequence classifica-
tion, some focus on divergent domains, some focus
on functional sites, and others focus on families,
specializing in hierarchical definitions from super-
family down to subfamily levels in order to pinpoint
specific functions. Therefore, in building a search
strategy, it is sensible to include all of the available
databases, to ensure both that the analysis is as
comprehensive as possible and that it takes advant-
age of a variety of search methods.

Accessing these disparate resources, gathering
their different outputs, and arriving at a consensus
view of the results can be quite a challenge. There-
fore, in 1998, in an effort to provide a one-stop shop
for protein family diagnosis and hence make sequ-
ence analysis more straightforward, the curators of
PROSITE, Profiles, PRINTS, Pfam, and ProDom
began working together to create a unified database
of protein families. The aim was to create a single
resource, based primarily on the comprehensive
annotation in PROSITE and PRINTS, wherein each
entry would point to relevant discriminators in the
parent databases — this was InterPro (Mulder et al.
2003). From its first release in November 1999,
InterPro proved tremendously popular, and further
databases have since joined the consortium —recent
additional partners include SMART (Letunic et al.
2002) and TIGRFAMs (Haft et al. 2001).

Integrating data from so many different data-
bases, each of which uses different terminology and
concepts to describe families and domains, is not
straightforward. Files submitted by each of the
groups must therefore be systematically merged and
dismantled before being incorporated into InterPro.
Where relevant, family annotations are amalgam-

ated, and all method-specific annotation separated
out.

The amalgamation process is complicated by the
relationships that can exist between entries in the
same database, and between entries in different
databases. When investigating these relationships
more closely, different types of parent—child rela-
tionships became evident; these were subsequently
designated “sub-types” and “sub-strings”. A sub-
string means that a motif (or motifs) is contained
within a region of sequence encoded by a wider pat-
tern (e.g., a PROSITE regex is typically contained
within a PRINTS fingerprint, or a fingerprint might
be contained within a Pfam domain). A sub-type
means that one or more motifs are specific for a sub-
set of sequences captured by another more general
pattern (e.g., a superfamily fingerprint may contain
several family- and subfamily-specific fingerprints;
or a generic Pfam domain may include several fam-
ily fingerprints). A further relationship also exists
between InterPro entries — the “contains/found in”
relationship. This arises in the case of domains that
are found in several structurally and functionally
discrete families.

Having classified the different relationships of
contributed entries, all recognizably distinct entities
are assigned unique accession numbers. In doing
this, the guiding principle is that parents and chil-
dren with sub-string relationships should have the
same accession numbers, while sub-type parent—
child and contains/found in relationships warrant
their own accessions. In February 2004, InterPro
contained 10,403 entries, including 7901 families,
2239 domains, 197 repeats, 26 active sites, 20
binding sites, and 20 PTMs, built from PRINTS
37.0, PROSITE 18.1, Pfam 11.0, ProDom 2002.1,
SMART 3.4, TIGRFAMs 3.0, PIR SuperFamily 2.3,
and SUPERFAMILY 1.63, indexed to Swiss-Prot
42.5 and TrEMBL 25.5.

5.6.2 The structure of InterPro entries

InterPro entries contain one or more signatures
from the individual member databases, together
with merged annotation and lists of matched
proteins from specified versions of Swiss-Prot and

Information resources for genes and proteins ® 109

Accession IPROODB17; Prion {(matches 144 proteins)

Name Prion protein

Type Family

Dates 08-OCT-199%9 (created)
26-JAN-2001 {last modified)

Signarures PROG341; PRICON (130 proteins
PS00291; PRION_1 (119 proteins)

B500706; PRION_2 (99 proteins)
PFQ0377; prion (1131 proteins)
SM00157; PRP {109 proteins)

Abstract Prion protein (PrP) [1, 2, 3] is a small glycopratein found in high guantity in the brain
of animals infected with certain degenerative neurclocgical diseases, such as sheep scrapie
and bovine spongiform encephalopathy (BSE), and the human dementias Creutzfeldt-Jacob
disease (CJD} and Gerstmann-Straussler syndrome (GSS). PrP is encoded in the host genome
and is expressed both in normal and infected cells. During infection, however, Lthe PrP
molecules become altered and polymerise, yielding fibrils of modified PrP protein. Prp
molecules have been found on the outer surface of plasma membranes of nerve cells, to
which they are anchored through a covalent-linked glycolipid, suggesting a role as a
membrane receptor. PrP is also expressed in other tissues, indicaring that it may have
different functions depending on its locaticn., Structurally, PrP is a protein consisting
of a signal peptide, followed by an N-terminal domain that contains tandem repeats of a
Pro/Gly rich octapeprtide. This is followed by a highly conserved domain of about 140
residues that contains a disulfide bond. Finally comes a C-terminal hydrophobic domain
post-translaricnally removed when PrP is attached ta the extracellular side of the cell
membrane by a GPI-anchor. The seguences also contain sites of Asn-linked glycosylartion.
These PrP seguences show some similarity to a chicken glycoprotein, thought to be an
acatylcholine receptor-inducing activity (ARIA] molecule. It tas been suggested that
changes in the octapeptide repeat region may indicate a predisposition to disease, but it
is not known for certain whether the repeat can meaningfully be used as a fingerprint ro
indicate suscepribilicy.

Examples
046501 PRIO_CANFA: Dog
P04925 PRIOQ_MOUSE: Mouse
P19279 PRIQ_BOVIN: Bovine
P04156 PRIO_HUMAN: Human

References
Prusiner S5.B.

Scrapie prioas.
Annu. Rev. Microbiol. 43: 345-374(1989}). [MEDLINE:S%00249S5&
Stahl N., Prusiner 5.8,

Prions and prion proteins.
FASER J. 5: 2799-2807(1991}.
Bruncri M., Chiara Silvestrinol M.,

[MEDLINE:92008560]
Pocchiari M.

The scrapie agent and the prion hypothesis.

Trends Biochem. Sci. 13:
PROSITE doc; PDOCO0283
8locks; IPBO00817

Database links

309-313(1588).

[MEDLINE:21134832]

Fig. 5.14 Excerpt from an InterPro entry, illustrating some of the annotation stored for the prion protein family.

TrEMBL. An example is shown in Fig. 5.14. Each
entry has a unique accession number (which takes
the form IPROO0O000), a short name, or code, by
which the entry may be identified, and a descriptive
title. An abstract derived from merged annotation
from the member databases describes the family,
domain, repeat or PTM, and literature references
used to create the abstract are stored in a reference
field. Examples of representative family members are
also provided. Where relationships exist between
entries, these are displayed in a “parent”, “child”,
“contains”, or “found in” field.

110 @ Chapter 5

Additional annotation is available for some
entries in the form of mappings to Gene Ontology
(GO) terms (The Gene Ontology Consortium 2001).
The GO project is an effort to provide a universal sys-
tem of terminology for describing gene products
across all species. We discuss GO in Section 13.6,
and consider more carefully what is meant by the
word “ontology”. For the moment, we note that GO
is divided into three sections describing “molecular
function”, “biological process”, and “cellular com-
ponent”. As many of these concepts are central to
InterPro annotation, wherever possible its entries

|IPRO00817 mmm mmm = = —-— -

=mm mmm PRION

Fig. 5.15 Example graphical output IPRO00817 ool PRION 1
from InterPro, showing matches to the IPRO00817 oo PRI ON_ 5
PRINTS (black), PROSITE (spotted),) -
Pfam (striped), and SMART (checked) IPRO00817 7 7] prion

prion protein signatures. IPRO00817

have been mapped to GO terms to provide an
automatic means of assigning GO terms to their con-
stituent proteins.

In addition to cross-referencing the member data-
base signatures and GO terms, a separate field pro-
vides cross-references to other databases. Included
here are links to corresponding Blocks entries;
PROSITE documentation; and the Enzyme Com-
mission (EC) Database, where the EC number(s)
for proteins matching the entry are shared. Where
applicable, there may also be links to specialized
resources, e.g., the CArbohydrate-Active EnZymes
(CAZy) site, which describes families of related
catalytic and carbohydrate-binding modules of
enzymes that act on glycosidic bonds.

A particular advantage of InterPro is that each
sequence within a family is linked to a graphical out-
put that conveniently summarizes where matches
occur to each of the signatures in the source data-
bases. An example of such graphical output is
illustrated in Fig. 5.15, which shows matches from
PRINTS, PROSITE, Pfam, and SMART on the human
prion sequence. This type of output also neatly
illustrates the difference between motif-based meth-
ods, which match small regions of the sequence, and
profile-based methods, which more or less span
the sequence completely. InterPro is available for

Table 5.5 PDB protein structure holdings in February 2004.

Experimental
method

Proteins, pepti
and viruses

X-ray diffraction, etc. 19,01
NMR 2,9
Total

PRP

keyword and sequence searching via the EBI Web
server.

5.7 PROTEIN STRUCTURE
DATABASES

A discussion of the repertoire of biological databases
available for sequence analysis would not be complete
without some consideration of protein structure-
based resources. These are limited to the relatively
few 3D structures generated by crystallographic and
spectroscopic studies, but their impact will increase
as more structures become available, notably as a
result of ongoing high-throughput structural gen-
omics initiatives. In general, these resources can
be divided into those that house the actual 3D coor-
dinates of solved structures, and those that classify
and summarize the structures of those proteins.

5.7.1 The PDB

The PDBis the single world-wide archive of biological
macromolecular structures (Bourne et al. 2004). In
February 2004, it contained a total of 24,248 en-
tries, of which 21,948 were protein, peptide, and virus
structures deduced by means of X-ray diffraction,

e 111

Information resources for genes and proteins

NMR, or modeling (see Table 5.5); the remainder
were nucleic acid, nucleic acid/protein complex,
and carbohydrate structures.

What is not evident from these figures is that the
PDB is a massively redundant resource. Owing to
the nature of research, where particular proteins
become the focus of repeated structure determina-
tions, the contents of PDB are skewed by relatively
small numbers of such commonly studied proteins
(e.g., hemoglobin, myoglobin, lysozyme, immuno-
globulins). Consequently, the number of unique
structures within the PDB is probably little more
than 3000.

Nevertheless, the PDB is immensely valuable.
Studies of protein structure archives have revealed
that many proteins share structural similarities,
often reflecting common evolutionary origins, via
processes that involve substitutions, insertions, and
deletions in the underlying sequences. For distantly
related proteins, such changes can be extensive,
yielding folds in which the numbers and orienta-
tions of secondary structures vary considerably.
However, where the functions of proteins are con-
served, the structural environments of critical
active-site residues are also generally conserved. In
an attempt to better understand sequence/structure
relationships, and the evolutionary processes that
give rise to different fold families, a variety of struc-
ture classification schemes have been established.

The nature of the information presented by struc-
ture classification schemes is largely dependent on
the methods used to identify and evaluate similar-
ity. Families derived, for example, using algorithms
that search and cluster on the basis of common
motifs will be different from those generated by pro-
cedures based on global structure comparison; and
the results of such automatic procedures will differ
again from those based on visual inspection, where
software tools are used essentially to render the task
of classification more manageable. A number of
structure-classification resources are outlined in the
sections that follow.

5.7.2 Scop
The SCOP (Structural Classification of Proteins)

112 ® Chapter 5

database classifies proteins of known structure
according to their evolutionary and structural rela-
tionships (Andreeva et al. 2004). Domains in SCOP
are grouped by species and hierarchically classified
into families, superfamilies, folds, and classes, a task
complicated by the fact that structures exhibit great
variety, ranging from small, single domains to vast
multi-domain assemblies, so that sometimes it
makes sense to classify by individual domains, and
other times at the multi-domain level. Because auto-
matic structure comparison tools cannot identify all
such relationships reliably, SCOP has been con-
structed using a combination of manual inspection
and automated methods.

Proteins are classified in a hierarchical fashion to
reflect their structural and evolutionary relatedness.
Within the hierarchy there are many levels, but
principally these describe the family, superfamily,
and fold. The boundaries between these levels may
be subjective, but the higher levels generally reflect
the clearest structural similarities:

» Families generally represent clear evolutionary
relationships, with sequence identities greater than
or equal to 30%. This is not an absolute measure,
as it is sometimes possible to infer common descent
in the absence of significant sequence identity (e.g.,
some members of the globin family share only 15%
identity).

* Superfamilies represent groups of proteins with
low sequence identity that probably share common
evolutionary origins on the basis of similar struc-
tural and functional characteristics.

* Folds denote major structural similarities (i.e., the
same major secondary structures in the same
arrangement and with the same topology), irrespec-
tive of evolutionary origin (e.g., similarities could
arise as a result of physical principles that favor par-
ticular packing arrangements and fold topologies).

The seven main classes in SCOP 1.65 contain
40,452 domains organized into 2327 families,
1294 superfamilies, and 800 folds. These domains
correspond to 20,619 entries in the PDB. Analyzing
the contents more closely (Table 5.6), it is clear that
the total number of families, superfamilies, and folds
(~4,400) is significantly less than the total number
of protein structures deposited in the PDB. SCOP is

Table 5.6 SCOP statistics for PDB
release 1 August 2003 (excluding
nucleic acids and theoretical models).

available for interrogation from the MRC Laboratory
of Molecular Biology Web server.

5.7.3 CATH

The CATH (Class, Architecture, Topology, Homology)
database is a hierarchical domain classification of
protein structures (Pearl et al. 2003). The resource is
largely derived using automatic methods, but man-
ual inspection is necessary where automatic meth-
ods fail. Different categories within the classification
are identified by means of both unique numbers (by
analogy with the EC system for enzymes) and des-
criptive names. Such a numbering scheme allows
efficient computational manipulation of the data.
There are four levels within the hierarchy:

 Class denotes gross secondary structure content
and packing, including domains that are: (i) mainly
o, (ii) mainly B, (iii) o — B (alternating o/ or o + 3
structures), and (iv) those with low secondary struc-
ture content.

» Architecture describes the gross arrangement of
secondary structures, ignoring connectivity, and is
assigned manually using simple descriptions, such
as barrel, roll, sandwich, etc.

* Topology assigns the overall shape and sec-
ondary structure connectivity by means of structure
comparison algorithms — structures in which at
least 60% of the larger protein matches the smaller
are assigned to the same level.

* Homology clusters domains that share greater
than or equal to 35% sequence identity and are
thought to share a common ancestor (i.e., are

homologous) — similarities are identified both by
sequence- and structure-comparison algorithms.
CATH is accessible for keyword interrogation via the
UCL Web server.

5.7.4 PDBsum

A useful resource for accessing structural informa-
tion is PDBsum (Laskowski 2001), a Web-based
compendium of largely pictorial summaries and
analyses of all structures in the PDB. Each summary
gives an at-a-glance overview of the contents of a
PDB entry in terms of resolution and R factor, num-
bers of protein chains, ligands, metal ions, sec-
ondary structure, fold cartoons, ligand interactions,
and so on. This is helpful, not only for visualizing the
structures concealed in PDB files, but also for draw-
ing together information at both sequence and
structure levels. Resources of this type will become
more and more important as visualization techni-
ques improve, and new-generation software allows
more direct interaction with their contents. In
February 2004, PDBsum contained 25,632 entries.
The resource is accessible for keyword interrogation
via the UCL, Web server.

5.8 OTHER TYPES OF BIOLOGICAL
DATABASE

This chapter has focused on databases of nucleic acid
and protein sequences, and of protein families and
protein structures (their Web addresses are listed in

Information resources for genes and proteins ® 113

the Web Address Appendix at the end of this book).
Beyond these is a huge variety of more specialized
databases, with their own aims and subject coverage,
and it is impossible to do justice to them all. How-
ever, we will highlight two types of resource in this
necessarily brief final section: first, species-specific
databases, and second, databases that include infor-
mation about complex biological processes and
interactions.

Many species for which genome sequencing is
complete, or well advanced, have their own specific
databases. Sequence information per se may not be
their primary thrust — often, the goal is to present a
more integrated view of a particular biological sys-
tem, in which sequence data represent just one level
of abstraction, and higher levels lead to an overall
understanding of the genome organization. Import-
ant genome databases of model organisms include
Saccharomyces cerevisiae (SGD; Dwight et al. 2002),
Caenorhabditis elegans (WormBase; Stein et al. 2001),
Drosophila melanogaster (FlyBase; The FlyBase Con-
sortium 2002), Mus musculus (MGD; Blake et al.
2003), and Arabidopsis thaliana (TAIR; Rhee et al.
2003). The curators of these and other databases
have, in recent years, worked together as the Gene
Ontology Consortium (see Section 13.6), which
aims to develop a consistent form of annotation for
gene functions in different organisms.

There are several databases that aim to capture
some of the complexity of the processes within cells,
such as metabolic pathways, and gene signaling and
protein—protein interaction networks. These types
of information are fundamentally different from
sequence data and, arguably, much more complex.
They thus pose challenges in terms of how to
organize and store the data, and require us to
think carefully about which information is import-
ant to us and what we want to do with it. Important
examples in this category are KEGG (Kanehisa et al.
2002), WIT (Overbeek et al. 2000), and EcoCyc
(Karp et al. 2002), UM-BBD (Ellis et al. 2001), and
BIND (Bader, Betel, and Hogue 2003). Another type

114 ® Chapter 5

of biological information results from high-through-
put experimental techniques, like microarrays and
proteomics. There is also an increasing awareness
that storage and sharing of this type of experi-
mental data is important, if comparisons are to be
made between results from different laboratories.
We discuss databases of this type specifically in
Section 13.6.

Other resources of which readers should be aware
include the Ensembl genome database (Hubbard
etal. 2002), which provides a comprehensive source
of stable automatic annotation of the human
genome sequence; UniGene (Wheeler et al. 2002),
which attempts to provide a transcript map by
utilizing sets of non-redundant gene-oriented clus-
ters derived from GenBank sequences (the collection
represents genes from many organisms, including
human genes); TDB, which provides a substantial
suite of databases containing DNA and protein
sequence, gene expression, cellular role, and pro-
tein family information, and taxonomic data for
microbes, plants, and humans (Quackenbush et al.
2001); OMIM (Hamosh et al. 2002), a compendium
of genes and genetic disorders that allows systematic
study of aspects of human disease; CDD, a com-
pilation of multiple sequence alignments repres-
enting protein domains conserved in molecular
evolution (Marchler-Bauer et al. 2002); and hun-
dreds more!

We apologize to the curators of the many
databases we have had to leave out. As mentioned
earlier, a more comprehensive overview of molecu-
lar biology databases is given by Baxevanis in the
annual Nucleic Acids Research (NAR) Database Issue
(Baxevanis 2003) — short, searchable summaries
and updates of each of the databases are available
through the NAR Web site. A still more compre-
hensive list is available from DBcat, which enumer-
ated more than 500 biological databases in 2000
(Discala et al. 2000). We hope that you now feel
brave enough to go searching in today’s forest of bio-
databases: happy hunting!

REFERENCES

Andreeva, A., Howorth, D., Brenner, S.E., Hubbard, T.].P.,
Chothia, C., and Murzin, A.G. 2004. SCOP database in
2004: Refinements integrate structure and sequence
family data. Nucleic Acids Research, 32:D226-9.

Apweiler, R., Bairoch, A., Wu, C.H., Barker, W.C,,
Boeckmann, B., Ferro, S., Gasteiger, E., Huang, H.,
Lopez, R., Magrane, M., Martin, M.]., Natale, D.A.,
O'Donovan, C., Redaschi, N., and Yeh, L.S. 2004.
UniProt: the Universal Protein Knowledgebase. Nucleic
Acids Research, 32(1):D115-19.

Attwood, T.K. 1997. Exploring the language of bioinform-
atics. In H. Stanbury (ed.), Oxford Dictionary of Bio-
chemistry and Molecular Biology, pp. 715-23. Oxford,
UK: Oxford University Press.

Attwood, T.K. 2000a. The quest to deduce protein func-
tion from sequence: The role of pattern databases. Inter-
national Journal of Biochemistry Cell Biology, 32(2):
139-55.

Attwood, T.K. 2000b. The role of pattern databases
in sequence analysis. Briefings in Bioinformatics, 1:
45-59.

Information resources for genes and proteins @® 115

Attwood, T K., Avison, H., Beck, M.E., Bewley, M., Bleasby,
A.]., Brewster, F., Cooper, P., Degtyarenko, K., Geddes,
Al]., Flower, D.R., Kelly, M.P., Lott, S., Measures, K.M.,
Parry-Smith, D.J., Perkins, D.N., Scordis, P., and Scott,
D.1997.The PRINTS database of protein fingerprints: A
novel information resource for computational molecu-
lar biology. Journal of Chemical Information and Computer
Sciences, 37:417-24.

Attwood, T.K. and Beck, M.E. 1994. PRINTS — A protein
motif fingerprint database. Protein Engineering, 7(7):
841-8.

Attwood, T.K., Blythe, M.]., Flower, D.R., Gaulton, A.,
Mabey, J.E., Maudling, N., McGregor, L., Mitchell, A.L.,
Moulton, G., Paine, K., and Scordis, P. 2003. PRINTS
and PRINTS-S shed light on protein ancestry. Nucleic
Acids Research, 30(1): 239—41.

Attwood, T.K. and Parry-Smith, D.]. 1999. Introduction to
Bioinformatics. Harlow, UK: Addison Wesley Longman.

Bader, G.D., Betel, D., and Hogue, C.W.V. 2003. BIND:
The Biomolecular Interaction Database. Nucleic Acids
Research, 31: 248-50.

Bateman, A., Coin, L., Durbin, R., Finn, R.D., Hollich, V.,
Griffiths-Jones, S., Khanna, A., Marshall, M., Moxon, S.,
Sonnhammer, E.L.L., Studholme, D.J., Yeats, C., and
Eddy, S.R. 2004. The Pfam protein families database.
Nucleic Acids Research, 32:D138-44.

Baxevanis, A.D. 2003. The Molecular Biology Database
Collection: 2003 update. Nucleic Acids Research, 31:
1-12.

Benson, D.A., Karsch-Mizrachi, 1., Lipman, D.]., Ostell, .,
and Wheeler, D.L. 2004. GenBank: Update. Nucleic
Acids Research,32:D23-6.

Boeckmann, B., Bairoch, A., Apweiler, R., Blatter, M.C.,
Estreicher, A., Gasteiger, E., Martin, M.J., Michoud, K.,
O’Donovan, C., Phan, L., Pilbout, S., and Schneider, M.
2003. The Swiss-Prot protein knowledge base and its
supplement TrEMBL in 2003. Nucleic Acids Research,
31(1): 365-70.

Boguski, M.S., Lowe, T.M., and Tolstoshev, C.M. 1993.
dbEST — database for “expressed sequence tags”. Nature
Genetics, 4(4): 332-3.

Blake, J.A., Richardson, J.E., Bult, C.]., Kadin, J.A., Eppig,
J.T., and the Mouse Genome Database Group. 2003.
MGD: The Mouse Genome Database. Nucleic Acids
Research,31:193-5.

Bourne, P.E., Addess, K.J., Bluhm, W.F., Chen, L.,
Deshpande, N., Feng, Z., Fleri, W., Green, R., Merino-Ott,
J.C., Townsend-Merino, W., Weissig, H., Westbrook, J.,
and Berman, H.M. 2004. The distribution and query

116 ® Chapter5

systems of the RCSB Protein Data Bank. Nucleic Acids
Research, 32:D223-5.

Corpet, F., Servant, F., Gouzy, J., and Kahn, D. 2000.
ProDom and ProDom-CG: Tools for protein domain
analysis and whole genome comparisons. Nucleic Acids
Research, 28(1): 267-9.

Dayhoff, M.O. 1965. Atlas of Protein Sequence and Structure.
Silver Spring, MD: National Biomedical Research
Foundation.

Discala, C., Benigni, X., Barillot, E., and Vaysseix, G. 2000.
DBCat: A catalog of 500 biological databases. Nucleic
Acids Research, 28(1): 8-9.

Dwight, S.S., Harris, M.A., Dolinski, K., Ball, C.A., Binkley,
G., Christie, K.R., Fisk, D.G., Issel-Tarver, L., Schroeder,
M., Sherlock, G., Sethuraman, A., Weng, S., Botstein,
D., and Cherry, M.J. 2002. Saccharomyces Genome
Database (SGD) provides secondary gene annotation
using the Gene Ontology (GO). Nucleic Acids Research,
30(1): 69-72.

Ellis, L.B.M., Hershberger, C.D., Bryan, E.M., and Wackett,
L.P. 2001. The University of Minnesota Biocatalysis/
Biodegradation Database: Emphasizing enzymes. Nucleic
Acids Research, 29(1): 340-3.

Etzold, T., Ulyanov, A., and Argos, P. 1996. SRS —
Information-retrieval system for molecular-biology data-
banks. Methods in Enzymology, 266: 114-28.

Garavelli,].S., Hou, Z., Pattabiraman, N., and Stephens,
R.M. 2001. The RESID Database of protein structure
modifications and the NRL-3D Sequence-Structure
Database. Nucleic Acids Research, 29(1): 199-201.

Halft, D.H., Loftus, B.]., Richardson, D.L., Yang, F., Eisen,
J.A., Paulsen, 1.T., and White, O. 2001. TIGRFAMs: A
protein family resource for the functional identification
of proteins. Nucleic Acids Research, 29(1): 41-3.

Hamosh, A., Scott, A.F., Amberger, J., Bocchini, C., Valle,
D., and McKusick, V.A. 2002. Online Mendelian Inher-
itance in Man (OMIM), a knowledge base of human
genes and genetic disorders. Nucleic Acids Research,
30(1): 52-5.

Henikoff, J.G., Greene, E.A., Pietrokovski, S., and Henikoff,
S. 2000. Increased coverage of protein families with the
Blocks database servers. Nucleic Acids Research, 28(1):
228-30.

Huang, J.Y. and Brutlag, D.L. 2001. The eMOTIF data-
base. Nucleic Acids Research, 29(1): 202—4.

Hubbard, T., Barker, D., Birney, E., Cameron, G., Chen, Y.,
Clark, L., Cox, T., Cuff, J., Curwen, V., Down, T., Durbin,
R., Eyras, E., Gilbert, J., Hammond, M., Huminiecki, L.,
Kasprzyk, A., Lehvaslaiho, H., Lijnzaad, P., Melsopp, C.,

Mongin, E., Pettett, R., Pocock, M., Potter, S., Rust, A.,
Schmidt, E., Searle, S., Slater, G., Smith, J., Spooner, W.,
Stabenau, A., Stalker, J., Stupka, E., Ureta-Vidal, A.,
Vastrik, I., and Clamp, M. 2002. The Ensembl genome
database project. Nucleic Acids Research, 30(1): 38—41.

Hulo, N., Sigrist, C.J., Le Saux, V., Langendijk-Genevaux,
P.S., Bordoli, L., Gattiker, A., De Castro, E., Bucher, P.,
and Bairoch, A. 2004. Recent improvements to the
PROSITE database. Nucleic Acids Research, 32(1):
D134-7.

Kanehisa, M., Goto, S., Kawashima, S., and Nakaya, A.
2002. The KEGG databases at GenomeNet. Nucleic Acids
Research, 30(1): 42-6.

Karp, P.D., Riley, M., Saier, M., Paulsen, 1.T., Collado-
Vides, J., Paley, S.M., Pellegrini-Toole, A., Bonavides, C.,
and Gama-Castro, S. 2002. The EcoCyc Database.
Nucleic Acids Research, 30(1): 56—8.

Kulikova, T., Aldebert, P., Althorpe, N., Baker, W., Bates,
K., Browne, P., van den Broek, A., Cochrane, G.,
Duggan, K., Eberhardt, R., Faruque, N., Garcia-Pastor,
M., Harte, N., Kanz, C., Leinonen, R., Lin, Q., Lombard,
V., Lopez, R., Mancuso, R., McHale, M., Nardone, F.,
Silventoinen, V., Stoehr, P., Stoesser, G., Tuli, M.A.,
Tzouvara, K., Vaughan, R., Wu, D., Zhu, W., and
Apweiler, R. 2004. The EMBL Nucleotide Sequence
Database. Nucleic Acids Research, 32:D27-30.

Laskowski, R.A. 2001. PDBsum: Summaries and ana-
lyses of PDB structures. Nucleic Acids Research, 29(1):
221-2.

Letunic, I., Goodstadt, L., Dickens, N.J., Doerks, T., Schultz,
J., Mott, R., Ciccarelli, F., Copley, R.]., Ponting, C.P., and
Bork, P. 2002. Recent improvements to the SMART
domain-based sequence annotation resource. Nucleic
Acids Research, 30(1): 242—4.

Marchler-Bauer, A., Panchenko, A.R., Shoemaker, B.A.,
Thiessen, P.A., Geer, L.Y., and Bryant, S.H. 2002. CDD:
A database of conserved domain alignments with links
to domain three-dimensional structure. Nucleic Acids
Research, 30(1): 281-3.

Mewes, H.W., Frishman, D., Giildener, U., Mannhaupt, G.,
Mayer, K., Mokrejs, M., Morgenstern, B., Miinsterkotter,
M., Rudd, S., and Weil, B. 2002. MIPS: A database for
genomes and protein sequences. Nucleic Acids Research,
30(1):31-4.

Miyazaki, S., Sugawara, H., Gojobori, T., and Tateno, Y.
2004. DDBJ in the stream of various biological data.
Nucleic Acids Research, 32:D31-4.

Mulder, N.J., Apweiler, R., Attwood, T.K., Bairoch, A.,
Bateman, A., Binns, D., Biswas, M., Bradley, P., Bork, P.,

Bucher, P., Copley, R.R., Courcelle, E., Das, U., Durbin,
R., Falquet, L., Fleischmann, W., Griffith-Jones, S., Haft,
D., Harte, N., Hermjakob, H., Hulo, N., Kahn, D.,
Kanapin, A., Krestyaninova, M., Lopez, R., Letunic, I.,
Lonsdale, D., Silventoinen, V., Orchard, S., Pagni, M.,
Peyruc, D., Ponting, C.P., Servant, F., Sigrist, C.J.A.,
Vaughan, R., and Zdobnov, E. 2003. The InterPro
database — 2003 brings increased coverage and new
features. Nucleic Acids Research, 31(1): 315-18.

Neville-Manning, C.G., Wu, T.D., and Brutlag, D.L. 1998.
Highly specific protein sequence motifs for genome ana-
lysis. Proceedings of the National Academy of Sciences USA,
95:5865-71.

Overbeek, R., Larsen, N., Pusch, G.D., D’Souza, M., Selkov,
E., Jr., Kyrpides, N., Fonstein, M., Maltsev, N., and
Selkov, E. 2000. WIT: Integrated system for high-
throughput genome sequence analysis and metabolic
reconstruction. Nucleic Acids Research, 28(1): 123-5.

Parry-Smith, D.J. and Attwood, T.K. 1992. ADSP — A new
package for computational sequence analysis. CABIOS,
8(5):451-9.

Pearl, F.M.G., Bennett, C.F., Bray, J.E., Harrison, A.P.,
Martin, N., Shepherd, A., Sillitoe, 1., Thornton, J., and
Orengo, C.A. 2003. The CATH database: An extended
protein family resource for structural and functional
genomics. Nucleic Acids Research, 31:452-5.

Quackenbush, J., Cho, J., Lee, D., Liang, F., Holt, L.,
Karamycheva, S., Parvizi, B., Pertea, G., Sultana, R.,
and White, J. 2001. The TIGR Gene Indices: Analysis of
gene transcript sequences in highly sampled eukaryotic
species. Nucleic Acids Research, 29(1): 159-64.

Rhee, S.Y. et al. 2003. The Arabidopsis Information
Resource (TAIR): A model organism database providing
a centralized, curated gateway to Arabidopsis biology, re-
search materials and community. Nucleic Acids Research,
31:224-8.

Stein, L., Sternberg, P., Durbin, R., Thierry-Mieg, J., and
Spieth, J. 2001. WormBase: Network access to the
genome and biology of Caenorhabditis elegans. Nucleic
Acids Research, 29(1): 82—6.

Schuler, G.D. 1996. Entrez: Molecular biology database
and retrieval system. Methods in Enzymology, 266: 141—
62.

The FlyBase Consortium. 2002. The FlyBase database of
the Drosophila genome projects and community liter-
ature. Nucleic Acids Research, 30(1): 106-8.

The Gene Ontology Consortium. 2001. Creating the gene
ontology resource: Design and implementation. Genome
Research, 11:1425-33.

Information resources for genes and proteins ® 117

Wheeler, D.L., Church, D.M., Lash, A.E., Leipe, D.D., Wu, C.H., Yeh, L-S.L., Huang, H., Arminski, L., Castro-

Madden, T.L., Pontius, J.U., Schuler, G.D., Schriml, Alvear, J., Chen, Y., Hu, Z.Z., Ledley, R.S., Kourtesis, P.,
L.M., Tatusova, T.A., Wagner, L., and Rapp, B.A. 2002. Suzek, B.E., Vinayaka, C.R., Zhang,]., and Barker, W.C.
Database resources of the National Center for Biotech- 2003. The Protein Information Resource. Nucleic Acids
nology Information: 2002 update. Nucleic Acids Research, Research,31(1): 345-7.

30(1): 13-16.

118 @ Chapter5

Sequence alignment

algorithms

CHAPTER PREVIEW

We present the dynamic programming algoritl
alignment. We consider variations in the al
types of gap cost functions and for glob.
given that show the sensitivity of the re
then discuss heuristic algorithms for
the commonly used progressive

6.1 WHAT IS AN ALGORITHM?

The sequence alignment problem is fundamental to
bioinformatics. Alignments show us which bits of a
sequence are variable and which bits are conserved.
They indicate the positions of insertions and dele-
tions. They allow us to identify important functional
motifs. They are the starting point for evolutionary
studies using phylogenetic methods. They form the
basis of database search methods. You can’t get far
in gene sequence analysis without an alignment.
Before describing the computational methods used
to produce alignments, we need to explain what is
meant by the term algorithm.

An algorithm is a series of instructions that explain
how to solve a particular problem. It is a recipe that
describes what steps to take to obtain the desired
answer. It consists of a series of logical or mathemat-
ical statements that explain what to do in what cir-
cumstances. An algorithm is not itself a computer
program, but a good programmer should easily be
able to translate any properly defined algorithm into
a program in any programming language.

CHAPTER

As a simple example, sup-
pose we have a list of numbers
in a random order and we
wish to sort them into ascend-
ing order (see Fig. 6.1(a)).
One easy algorithm for doing
this is called Insertion Sort,
which can be described in the
following way:

« Ifthe second element is less than the first element,
move the second element one place to the left (in this
case, swap 22 with 71).

« If the third element is less than the second, move
the third element to the left. If this element is also less
than the first element, move it another place to the
left (in this case, 9 moves to the beginning of the list).
* Consider each subsequent element and move it to
the left until the element preceding it is lower than it
or until it reaches the beginning of the list (e.g., 18 is
moved to second position).

 Continue until all elements are in ascending order.
It would be easy to write a computer program to
carry out this algorithm. You could also do it your-
self by hand (e.g., if you were sorting a pack of play-
ing cards into ascending numerical value).

An important property of algorithms is how long
they take to carry out or, more specifically, how the
time taken scales with the size of the problem, N.
In this example, N is the number of elements in the
list to be sorted. Since there are N elements to move,
the time taken must at least be proportional to N.
However, each element must be compared with
several elements to its left in order to slide it into its

Sequence alignment algorithms @ 119

correct place. The number of comparisons to be
made is typically proportional to N. Thus, the total
time taken is proportional to N2. We say that the
time taken for this algorithm is O(N?) — “of order N
squared”. The actual time taken will depend on how
good the programmer is, what language the pro-
gram is written in, and what computer runs the
program. Nevertheless, the time will always scale
with N2. Thus, it will always take four times as long
to sort a list of 200 numbers as it does to sort a list of
100 numbers using the Insertion Sort algorithm.
Sorting the elements of an array is something that
quite often crops up in real applications. For exam-
ple, suppose you write a search program to measure
similarity between sequences in a database and a
query sequence. It would be natural to sort the out-
put into descending order of sequence similarity, so
that the highest scoring match is at the top of the list.
Although Insertion Sort is simple to understand, it is
actually a rather inefficient algorithm for sorting
large arrays. There are many other methods that
run faster, although their algorithms are more
complex to describe. The book by Press et al. (1992)
has a chapter describing several practical methods
that is worth consulting if you ever need a sorting
program. We are not interested in the details of these
methods here. However, the sorting problem does

illustrate an important point about algorithms in
general. Often, there are several algorithms that
will produce the same result. In this case, there is a
trade-off between time and memory. Fast algorithms
often require additional working memory in the
computer to store quantities determined at inter-
mediate stages of the calculation. The Counting Sort
algorithm described by Cormen, Leiserson, and
Rivest (1990) runs in a time O(N) and is therefore
much faster than Insertion Sort, but it requires
two further storage arrays of size O(N), in addition to
the O(N) memory used to store the data. Insertion
Sort only requires a single spare variable to use as
swap space when exchanging pairs of numbers.
Counting Sort therefore uses roughly three times as
much memory as Insertion Sort. In cases where
algorithms for complex problems require memory
storage that is large compared to the input data for
the problem, the scaling of the required memory
space with N can be an issue. When memory is
scarce, a slow algorithm with smaller memory
requirements may be preferable.

Figure 6.1(b) illustrates another famous problem
in computer science: the traveling salesman prob-
lem (TSP). The problem is defined in the following
way: a salesman must make a trip to visit each one
of a set of cities exactly once and then return to his

(a) Unsorted list (b) Q
71 22 9 18 35 82 27 49 Q.Qr‘"'g :
— et . “

Q: R
22 71 9 18 35 82 27 49 0- 0 O Q'
— s e 5 M
S~ N B
9 22 71 18 35 82 27 49 Q- @ O
Start 0
9 18 22 71 35 82 27 49 9 0.9 :
Continue L.t HE
ontinue 0 0 O Q

this process

9 18 22 27 35 49 71 82

Sorted list Start

120 ® Chapter6

Fig. 6.1 (a) Sorting a list of numbers
into ascending order. (b) The traveling
salesman problem.

starting point. The distance between each pair of
cities is specified in advance. The problem is to find
the route that minimizes the total distance traveled.
The upper figure shows one rather long route that
wastes time by crossing over itself in several places.
The lower figure shows a more plausible route that
probably does not go too much farther than neces-
sary; however, it may not be the best. If there are N
cities, then there are N! possible routes. One way of
solving the TSP that is guaranteed to give the best
answer is by exact enumeration, i.e., a computer
could be asked to consider every one of the possible
orders in turn and save the best one. The time
required would also increase as N!, which is huge
(see Section M.2). So exact enumeration would only
be possible for very small N.

There are many computational problems where
the number of cases to be considered increases either
factorially (as N!) or exponentially (as o for some
constant o). In both cases, exact enumeration of all
the cases becomes impossible for large values of N.
Nevertheless, there are often algorithms that can
solve the problem in “polynomial time”, i.e., in a
time that is O(NP), for some constant B. The best
algorithms have 3 as small as possible. For example,
in the sorting problem there are also N! possible
orderings of the N elements, but we do not need to
check all these orderings one by one. The Insertion
Sort method is a polynomial time algorithm with
B = 2. On the other hand, the TSP is an example of
a problem for which there is no known algorithm
that can solve the problem exactly in polynomial
time. Computationally difficult problems like this
are known as NP-complete (where NP stands for
nondeterministic polynomial — see Cormen et al.
1992). Where we cannot find exact algorithms that
are guaranteed to give the correct answer, heuristic
algorithms are used. A heuristic algorithm is one
that we believe is likely to give a fairly good solution
most of the time, even though we cannot prove that
the solution given is really the best one.

One possible heuristic algorithm for the TSP
would simply be always to travel to the nearest city
that you have not been to before. This is likely to pro-
duce a route that is not too bad — certainly it will be
much better than a random route. However, it may

lead to a situation where the last city visited is very
far from the starting point, and hence there will be a
very large distance to travel home. This type of
heuristic is known as a greedy algorithm. Greedy
algorithms are shortsighted, i.e., they always do
what is best in the short term. Often, greedy algo-
rithms can be proposed as first solutions to a prob-
lem, and can then be improved by better heuristic
algorithms. There is a large literature on the devel-
opment of heuristic algorithms for the TSP. Both
exact and heuristic algorithms will arise in our
discussion of alignment methods in this chapter. In
molecular phylogenetics, we also require heuristic
algorithms to search through very large numbers of
possible evolutionary trees (see Section 8.5).

6.2 PAIRWISE SEQUENCE
ALIGNMENT - THE PROBLEM

We will begin with the basic problem of aligning two
sequences. A pairwise alignment of two DNA sequ-
ences looks something like this:

CAGT-AGATATTTACGGCAGTATC----
CAATCAGGATTTT--GGCAGACTGGTTG

Gaps have been inserted in both the top and the
bottom sequence in order to slide the sequences
along so that the regions of similarity between them
are apparent. When we align two sequences, we
usually do so because they are homologous, i.e., we
believe they have evolved from a common ancestor.
The alignment above means that the first two sites
CA have remained unchanged, while there has been
a mutation at the third site from a G to an A or from
an A to a G (we don’t know which). The gap at the
fifth site means that either there has been a deletion
in the top sequence or there has been an insertion of
a C in the bottom sequence (again we don’t know
which). When we look for the “best” alignment of
two sequences, we are really looking for the align-
ment that we think is most likely to have occurred
during evolution.

In order to obtain the best alignment, we need a
scoring system. We know that the sequences to be

Sequence alignment algorithms @ 121

aligned are composed of letters from an alphabet of
allowed characters. For DNA, the alphabet is just A,
C, G, and T. For proteins, it is the 20-letter alphabet
corresponding to the amino acids. The first part of
the scoring system is to define a score, S(o,), for
every pair of letters in the allowed alphabet. For
DNA, the scoring system is usually a very simple
one: we assign S(o,) = 1 whenever o and f§ are the
same nucleotide, and S(a,) = 0 whenever they are
different nucleotides. For proteins, we could also
assign 1 for identical amino acids and O for different
amino acids if we wished; however, this is not a very
useful scoring system for proteins in practice. A good
scoring system needs to reflect the fact that some
amino acids are similar to one another and some are
different. We want to assign a high positive score to
two identical amino acids, a slightly positive score to
two similar amino acids (say, D and E, or I and L),
and a slightly negative score for two amino acids
that are very different from one another (say, D and
I). In Chapter 4, we discussed the way scoring
matrices, such as PAM and BLOSUM, are calculated.
Any matrix of scores like this offers a possible scoring
system for aligning protein sequences. The align-
ment algorithm works in the same way whatever
scores we use, but the optimal alignment produced
by the algorithm will depend on the scoring system.
The second part of the scoring system is the
penalty for gaps. In general, let us define W(I) as the
penalty for a gap of length I characters. The simplest
function we can choose is a linear gap penalty: W(I)
= gl. This mean that each individual gap character
has a cost g, and the cost of the full gap is just g times
the length. However, in reality, it may not be that a
gap of three residues is three times as unlikely as a
gap of a single residue. It could be that a single event
created a gap of three residues. The likelihood of this
occurring therefore depends on the underlying
mutational process, i.e., the error in DNA replication
that created the gap in this gene. It also depends on
the selection process. We will usually be aligning
sequences that are real working molecules. Many
insertions or deletions may lead to molecules that
are nonfunctional (e.g., frame-shift mutations in the
coding regions of DNA) and those sequences will be
eliminated by selection. There are certain regions of

122 @ Chapter6

— =W =gl
""" w(l) = Yopen + Jext(I-1) X
—— General gap cost W(I) at

Gap cost ——

Gap length (I)

Fig. 6.2 Gap cost functions W(I) —linear, affine, and general
gap functions are shown.

sequences where we tend to find gaps and certain
regions where we don’t. For example, unstructured
“loop” regions in proteins tend to be much more
variable than regions with well-defined structures,
such as helices in membrane proteins. Taking all
these effects into account, we might expect that the
cost function W(l) should look something like the
curve in Fig. 6.2. It should increase steeply at first,
because making a gap is an unlikely evolutionary
event, but then it should increase less steeply as [gets
larger, because if we already know that a gap is pos-
sible at this position, then it may not be much more
unlikely to have a bigger gap than a smaller one.
There is no real theory to tell us what function to
use for gap penalties, although some progress has
been made in analyzing the empirical distribution
of gap sizes (Benner, Cohen, and Gonnet 1993).
For practical reasons, the gap-scoring system is
usually kept fairly simple. The most widely used
gap-scoring system in real applications is the Affine
Gap Penalty function. Here, we suppose that the
penalty for opening a new gap is Gopenr a0 the
penalty for extending the gap for each subsequent
step is g,,, Hence the penalty for a gap of length s
WD) = Gppen + GorelL = 1) This is shown as the dashed
line in Fig. 6.2. Usually g,,, < open for the reasons

given above. In fact, the Affine Gap Penalty function
is not that far from the general curved shape that
we might expect. An extreme case would be to set
g, = 0, in which case the penalty of a gap would be
just g, independent of its length.

Having defined our scoring system, it is possible to
calculate a score for any pairwise alignment, such as
the one at the beginning of this section:

Score = Z S(oLpB) — z w(l)

aligned gaps
pairs

(6.1)

The principle of pairwise alignment algorithms is
that we consider every possible way of aligning two
sequences by sliding one with respect to the other
and inserting gaps in both sequences, and we
determine the alignment that has the highest score.
The number of alignments is huge (it increases fac-
torially with the lengths of the sequences), hence we
cannot simply enumerate all possible alignments.
However, polynomial time algorithms are known
for solving this problem using a method known as
dynamic programming.

6.3 PAIRWISE SEQUENCE
ALIGNMENT - DYNAMIC
PROGRAMMING METHODS

6.3.1 Algorithm 1— Global alignment with linear
gap penalty

Suppose we have two sequences with lengths N, and
N,. The letters in the first sequence will be denoted g,
(where 1<i<N;) and the letters in the second
sequence will be denoted bj (where 1 <j<N,). We
will define H(i, j) as the score of the best alignment
that can be made using the first i letters of the first
sequence and the first j letters of the second sequ-
ence. We want to calculate the score H(N,,N,) for
aligning the full sequences. To do this, we will have
to calculate H(i,j) for each value of i and j and gra-
dually build up to the full length.

The first algorithm we consider is known as the
Needleman—Wunsch algorithm after its originators
(Needleman and Wunsch 1970). We wish to calcu-
late H(i, j), the score for the partial alignment ending

ina;and b;. There are only three things that can hap-
pen at the end of this partial alignment: (i) 4, and b;
are aligned with each other; (ii) 4, is aligned with a
gap; or (iii) b;is aligned with a gap. Since we want the
highest alignment score, H(i,j) is the maximum of
the scores corresponding to these three possibilities.
Hence we may write

Hi-1j-1)+Sa@

i’

b;) diagonal

H(i, j) = max H(i-1j)—g vertical
HGi,j—1)—g horizontal
(6.2)

In option (i), we add the score S(ai,b].) for aligning
a; and b; to the score H(i — 1,j — 1) for aligning the
sequences up to a;,_, and b,>1- In option (ii), we have
created a gap; therefore, we pay a cost, g, which we
subtract from the score H(i — 1,j) for aligning the
sequences up to a,_, and b].. Similarly, in option (iii),
we subtract g from the score for aligning the sequ-
ences up to a;and b]>1-

The scores H(i, j) are the elements of a matrix where
i labels the rows and j labels the columns. Option
(i) corresponds to making a diagonal step from the top
left of the matrix towards the bottom right. Option
(ii) corresponds to making a step vertically down-
wards, and option (iii) corresponds to making a step
horizontally from left to right. Equation (6.2) says
that if we want to know the score for the cell (i,j) in
the matrix, then we need to know the score for the
diagonal, vertical, and horizontal neighbors of this
cell. The key point about Eq. (6.2) is that it works for
every value of i and j. We can use the same formula
to work out the scores for the three neighbors in
terms of their neighbors. This formula is called a
recursion relation. We can use it recursively for each
cellin the matrix, starting with small values of i and j
and building up to large ones.

In order to get started with this recursion, we need
to know some initial conditions. In this case, we
know that H(i,0) = —gi. This means that the first i
letters of sequence 1 are aligned with nothing at all
from sequence 2. Hence there is a gap of size i at the
beginning, which costs —gi. Similarly, H(0,j) = —gj,
which corresponds to the first j letters of sequence 2

Sequence alignment algorithms @ 123

(@ s P E A R E
s|{2 1 0o 1 0 o0
H|-1 o 1 -1 2 1
Al1T 1 0 2 =2 o0
K|o -1 0 -1 3 0
ElO0O -1 4 0 -1 4

© i=0 1 2 3 4 5 6

i=0 0 0 0 0 0 0 0
1 S 0\2 K] 0\1 0 0
2 H 0 0\2 K2 \ \
3 A 0\1 \1 \ZK \4
4 K 0 0 k 0
o\ K

being aligned with nothing in sequence 1. It is also
necessary to define H(0,0) = 0. This means that the
score is 0 before we begin the alignment.

As an example, we will align the two protein
sequences SHAKE and SPEARE using the PAM250
scoring matrix that was already shown in Fig. 4.6.
From this, we may calculate a score S(a; b)) for each
pair of amino acids that occur in this example. For
convenience, these scores are shown in Fig. 6.3(a).
We now draw out the matrix H(i,j), as in Fig. 6.3(b),
including a row and column corresponding to i =0
and j=0. Initially, all the numbers in the cells
are unknown; however, we can start right away by
filling in the cells corresponding to the initial con-
ditions. Let the gap cost be g = 6. All the cells around
the edge of the matrix will have scores that are
multiples of —6. For example, H(3,0) =-18, and
H(0,2) =—12. These correspond to the two partial
alignments

SHA and --
-—- SP

124 @ Chapter6

(b) i=0 1 2 3 4 5 6

i=0 0 “ 6 a2 8 244 30" 36
s fs 24 0% 5h6 22 28
2 A -1f2 f \ 3% \—1 420
3 A —1$8 —10\—3 \o k—1 ANEAEE
4K -24 16 $\3\-1k2 R
5 AR RNNK

Fig. 6.3 Pairwise alignment of SHAKE and
SPEARE. (a) Pairwise amino acid scores taken
from the PAM2 50 matrix. (b) Alignment
scores H(i,j) using algorithm 1 and g = 6. (c)
Alignment scores H(i, j) using algorithm 2 and
g = 6. The pathways through the matrix
corresponding to the optimal alignments in
(b) and (c) are indicated by the thick arrows.

We can now proceed with the row i = 1. From Eq.
(6.2), the options for cell (1,1) are

S(0+2=2) or -S(-6-6=-12) or S-(-6-6=-12)
S-— -S

Clearly, the first option is the best of these three.
Therefore, we enter 2 in cell (1,1). A diagonal arrow
has been drawn from this cell in Fig. 6.3(b) to indic-
ate that the best option was to move diagonally to
this cell. We are now in a position to calculate cell
(1,2). The three options are:

-S(-6+1=-5) or --S(-12-6=-18) or S-(2-6=-4)
SP SP- SP

The third option is the best. Therefore, we enter —4
in this cell and draw a horizontal arrow from this cell
to indicate this. It is possible to continue using the
recursion relation to fill up all the cells in the matrix,
as shown in Fig. 6.3(b) (try doing this yourself to
make sure you understand it).

Having filled in the matrix, we know that the opti-
mal alignment of SHAKE and SPEARE has a score of
H(5,6) = 6. More importantly, however, we need to
know what the alignment is that has the score
of 6. To construct the alignment, we start in the
bottom right-hand corner of the matrix and follow
the arrows backwards to the top left-hand corner.
Whenever the arrow is diagonal, then the corres-
ponding two letters are aligned with each other.
Whenever there is a vertical move, we align a letter
from sequence 1 with a gap, and whenever there is a
horizontal move, we align a letter from sequence 2
with a gap. This procedure is known as backtrack-
ing. The result in our case is

S-HAKE
SPEARE

Sometimes, Shakespeare spelled his name with-
out the final E, so it is interesting to know what is the
optimal alignment of SHAKE and SPEAR. We might
guess that it would be

S-HAKE
SPEAR-

but the matrix in Fig. 6.3(b) tells us this is not true. If
we ignore the final column and trace back the
arrows from cell (5,5), we obtain

SHAKE
SPEAR

which has a score of —2. The original guess con-
tains positive scores for matches, +2 for (A,A) and +3
for (K,R), that are lost in the second alignment.
However, the original guess has two costly gaps, and
its net score is —4, which is worse than the second
alignment. When the final E was present, we gained
an extra+4 from the (E,E) pair, which helped to com-
pensate for the gap opposite the P in the original
optimal alignment. Also, the two sequences had
unequal length when the E was present, so we had to
put a gap somewhere, even if it was costly.

Let us consider how much memory is required by
this algorithm. Suppose both sequences are of equal

length, N. The number of cells in the H(i,j) matrix is
(N + 1)2. For scaling arguments, we are only inter-
ested in the leading order of N, so thisis O(N2). Thus,
we need O(N?) memory to store the scores. We also
need a similar amount of memory to store the back-
tracking information. On a computer, you cannot
draw arrows, so one way of storing this information
is to define a backtracking matrix, B(i,j), whose
elements are set to O for a diagonal move, +1 for a
vertical move, and —1 for a horizontal move.

The scaling of the time with N is also important.
There are O(N2) cells to calculate in the matrix
H(i,j). Each of these requires calculating three num-
bers and taking the best. There isno N dependence in
these calculations; therefore, the time required is
O(N?). Hence, this algorithm has fairly modest
requirements in terms of both memory and time,
and is a practical way of aligning long sequences.

6.3.2 Algorithm 2 — Local alignment with
linear gap penalty

A global alignment algorithm (such as algorithm 1)
aligns the whole of one sequence with the whole of
another. This is appropriate if we believe that the
two sequences in question are similar along their
whole length. However, in some cases, it may be
that two sequences share a common domain but are
not similar outside this domain. Therefore, it would
be inappropriate to try to align the whole sequences.
It might also happen that we have a fragment of a
gene from one species and we want to align this to
the matching part of a complete gene from another
species. In both these cases, we would use a local
alignment algorithm that looks for high-scoring
matches between any part of one sequence and any
part of the other, and neglects parts of the sequences
for which there is not a good match.

The simplest local alignment algorithm just adds
a fourth option to the recursion relation of algorithm
1. If the best of the three scores for the diagonal, ver-
tical, and horizontal moves is negative, then we sim-
ply assign O to this cell. This means that we are not to
bother to align these parts of the sequences and that
we are to start another alignment after this point.
The recursion is therefore:

Sequence alignment algorithms ® 125

H(i—l,j—1)+S(al.,b}.) diagonal
H(i,j) = max H(l’ - 1.j)—g Ve.rtlcal
H(i,j—1)—g horizontal
0 start again
(6.3)

It is also necessary to change the initial conditions
to reflect the fact that gaps at the beginning and end
of an alignment are to be ignored (e.g., if we align a
fragment of a gene with a whole gene). This is done
by setting the cells around the edges of the matrix,
H(i,0) and H(0,j), to zero. The resulting matrix for
the alignment of SHAKE and SPEARE is shown in
Fig. 6.3(c). The backtracking procedure for local
alignments begins at the highest-scoring point in
the matrix, and follows the arrows back until a O
is reached. In our case, the highest-scoring cell is
the bottom right-hand corner, but in examples with
longer sequences, it could be anywhere in the
matrix. The optimal local alignment is

SHAKE
PEARE

which scores 11 with this scoring system. Another
possible local alignment with a score of 4 is

SHA
ARE

6.3.3 Algorithm 3 — General gap penalty

So far, we considered only the case of linear gap
penalty W(l) = gl. We will now give an algorithm
that works for any general gap penalty function,
W(I), of the shape given in Fig. 6.2.

H(i-1.j-1)+S(a.b,)

H(i,j) = max gg(H(i— 1,)=w()

Illglzix(H(i,]' —1)=W(l)) horizontal

diagonal
vertical

(6.4)
The diagonal option corresponds to aligning a; with

bj, as before. The second option corresponds to align-
ing a, with a gap in the second sequence, but this

126 ® Chapter6

time we need to know the length I of the gap. For any
given I, the cost of the gap is W(I) and the score for
aligning the previous part of the chain up to a;and b
is H(i,j — I). In terms of moving through the matrix,
this corresponds to moving I spaces vertically. The
size of the gap can be anywhere between 1 and i. Thus,
there are i different cases to evaluate, and we need the
highest score among these. Similarly, the third option
in Eq. (6.4) corresponds to making a horizontal jump
of size] in the matrix, and I can be anywhere in the
range 1 to j. The final score to be entered for H(i, j)
is the maximum of the single dia-gonal move, the
i vertical moves, and the j horizontal moves. There
are thus O(N) calculations to be made in order to fill
in one cell in the matrix (whereas there were only
three calculations to be made in algorithm 1). The
number of cells in the matrix is still O(N?). Hence the
total time required for this algorithm is O(N?).

Both global and local versions of the general gap
penalty algorithm can be written. In the global ver-
sion, the initial conditions are H(i,0) = —=W(i), H(0O,)
=—W(j). In the local version, the initial conditions
are H(i,0) = H(0,j) = 0, and we need to add a zero-
score option into the recursion (6.4), as in Eq. (6.3).
There is one further subtlety: Eq. (6.4) only makes
sense if
W(I, + L) < W(I,) + W(L,) (6.5)
for all values of I, and 1,. In other words, the penalty
for one long gap has to be less than the penalty for
two short gaps that add up to the same length. If this
is not true, a long gap will be scored as though it
were a series of smaller gaps.

The local version of this algorithm is the one pro-
posed by Smith and Waterman (1981). However, it
was pointed out by Gotoh (1982) that when the
affine gap penalty function is used, the algorithm
can be rewritten more efficiently, so that the time is
only O(N2). The more efficient version is described
below as algorithm 4. In practice, it is this that is
usually referred to as “Smith—-Waterman” alignment.

6.3.4 Algorithm 4 — Affine gap penalty

The affine gap penalty function, WD) = Gppen +

g,(1 = 1), was introduced in Section 6.2. In prac-
tice, this is the most commonly used gap function
because it is more flexible and realistic than the
linear gap penalty and because the time-efficient
algorithm given here can be used with this form of
gap function but not with more general functions.

Let us define M(i, j) as the score of the best align-
ment up to point i on the first sequence and j on the
second, with the constraint that a; and b; are aligned
with each other. Let I(i,j) be the score of the best
alignment up to this point, with the constraint that
a, is aligned with a gap, and let J(i,j) be the score of
the best alignment up to this point, with the con-
straint that b is aligned with a gap. The score of the
best alignment to this point, with no restrictions, is
H(i,j), as before, which can be written
H(i,j) = max(M(i, j),I(1, j).J (1.) (6.6)

In this algorithm there are three separate mat-
rices to be calculated, so the memory requirement
is three times as large, but the time taken is speeded
up by an order of magnitude. We can now write a
recursion for M(i, j):

M(i-1j-1)+S(a;b;)
M(i, j) = maxy I(i—1,j—1) + S(a; b;)
Ji=1j-1)+S(a;b))

(6.7)

Each of these three options corresponds to matching
a; with bi' and, therefore, all include the score S(a,, h).);
however, they cover the three different possible
configurations of the residues a,_, and bj_l. For I(i,§),
there are just two options:

M(i=1,)) = Gopen

6.8
I(i—l,]')—gm ()

I(1,j) = max{

The first case is where a,_, is aligned with b]., and a; is
aligned with the beginning of a new gap; therefore,
there is a cost of open- The second case is where a,_; is
already aligned with a gap and a, is aligned with an
extension of the same gap; therefore, there is a cost
g, (the cost of the first gap is already included in I(i, j
—1)). Similarly, there are two options for J(i, j):

M(l'] - 1) - gapen

6.9
](ivj_l)_ggxt ()

J(i,) = max{

This version of the algorithm disallows configura-
tions where a gap in one sequence is immediately
followed by a gap in the other sequence. This sim-
plifies the number of cases to consider, and usually it
makes no difference to the optimal alignment. In the
following example,

(i) S--HAKE (i)
SPE-ARE

S-HAKE
SPEARE

alignment (ii) has a higher score than alignment (i) if
S(H.E) > =40 = Gox- 1t follows that if S(o,B) > ~Fopen
—4,,,for any two letters, o and B then configurations
like (i) will never occur, so we do not need to include
them in the recursion relations. For configurations
where the gaps in both sequences are oflength 1, the
inequality would be S(ct, B) >—2 Gopent but thisinequal-
ity is automatically satisfied if the previous one is satis-
fied, and therefore only the previous one is relevant.

As with algorithm 3, it is possible to produce both
local and global versions of algorithm 4 by adding in
the zero-score option and changing the initial condi-
tions. We will not give details here. This treatment
has followed that given in Durbin et al. (1998) quite
closely, which is a useful source of further information.

All the alignment algorithms described in this sec-
tion fall into the category of dynamic programming
algorithms. The essential feature of dynamic pro-
gramming is that it uses recursion relations to break
down the problem into a number of smaller prob-
lems. Many slightly different alignment algorithms
will be found in the literature. Sometimes, the align-
ment problem is expressed as the minimization of an
editing distance between two sequences rather than
the maximization of a score (e.g., Clote and Backofen
2000, Gotoh 1982). The recursions are then similar,
but they all contain the minimum of a number of
alternatives rather than the maximum.

6.4 THE EFFECT OF SCORING
PARAMETERS ON THE ALIGNMENT

All the algorithms above are exact in the sense that

Sequence alignment algorithms ® 127

they are guaranteed to give the highest-scoring
alignment for a given scoring system. However, this
does not mean that they are guaranteed to give the
“correct” alignment. In fact, we can never know
what the correct alignment is, since we cannot go
back in time to follow the process by which the two
sequences evolved from their common ancestor. By
choosing scoring systems that reflect what we know
about molecular evolution, we can hope to obtain
alignments that are evolutionarily meaningful. How-
ever, there are several different ways of deriving sub-
stitution matrices for amino acids, and different sets of
matrices, such as PAM and BLOSUM, are commonly
used in alignments (as we described in Section 4.3).
The alignment we get with any two sequences will
depend on the details of the substitution matrix used,
as well as on the details of the algorithm. The only
way to tell which of these matrices is best is to look at
the alignments produced for real sequences, and to
use some biological intuition to decide which one
seems to make the most sense.

The values of the gap penalties affect the properties
of the alignments produced in important ways. To

Table 6.1 Accession numbers of hexokinase sequences.

Organi

P

128 @ Chapter6

illustrate this, we have chosen hexokinase, which is
the first enzyme in the glycolytic pathway, and is
responsible for converting glucose into glucose-6-
phosphate. Table 6.1 shows the accession numbers
of the hexokinase sequences referred to in this chap-
ter. The hexokinase sequence HXK_SCHMA from
the blood fluke parasite Schistosoma mansoni was
aligned with the sequence HXKP_HUMAN, which
is one of several hexokinase genes in the human
genome. The program ClustalX was designed to
align many sequences, and is discussed more fully
below. In this example, we used ClustalX to carry
out pairwise alignment of these two sequences. The
parameters were initially left at their defaults: the
substitution matrix was Gonnet 250, the gap-
opening cost was 10, and the gap extension cost was
0.1. The resulting alignment is shown in Fig. 6.4(a)
—to save space, only part of the alignment is shown.
There is a fairly high degree of similarity across the
whole of the sequence, as seen by the fairly large
number of sites with identical residues (denoted with
an asterisk), or residues with similar properties
(denoted with a colon or a dot). Gaps arise in several

(a) Default Gap opening penalty (10)

HXKP HUMAN ELVRLVLLRLVDENLLFHGEASEQLRTRGAFETREVSQVESDTGDREQIYNILSTLSLREP
HXK_SCHMA ELVRHIIVYLVEQKILFRGDLPERLKVRNSLLTRYLTDVERDPAHLLYNTHYMLTDDLHY
*rhkE gopp KA ggrEE R KRk ok FR g oaphR ok N
HXKP_HUMAN ---STTDCDIVRRACESYVSTRAAMHMCSAGLAGVINRMRESRSEDVMREITVEVDGSVYEKLH
HXK_SCHMA PVVEPIDNRIVRYACEMVVKRAAYLAGAGIACILRRIN--RSE----VTVGVDGSLYKFH
* * k& * *x % * _***::.-*‘k:* ::‘*:_ * H % :*******:*‘k'_*
HXKP HUMAN PSFKERFHASVRRLTP-SCEITFIESEEGSGRGAALVSAVACKKACMLG)
HXK SCHMA PKFCERMTDMVDKLKPKNTRFCLRLSEDGSGKGAAAIAASCTRQN —————
. 2 * :*.* . ol : **:***-**‘k ::‘k

(b} High Gap opening penalty (50)

HXKP_HUMAN ELVRLVLLRLVDENLLFHGEASEQLRTRGAFETRFVSQVESDTGDRKQIYNILSTLGLRP
HXK SCHMA ELVRHIIVYLVEQKILFRGDLPERLKVRNSLLTRYLTDVERDPAHLLYNTHYMLTDDLHY
LA I A R I A AT ror ko ko
HXKP HUMAN ---STTDCDIVRRACESVSTRARHMCSAGLAGVINRMRESRSEDVMRE ITVGVDGSVYKLH
HXK SCHMA PVVEPIDNRIVRYACEMVVKRAAYLAGAGIACILRRINRSE= =~ - - -VTVGVDGSLYKFH
* * ok h * ok k * .***:-’..**:* ::.*:‘_*. :*******:t*:*
HXKP HUMAN PSFKERFHASVRRLTPSCEITFIESEEGSGRGAALVSAVACKKACMLGQ
HXK_SCHMA PKFCERMTDMVDKLKPKNTRFCLRLSEDGSGKGAAATAASCTRON~ -~
* * *x . * .k * . x * * .k -

{¢) Low Gap opening penalty (2}

HXKEP_ HUMAN ELVRLVLLRLVDENLLFHGEASEQLRTRGAFETRFVSQVESDTGDRKQIYN- - -ILSTLG
HXK_ SCHMA ELVRHIIVYLVEQKILFRGDLPERLKVRNSLLTRYLTDVERDPA - ~HLLYNTHYMLTD-D
o R T L T R o R HEH
HXKP_HUMAN LR~PSTTDCD~- IVRRACESVSTRAAHMCSAGLAGVINRMRESRSEDVMRITVGVDGSVY
HXK_SCHMA LHVPVVEPIDNRIVRYACEMVVKRAAYLAGAGIACILRRIN--RSE- - - -VTVGVDGSLY
*: * . * ¥k LA * -***::_.**:* ::_*: '*** :***‘k***:*
HXKP HUMAN KLHEPSFXKERFHASVRRLTPSCEITF-IE-SEEGSGRGAALVSAVACKKACMLGQ -
HXK SCHMA KFHPKFCERMTDMVDKLKPK~NTRFCLRLSEDGSGKGRARATAA-SCTR-==== QN
*:**.* **; * :*.*. A * 1. **:***:*** ::* :*‘: *

Fig. 6.4 Global pairwise alignments of hexokinase proteins from human and Schistosoma mansoni using an affine gap penalty
function. The three parameters used for the three alignments differ only in the value of the gap opening parameter. Regions of
alignments (b) and (c) that differ from alignment (a) are written in bold.

places, indicating that insertions and deletions have the parameters fixed except for the gap-opening cost.
occurred during evolution. In (b), the cost has been increased to 50. Regions of

For the sake of comparison, we performed two fur- alignment (b) that differ from (a) are highlighted.
ther alignments of the same sequences, keeping all The short sequence RSE in the Schistosoma sequence

Sequence alignment algorithms ® 129

has been shifted two places to the left in (b) with
respect to (a). This changes two short gaps into one
longer one, and thus increases the alignment score,
even though the score of the exact match on RSE
itself is lost. A long section at the end of the human
sequence has also been shifted one place to the left in
(b), which eliminates a single gap. However, by doing
this, a large number of identical pairs in alignment
(a) have been lost. In (c), the gap-opening penalty
has been decreased to 2. There are four highlighted
regions in (c), all showing small differences from (a).
Reducing the gap-opening cost in (c) leads to the
introduction of a number of additional short gaps.
These tend to occur in regions where there are few
exactly matching residues — i.e., rapidly evolving
regions of the sequence. In such regions, the align-
ment will depend on the details of the scores used for
non-identical residues (i.e., on which PAM or BLO-
SUM matrix is used), as well as on the size of the gap
cost. In strongly conserved regions, the alignment
tends to come out the same for almost any scoring
system used, because all reasonable scoring systems
assign a high positive score to identical residues.
Which of these three alignments would you say is
the best? The answer seems rather subjective, but
there are clues in the results (e.g., the hallmark of lax
gap penalties is the stretching out of a sequence by
inclusion of large numbers of gaps between small
numbers of aligned residues). Let us take a closer
look. The alignment of the final part of the sequences
appears better in (a) than (b). This suggests that
the gap cost of 50 used in (b) is too high, and that
the algorithm has been forced to remove gaps at the
expense of reducing the quality of the alignment
elsewhere. However, without additional information,
itis hard to say that (b) is obviously wrong — had we
only done the alignment with the parameters used in
(b), we might have been satisfied with the result. For
the differences between (a) and (c), it is difficult to
decide which is better, but the “gappiness” in (c) gives
the impression that the algorithm has been forced
to introduce too many gaps in order to maximize
identities and similarities. There is not much infor-
mation in the sequences to decide conclusively;
nevertheless, on balance, (a) feels better than (c).
In spite of the “exact” nature of the pairwise align-

130 @ Chapter6

ment algorithms, there will always be an element of
subjectivity involved in choosing parameters and
choosing between resulting alignments. Thus, it is
always worth trying different scoring systems when
aligning real sequences to see what alternative
alignments arise. Another useful way to check
alignments is to view them using a color alignment
editor, such as CINEMA (Parry-Smith et al. 1997).
The coloring scheme can make errors appear more
obvious. On a positive note, we should not be too
pessimistic about sequence alignment programs:
there are large sections of unhighlighted sequence
that are the same in all three alignments. Often, it is
the conserved regions that contain the important
structural and functional motifs that we are inter-
ested in. It is these conserved regions that are most
likely to be correctly aligned.

6.5 MULTIPLE SEQUENCE
ALIGNMENT

6.5.1 The progressive alignment method

In the previous sections of this chapter, we discussed
pairwise sequence alignment. However, we often
wish to align sets of many sequences. Exact dynamic
programming algorithms have been proposed for
small numbers of sequences that find optimal align-
ments using scoring matrices and gap penalties, as
for pairwise alignments. The recursion relations are
considerably more complicated and the algorithms
take correspondingly longer to run. The time would
be at least O(N®) for S sequences with the simplest
linear gap penalty. Carillo and Lipman (1988)
considered efficient ways of implementing an exact
multiple alignment algorithm. Nevertheless, this
method is still very slow and is not practical for more
than a few sequences of realistic length. In fact,
aligning three or four sequences exactly is not really
very useful. For most applications, we are interested
either in just two sequences or in many sequences
at the same time.

The most common approach to multiple sequence
alignment is known as progressive alignment. This
uses the fact that we are usually interested in align-
ing families of sequences that are evolutionarily

related. The principle is to construct an approximate
phylogenetic tree for the sequences to be aligned and
then to build up the alignment by progressively
adding sequences in the order specified by the tree.

As an example, we use the hexokinase sequences
HXKP_HUMAN and HXK_SCHMA used in Fig. 6.4,
together with 13 related sequences from human,
rat, yeast, Drosophila melanogaster, and Plasmodium
falciparum (see Table 6.1 for the accession numbers
of these sequences). A phylogenetic tree calculated
from these sequences is shown in Fig. 6.5. We note
in passing that the tree tells us several interesting
things about the evolution of this gene family.
Hexokinases are found in a wide range of eukary-
otes. More than one hexokinase is found in the
mammals, in Drosophila, and in yeast. The sequences
from each of these three groups are more closely
related to each other than they are to the sequences
from the other groups. This suggests that there have
been independent gene-duplication events occur-
ring in mammals, insects, and fungi that occurred
since the divergence of these species. In the case of
the mammals, the gene duplications must have
occurred prior to the divergence of human and rat,
since each of the human genes has a recognizable
homolog in the rat.

Progressive alignment routines begin by align-
ment of closely related pairs of sequences, e.g., the
yeast HXKA and HXKB sequences, or any of the four
human/rat pairs. A global version of a pairwise align-
ment algorithm would be used for this (as described
in Section 6.3). Additional single sequences can
then be added to form clusters of three sequences,
e.g., the yeast HXKG with the other two yeast sequ-
ences. Clusters can also be aligned with each other
to form larger clusters, e.g., the human/rat HXK1
pair can be aligned with the human/rat HXK2 pair.
Progressively larger clusters are built up in the order
specified by the tree until all the sequences are
combined into a single alignment.

The algorithm for aligning two clusters (or for one
sequence and one cluster) is basically the same as
the usual pairwise alignment algorithm. The sim-
plest way of scoring the alignment of sites between
clusters is to average the individual scores for the
amino acid pairs that can be formed between the

@ HXK PLAFA

@ HXKG YEAST

@ HXKA YEAST

Q@ HXKB YEAST

@ HXK1 DROME

@ HXK2 DROME

@ HXK SCHMA

I-O HXKP RAT

I-O HXKP HUMAN

——Q HXK3 RAT

—Q@ HXK3 HUMAN
_[: HXK1 RAT
HXKTHUMAN
E HXK2 RAT
HXK2 HUMAN
Fig. 6.5 Phylogenetic tree of hexokinase sequences from
human, rat, Schistosoma mansoni, Drosophila melanogaster,
Saccharomyces cerevisiae, and Plasmodium falciparum. This

tree is produced by Clustal and used as a guide tree during
progressive multiple alignment.

0.1

clusters. For example, the score for aligning ! with }
would be (S(P,I) + S(P,R) + S(A,I) + S(A,R)/4).

Gap penalties are used in the same way as for pair-
wise alignments. If a gap is inserted into a cluster,
then it must be inserted into the same position in
every sequence in that cluster. The relative align-
ment of sequences already in a cluster is not altered
by this process. The progressive alignment algo-
rithm is not exact because it does not consider all
possible alignments. For example, suppose we have
already aligned the pair

S-HAKE
SPEARE

and the next sequence to be added is THEATRE. We
might get the alignment

Sequence alignment algorithms @ 131

S-HA-KE
SPEA-RE
THEATRE

where a gap has been added at the same point in
SHAKE and SPEARE. Looking in retrospect at these
three sequences, we might have preferred to shift the
Hin SHAKE to align with the H in THEATRE. However,
this possibility is never considered by the progressive
alignment method because the first two sequences
are fixed prior to the alignment of the third sequence.
It is because possibilities like this are omitted that this
is a heuristic method, not an exact one. (We note
that the mutant sequence THEATER, found in some
parts of the world, would not align so well!)

In order to begin a progressive alignment, we
need to construct a guide tree. A pairwise alignment
is first done for each pair of sequences in the set, and
these alignments are used to calculate distances.
The simplest way to calculate a distance is to ignore
the sites with gaps and to calculate the fraction D
of the non-gap sites where the two residues are dif-
ferent. A correction could be made for multiple sub-
stitutions per site if desired (e.g., using the Kimura
distance formula, Eq. (4.29)). Feng and Doolittle
(1987) suggested a formula for the distance between
two sequences calculated directly from the align-
ment score, S, for those sequences:

§-§

rand)
Sident - Srand

where S, ,is the average score for alignment of two
random sequences, and S, is the average score for
alignment of two identical sequences. Thus, by one
means or another, we can obtain a matrix of dis-
tances between all sequences and this can be used as
input to one of the distance matrix phylogenetic
methods that we will describe in Chapter 8. The
widely used Clustal multiple alignment software
(Thompson, Higgins, and Gibson 1994, Thompson
et al. 1997) uses the neighbor-joining method to
construct the tree and the midpoint method to
determine the root. The guide tree for the hexoki-
nases shown in Fig. 6.5 was constructed in this way.

d=-100 ln[(6.9)

132 @ Chapter6

Figure 6.6 shows part of the multiple alignment
for the hexokinases constructed by Clustal, using
the guide tree in Fig. 6.5. The progressive nature
of the alignment is evident from comparing the gap
positions with the guide tree. For example, all the
human and rat sequences have a gap inserted
between Q and V in the upper line and two gaps
inserted between the two Ds in the middle line. These
were introduced at the point when the eight human
and rat sequences were aligned with the Schistosoma
sequence. The sequences HXKP_HUMAN and
HXK_SCHMA used in the pairwise alignment exam-
ple appear together in the middle of the multiple
alignment. The default alignment parameters have
been used in Fig. 6.6, so that this is directly compar-
able with Fig. 6.4(a). The highlighted regions of
these two sequences in Fig. 6.6 differ from the pair-
wise alignment in Fig. 6.4(a) even though the same
scoring system is being used. This is because, in the
multiple alignment, the Schistosoma sequence is
being aligned with all eight mammal sequences at
the same time, and not just with the HXKP_HUMAN
sequence. In principle, this means that the alignment
of the Schistosoma sequence to the cluster of mam-
mal sequences should be more reliable than the pair-
wise alignment to any one of these eight sequences
would be. Evolutionarily, the Schistosoma sequence
is equally distantly related to all eight sequences and
it makes sense to use the sequence information from
all eight when calculating the alignment.

The highlighted region of the two Drosophila and
two yeast sequences in the second line of Fig. 6.6 is
also a visible relic of the guide tree. When the two
Drosophila sequences are aligned with the mammals
plus Schistosoma cluster, the algorithm decides to
place the gap in the same place as the gap that is
already present in the Schistosoma sequence. When
the three yeast genes are aligned, the gap in the
HXKA and HXKB pair is put in a slightly different
place. When these two clusters are combined, a
staggered arrangement of gaps arises, as shown. In
contrast, if a multiple alignment is done with just the
Drosophila and yeast sequences, then the final stage
of the clustering is to combine the two Drosophila
sequences with the three yeast sequences. In this
case, Clustal puts the gap in the Drosophila sequences

CLUSTAL X

HXK1_RAT

HXK1 HUMAN
HXK2_ RAT

HXK2_HUMAN
HXK3_RAT

EXK3_ HUMAN
EXKP RAT

HXKP_HUMAN
EXK_SCHMA
HXK1 DROME
HXK2_DROME
HXKA_YEAST
HXKB_YEAST
HXKG_YEAST
HXK_PLAFA

HXK1 RAT
HXK1 HUMAN
HXK2 RAT
EXK2 HUMAN
HXK3_RAT
HXK3_ HUMAN
HXKP_ RAT
HXKP_HUMAN
HXK_SCHMA
HXK1_DROME
HXK2 DROME
HXKA_YEAST
HXKB_YEAST
HXKG_YEAST
HXK PLAFA

HXK1_RAT

HXK1_HUMAN
HXK2_RAT

HXK2 _HUMAN
HXK3 RAT

HXK3_HUMAN
HXKP_RAT

HXKP_HUMAN
HXK SCHMA
HXK1_DROME
HXK2 DROME
HXKA_YEAST
HXKB_YEAST
HXKG_YEAST
HXK_PLAFA

multiple sequence alignment

EIVRNILIDFTKKGFLFR----- GQISEPLKTRGIFETKFLSQIESDRLALLQ-VRAILQ
EIVRNILIDFTKKGFLFR- -~~~ GQISETMKTRGIFETKFLSQIESDRLALLY -VRAILQ
EIVRNILIDFTKRGLLFR----- GRISERLKTRGIFETKFLSQIESDCLALLQ-VRAILR
EIVRNILIDFTKRGLLFR----- GRISERLKTRGIFETKFLSQIESDCLALLQ-VRATLQ
EIVRHILLHLTSLGVLFR~--~- GQKTQCLQTRDIFKTKFLSEIESDSLALRQ-VRAILE
EIVRHILLHLTSLGVLFR-~--- GQQIQRLOTRDIFKTKFLSEIESDSLALRQ-VRAILE
ELVRLVLLKLVDENLLFH----~ GEASEQLRTRGAFETRFVSQVESDSGDRKQ - IHNILS
ELVRLVLLRLVDENLLFH----- GEASEQLRTRGAFETRFVSQVESDTGDRKQ=-IYNILS
ELVRHIIVYLVEQKILFR----- GDLPERLKVRNSLLTRYLTDVERDPAHLLYNTHYMLT
ELVRIIVLRLMKSGAIFA- -~~~ EDRRDYIGIQWKLDMYVSLIEIVSDPPGVYTKAQEVMD
ELVRLVITDMIAKGFMFH----- GIISEKIQERWSFKTAYISDVESDAPGEYRNCNKVLS
ELLRLVLLELNEKGLMLK----- DQDLSKLEKQPYIMDTSYPARIEDDEFENLEDTDDIFQ
EILRLALMDMYKQGFIFK--~-- NQDLSKFDKPFVMDTSYPARIEEDPFENLEDTDDLEQ
EVLRNILVDLHSQGLLLOQYRSKEQLPRHLTTPFQLSSEVLSHIEIDDSTGLRETELSLL
EIVRRFMVNVLOS-~---------- ACSKKMWISDSFNSESGSVVLNDTSKNFEDSRKVAK
* .ok . . *

QLGLNSTCD - -DSTLVKTVCGVVSKRAARQLCGAGMAAVVEKIRENRGLDHLNVIVGVDGT
QLGLNSTCD - -DSILVKTVCGVVSRRAAQLCGAGMAAVVDKIRENRGLDRLNVTVGYDGT
HLGLESTCD-~DSTIIVKEVCTVVARRARQLCGAGMAAVVDKIRENRGLDNLKVTVGVDGT
HLGLESTCD--DSTIIVKEVCTVVARRAAQLCGAGMAAVVDRIRENRGLDALKVIVGVYDGT
DLGLTLTSD--DALMVLEVCQAVSRRAAQLCCGAGVARVVEKIRENRGLQELTVSVGVDGT
DLGLPLTSD - -DALMVLEVCQAVSQRAAQLCGAGVAAVVEKIRGNRGLEELAVSVGYDGT
TLGLRPSVT--DCDIVRRACESVSTRAAHMCSAGLAGVINRMRESRSEDVMRITVGVDGS
TLGLRPSTT--DCDIVRRACESVSTRARHNMCSAGLAGVINRMRESRSEDVMR ITVGVDGS

DDLHVPVVERIDNRIVRYACEMVVKRAAYLAGAGIACILRRINRS====== EVTVGVDGS
KFRIRHCKER-DLAALKYICDTVINRAAMLVASGVSCLIDRMRLP == ==== QISIAVDCG
ELGILGCQEP-DKEALRYICEAVSSRSAKLCACCLVTIINKMNIN=~<=--- EVAIGIDGS
KDFGVKTTLE-ERKLIRRLCELIGTRAARDAVCGIAATCQK == ===~ RGYKTGHIAADGS

NEFGINTTVQ-ERKLIRRLSELIGARAARLSVCGIAAICQK~=~~~=-RGYKTGHIAADGS
QSLRLPTTPT-ERVQIQKLVRAISRRSAYLAAVPLAATLIKTNALNKRYHGEVE IGCDGS
AAWDMDFTDE -QIYVLRKICEAVYNRSAALARGTIAATAKRIKIIEHS - - -KFTCGVDGS

* . & : : *
LYKLHPHEFSRIMHQTVKELS----- - PK-CTVSFLLSEDGSGKGAALITAVGVRLRGDPS
LYKLHPHFSRIMHQTVKELS -~ -~~~ FK-CNVSFLLSEDGSGKGAALITAVGVRLRTEAS
LYKLHPHFAKVMHETVRDLA-~----- PK-CDVSFLESEDGSGKGAALITAVACRIREAGQ
LYKLHPHFAKVMHETVKDLA------ PK-CDVSFLQSEDGSGKGAALITAVACRIREAGQ
LYKLHPHFSRLVSVIVRKLA---- -~ BQ-CTVIFLOSEDGSGKGAALVTRVACRLTOMAC
LYKLHPRFSSLVAATVRELA------ PR-CVVTFLQSEDGSGKGAALVTAVACRLAQLTR
VYKLHPSFKERFHASVRRLT------ PN-CEITFIESEEGSGRGAALVSAVACKKACMLA
VYKLHPSFKERFHASVRRLT------~ PS-CEITFIESEEGSGRGAALVSAVACKKACMLG
LYKFHPFKFCERMTDMVDKLK----- - PKNTRFCLRLSEDGSGKGAAATAASCTRON - - - -
IYRLHPTFSTVLNKYTRLLA------ DPNYNFEFVITQDSCGVGAAIMAGMAHANKYKTD
VYRFHPKYHDMLQYHMKKLL------ KPGVKFELVVSEDGSGRGAALVAATAVQAKSKL -

VYNKYPGFKEAAAKGLRDIYGWTGDASKD -PITIVPAEDGSGAGAAVIAALSEKRIAEGK
VYNRYPGFKEKAANALKBIYGWTQTSLDDYPIKIVPAEDGSGAGAAVIAALAQKRIAEGK
VVEYYPGFRSMLRHALALSP- - -LGAEGERKVHLKIAKDGSGVGAALCALVA--------
LFVKNAWYCKRLQEHLKVILA----~ DKAENLITTPADDGSGKGAAITAAVIALNADIRQ

* FkKx

Fig. 6.6 Multiple alignment of hexokinase sequences constructed by Clustal using the guide tree in Fig. 6.5. Bold sections
illustrate points discussed in the text.

in the same place as the gap in the two shorter yeast
sequences (i.e., the MNIN is directly above the
RGYK). The lesson to be drawn from this is that the
details of a multiple alignment depend on exactly
which sequences are included in the set and on
the order in which the sequences were added to the
alignment. In cases where one is not prepared to
trust an automatically generated guide tree to deter-
mine the order, it is possible to carry out a progress-
ive alignment by gradually combining sequences in
an order that reflects the user’s prior beliefs about
the way the sequences are related. This example
shows that it is the positioning of gaps within the
most variable regions of sequences that tends to vary
with the details of the alignment procedure, while
more conserved regions tend to be quite reliably
aligned. It is sometimes possible to improve the
alignment on either side of gap regions by making
small changes by eye. However, there can often be
regions within sequences that are simply too vari-
able to align reliably, and it is necessary to make a
fairly arbitrary choice.

6.5.2 Improving progressive alignments

The Clustal software has developed through a num-
ber of incarnations. Recent versions include several
modifications intended to improve the accuracy of
the progressive alignment procedure (Thompson,
Higgins, and Gibson 1994, Thompson et al. 1997).
Alignments often contain groups of closely related
sequences as well as more distant sequences. If the
score for aligning clusters is simply the average score
for all sequence pairs, as in the § and § example above,
this tends to overemphasize the influence of closely
related sequences. Closely related sequences are
bound to be almost identical because there has been
little time for substitutions to occur between them.
Consider the point where the two Drosophila sequ-
ences are aligned with the mammals plus Schistosoma
cluster following the guide tree in Fig. 6.5. The eight
mammal sequences are likely to be relatively sim-
ilar to one another because they share a lot of their
evolutionary history, whereas the Schistosoma sequ-
ence contains independent information. This infor-
mation would be swamped by the eight mammal

134 @ Chapter6

sequences if all the sequences were weighted equally
when calculating the score. Thompson, Higgins,
and Gibson (1994) introduced a weighting scheme
that reduces the weight of closely related sequences
using a rule that depends on the amount of shared
evolutionary history of the sequences.

Another heuristic improvement is the introduc-
tion of position-specific gap penalties. In proteins,
gaps occur more frequently in loop regions than in
elements of secondary structure. This is because
insertions and deletions in these regions are more
readily tolerated without destroying the function of
the molecule. The positioning of gaps in alignments
tends to be more accurate for closely related sequ-
ences than for more distant sequences. Therefore,
information from gap positions in clusters of closely
related sequences that is determined in the early
steps of a progressive alignment can be used to help
position the gaps when more distant clusters are
aligned in the later stages of the process. This is done
by reducing the gap penalty in sites where there is
already at least one gap, so that future gaps tend
to occur in the same place. It is also known that dif-
ferent scoring matrices are appropriate for aligning
sequences of different distances. Progressive align-
ments can therefore be improved by using a series of
different PAM or BLOSUM matrices and choosing
the most appropriate matrix at each step of the align-
ment according to the distance between the clusters
to be aligned.

With sophisticated modifications such as these,
progressive alignment is a practical tool that often
produces quite reliable alignments. The method is
also fairly rapid. The time scales as O(SN?) for S
sequences of length N, which means that large num-
bers of long sequences can be easily dealt with.
However, two words of warning are appropriate
when using Clustal. First, the method uses global
alignment and is therefore not appropriate when
sequences have very different lengths. In this case,
it is better to cut out the region from the longer
sequences that is alignable with the shorter sequ-
ences and to align only these regions. Second, the
guide tree should not be taken too seriously. The
guide tree is calculated using a rather approximate
distance measure and a relatively quick-and-dirty

method of tree construction. It cannot therefore be
relied on if we are really interested in the phylogeny
of the sequences. The matrix of pairwise distances
can be recalculated from the sequences using the
relative sequence positions specified by the complete
multiple alignment. If these distances are put back
into a phylogenetic program, the resulting tree can
sometimes be better than the guide tree. This point
was emphasized by Feng and Doolittle (1987).
Clustal has an option to recalculate the neighbor-
joining tree from the alignment. However, there
are many more sophisticated ways of calculating
molecular phylogenies (see Chapter 8), and we
would recommend using specialized programs in
cases where the real interest is in the phylogeny.
Although, as just stated, the tree produced from a
progressive multiple alignment is not necessarily the
same as the guide tree used to produce the align-
ment, it is usually fairly similar. It has been shown
that if alignments generated by following a guide
tree are used as input to phylogenetic methods,
which may well be much more sophisticated than
the clustering algorithm used to generate the guide
tree, the trees obtained tend to be strongly correlated
with the initial guide tree (Lake 1991, Thorne and
Kishino 1992). To some extent, this defeats the
object of using more sophisticated phylogeny pro-
grams. A pragmatic way out of this problem is
simply to recognize that automated multiple sequ-
ence alignments are never completely reliable and
that effort must be put into adjusting alignments
manually in order to get meaningful results. Where
functional and structural information is available, it
is possible to check that active sites and secondary
structure elements are correctly aligned, and make
appropriate adjustments if not. On the other hand,
the problems of multiple alignment and tree con-
struction are inextricably linked, and algorithms
are under development for generating the align-
ment and the tree simultaneously (Vingron and von
Haeseler 1997, Holmes and Bruno 2001). A statist-
ician may argue that we should not rely on any
single alignment as being the “true” one, but should
consider all the possible pathways by which one
sequence could evolve into another when we
measure the evolutionary distance between them.

Algorithms of this type are currently under develop-
ment and promise to give interesting results in the
future (Hein et al. 2000), but they are beyond the
scope of this book. The main reason for their com-
plexity is the difficulty of constructing a probabilistic
model of insertions and deletions. For the moment,
phylogenetic studies almost always do the align-
ment first and the tree construction second.

6.5.3 Recent developments in multiple
sequence alignment

The divide and conquer method of multiple alignment
(Stoye 1998) is an alternative heuristic method that
takes a different approach from progressive align-
ment. We can define a score for a multiple alignment
as the sum of the pairwise alignment scores for all
the sequences. If we like, we can weight the sequ-
ences in some way when calculating the multiple
alignment score so as to reduce the influence of clus-
ters of very similar sequences. We would like to find
a multiple alignment that maximizes this score.
Dynamic programming algorithms to exactly solve
this problem are theoretically feasible, but imprac-
tical due to large time and memory requirements.
However, for short sections of sequences, exact
alignment is possible. The divide and conquer
method divides long sequences into short sections,
does exact alignments of the short sections, and then
recombines the short alignments into one long one.
The method implements a heuristic rule to decide at
which positions to cut the sequences. The object is to
choose places that are likely to affect the overall
alignment as little as possible. Tests have shown that
the method can give good results in some tricky
cases with sets of around 10 sequences (Stoye
1998), although it is still a fairly slow algorithm.
Another recently developed heuristic for multiple
alignment is known as T-Coffee (Notredame, Hig-
gins, and Heringa 2000). This begins with a library
of pairwise alignments for every pair of sequences
in the set. Two different pairwise programs are used,
one local and one global, so that every sequence
pair has two alignments in the library. A weight
is attached to each of these alignments that is
intended to reflect the reliability of each alignment.

Sequence alignment algorithms ® 135

The initial value for the weight, Wi, for two sequ-
ences i and j is set to the percentage identity of i and
j, because alignments of highly similar sequences
are likely to be more reliable. The second stage of
the algorithm is called library extension. The object
is to calculate a weight associated with the align-
ment of each pair of residues in two different sequ-
ences. Let X be a residue in sequence i, and Y be a
residue in sequence j. If X and Y are aligned in the
pairwise alignment of i and j, then the weight for the
residue pair is set to W(X,Y) = Wi otherwise, it is
set to zero. The algorithm then looks at all the other
sequences in the set. If there is another sequence k
with a residue Z such that X and Z are aligned in
the pairwise alignment of i and k, and Y and Z are
aligned in the pairwise alignment of j and k, then this
indicates that the three pairwise alignments are con-
sistent with each other and lends support for the
alignment of X with Y. In this case, the weight
W(X.Y)isincreased by the minimum of W, and Wi
This is done for every sequence k that has a consis-
tent alignment.

SUMMARY
An algorithm is
a problem. It i

136 ® Chapter6

At the end of this procedure, weights are available
for every pair of residues in every pair of sequences.
These weights are then used as scores in the pro-
gressive multiple alignment method. Since all the
weights are positive, gaps can be treated as zero
score, and it is not necessary to introduce any extra
gap penalty parameters. The problem with the stand-
ard progressive alignment method is that it is
unable to use information from sequences added at
a later stage to improve the alignments of sequences
that were already aligned at an earlier stage. The
idea behind the T-Coffee method is to use the library
extension procedure to calculate scores for aligning
pairs of sequences that reflect the information in all
the sequences in the set, not just the information
in the two sequences themselves. Hopefully, this
should minimize the problems that may arise with
progressive alignment. Notredame, Higgins, and
Heringa (2000) give several examples where the T-
Coffee method does indeed appear to perform better
than alternatives, and our own experiences with the
program have also been very promising.

in the order specified by the guid
ment algorithm is used to ali
clusters at each step of the
Rearrangement of sequ
mitted once the clus

REFERENCES

Benner, S.A., Cohen, M.A., and Gonnet, G.H. 1993.
Empirical and structural models for insertions and dele-
tions in the divergent evolution of proteins. Journal of
Molecular Biology, 229: 1065-82.

Carillo, H. and Lipman, D. 1988. The multiple sequence
alignment problem in biology. SIAM Journal of Applied
Mathematics, 48: 1073-82.

Clote, P. and Backofen, R. 2000. Computational Molecular
Biology — An Introduction. Chichester, UK: Wiley.

Cormen, T.H., Leiserson, C.E., and Rivest, R.L. 1990.
Introduction to Algorithms. Cambridge, MA: MIT Press.

Durbin, R., Eddy, S.E., Krogh, A., and Mitchison, G. 1998.
Biological Sequence Analysis — Probabilistic Models of
Proteins and Nucleic Acids. Cambridge, UK: Cambridge
University Press.

Feng, D.F. and Doolittle, R.F. 1987. Progressive sequence
alignment as a prerequisite to correct phylogenetic
trees. Journal of Molecular Evolution, 25: 351-60.

Gotoh, 0. 1982. An improved algorithm for matching
biological sequences. Journal of Molecular Biology, 162:
705-8.

Hein, J., Wiuf, C., Knudsen, B., Moller, M.B., and Wibling,
G. 2000. Statistical alignment: Computational proper-
ties, homology testing and goodness-of-fit. Journal of
Molecular Biology, 302: 265-79.

Holmes, I. and Bruno, W.J. 2001. Evolutionary HMMs: A
Bayesian approach to multiple alignment. Bioinformatics,
17:803-20.

Lake, J.A. 1991. The order of sequence alignment can bias
the selection of the tree topology. Molecular Biology and
Evolution, 8: 378-85.

Needleman, S.B. and Wunsch, C.D. 1970. A general
method applicable to the search for similarities in the
amino acid sequence of two proteins. Journal of Molecu-
lar Biology, 48: 443-53.

Nicholas, K.B. and Nicholas, H.B. Jr. 1997. Genedoc: A
tool for editing and annotating multiple sequence align-
ments. http://www.psc.edu/biomed/genedoc.

Notredame, C., Higgins, D.G., and Heringa, J. 2000. T-
Coffee: A novel method for fast and accurate multiple
sequence alignment. Journal of Molecular Biology, 302:
205-17.

Parry-Smith, D.]., Payne, A.W.R., Michie, A.D., and
Attwood, T.K. 1997. CINEMA - A novel Colour
Interactive Editor for Multiple Alignments. Gene, 211:
GC45-6 (Version 5 of CINEMA can be downloaded from
http://aig.cs.man.ac.uk/utopia/download).

Press, W.H., Teukolsky, S.A., Vetterling, W.T., and
Flannery, B.P. 1992. Numerical Recipes in C, 2nd edition.
Cambridge, UK: Cambridge University Press.

Smith, T.F. and Waterman, M.S. 1981. Identification of
common molecular subsequences. Journal of Molecular
Biology, 147:195-7.

Stoye, J. 1998. Multiple sequence alignment with the
divide and conquer method. Gene, 211: GC45-56.

Thompson, J.D., Higgins, D.G., and Gibson, T.J. 1994.
CLUSTAL W: Improving the sensitivity of progressive
multiple sequence alignment through sequence weight-
ing, position-specific gap penalties and weight matrix
choice. Nuclear Acids Research, 22:4673-80.

Thompson, J.D., Gibson, T.]., Plewniak, F., Jeanmougin,
F., and Higgins, D.G. 1997. The CLUSTAL X windows
interface: Flexible strategies for multiple sequence align-
ment aided by quality analysis tools. Nuclear Acids
Research, 25:4876-82.

Thorne, J.L. and Kishino, H. 1992. Freeing phylogenies
from artifacts of alignment. Molecular Biology and Evolu-
tion, 9: 1148-62.

Vingron, M. and von Haeseler, A. 1997. Towards integ-
ration of multiple alignment and phylogenetic tree con-
struction. Journal of Computational Biology, 4: 23—34.

Sequence alignment algorithms ® 137

Searching sequence

databases

CHAPTER PREVIEW

We discuss the way in which pairwise alignm
databases for sequences that are similar t
algorithms used in the heuristic search
We discuss the distribution of score
that this is often of a form called
meaning of the E values prod
statistical significance of m

7.1 SIMILARITY SEARCH TOOLS
7.1.1 Smith—-Waterman searching

It is natural to think of the score of a pairwise align-
ment as a measure of the similarity of the two
sequences. Often, we have a sequence of interest and
we want to know if there are any other sequences
that are similar to it. Pairwise alignment algorithms
can be straightforwardly extended to answer this
question. We simply align the original sequence (we
call this the query sequence) with each sequence in
a database in turn, and calculate the alignment
score for each one. We then rank the scores in
descending order and return the details of the top
few “hits” against the database. Several important
practical search tools that work in this way will be
described in this section.

The Smith—Waterman algorithm (local align-
ment with affine gap penalty) is implemented in
the MPsrch facility on the EBI web site (http://
www.ebi.ac.uk/MPsrch). It is possible to select from
a number of different PAM scoring matrices, and

CHAPTER

also to select gap costs, using
either a linear or an affine gap
penalty function. Although
there are no absolutely cor-
rect values for the gap costs,
it is important to use costs
that are reasonable in com-
parison to the scores of pair-
ing residues of different types.
The most appropriate gap
costs therefore depend on which PAM matrix is
used. The MPsrch Web page allows the user to select
values that are thought to be appropriate from previ-
ous trials after selecting the PAM matrix.

As an example, we chose the Swiss-Prot sequ-
ence PTP1_YEAST (accession number P25044),
which is a protein tyrosine phosphatase (PTP)
from Saccharomyces cerevisiae. These are enzymes
that catalyze the removal of a phosphate group
attached to a tyrosine residue. The sequence was
queried against the Swiss-Prot database using
the PAM300 matrix and affine gap penalties,
with Gopen=12 and g, = 2. The results, shown in
Fig. 7.1(a), are ranked by decreasing alignment
score. The figures in the column marked “Pred.
No.” are the E values, which are the expected
numbers of sequences in the database that would
match the query with a score greater than or equal
to the observed score. When E << 1, the match is
highly significant, while if E is of order 1 or greater,
then the match represents a weak level of similarity
that could have occurred by chance. More details
on alignment statistics are given later in this

Searching sequence databases ® 139

Scoring table: PAM 300 Gap open 12; Gap extend 2
%
Result Query
Ne. Score Match Length DE ID Description Pred. No
1 1320 58 .5 335 1 PTP1_YEAST Protein-tyrosine phosp 4.73e-207
2 343 24.3 711 1 PYP2 _SCHPO Protein-tyrosine phosp 1.97e-33
3 335 24.0 550 1 PYPL_SCHPO Protein-tyrosine phosp 8.11le-33
4 324 23.¢ 1442 1 PTPG_MOUSE Protein-tyrosine phosp 1.61le-30
5 321 22.7 2314 1 PTPZ_HUMAN Receptor-type protein- 4.60e-30
6 321 22.7 2316 1 PTPZ_RAT Receptor-type protein- 4.60e-30
7 3le 22.4 1445 1 PTPG_HUMAN Protein-tyrosine phosp 2.85e-29
8 316 22 .4 1422 1 PTPG_CHICK Protein-tyrosine phosp 2.65e-29
9 303 21.5 1457 1 PTPK_MOUSE Receptor-type protein- 2.47e-27
10 299 21.2 434 1 PTNl_CHICK Protein-tyrosine phosp 9.91e-27
20 174 12.3 750 1 PTP2_YEAST Prectein-tyrosine phosp 7.9%e-09%
9l 138 9.8 928 1 PTP3_YEAST Protein-tyrosine phosp 3.15e-04
=N 110 7.8 478 1 YDIU _SHIFL Hypothetical UPF0061 p G5.47e-01
96 108 7.7 478 1 YDIU _ECCS57 Hypcothetical UPF0061 p 7.02e-01
108 101 7.2 296 1 RN1S YEAST mRNA 3'-end processing 4.91e+C0
121 98 6.9 341 1 YH10_YEAST Hypothetical 37.9 kDa $.92e+00
RESULT 90
D PTP2_ YEAST STANDARD; PRT; 750 AL,
DE Protein-tyrosine phosphatase 2 (EC 3.1.3.48) (PTPase 2).
DB 1; Score 174; Match 26.%%; QryMatch 12.3%; Pred. No. 7.%3%e-09;
Matches 76; Conservative 69; Mismatches 89; Indels 4%; Gaps 11;
****t*.*'*_ *.*.. **t**_* 'k_'k‘i:__ ‘k_._ **_ . .
Db 465 NDYINANYLKLT----QINPDFKYIATQAPLPSTMDDFWEVI----TLNKVEVIISLNSD 516
Qy 77 ndyinasyvkvnvpggsiepgy-yiatggptrktwdgfwgmeyhnepldni-vivovepl 134
* ok * * * . __‘Jr". * k| .\ * L * 3
Db 517 DELNLRKWDIYWNNLSYSNHTIKLOQNTWENICNINGCVLRVFQVEKKTAPQNDNISQDCDL 576
Qy 135 veynrekcygywprgg-vddtvriaskwespggandmtgfpsdlkiefvnvhkvkdyytv 193
- **- *' *® LY el * * . -*. . .*
Db 577 PHNGDLTSITMAVSEPFIVYQLOQYKNWLDSCGVDMNDIIKLHKVKNSLLENPQSFITSLE 636
Qy 194 tdi-kltptdplvgpvktvhhfyfdlwkd------------------- mnkpeevvpime 233
.* . * . _‘*‘_****** * ok ok ok *"** *. . R
Db 637 KDVCKPDLIDDNNSELHLDTANSSPLLVHCSAGCGRTGVEFVILDFLL------ SILSPTT 690
Qy 234 --lc--------- ahshslnsrgnpiivhesagvgrtgtfialdhlmhdtldfkniters 282
* . *dowok * % .** L L * K
Db 691 NHSNKIDVWNMTQDLIFIIVNELRKQRISMVQNLTQYIACYEA 733
Qv 283 rhsdrate-eytrdlieqgivlglrsgrmkmvgtkdgflfiivha 324

Fig. 7.1 (a) Selected parts of the output from MPsrch using the Swiss-Prot database and the sequence PTP1_YEAST as the query
with scoring matrix PAM 300,g ~ =12,g 2.

open ext —

140 ® Chapter7

Scoring table: PAM 50 Gap cpen 40; Gap extend 7
%
Result Query
No. Score Match Length DB ID Description Pred. No
1 3660 100.0 335 1 PTP1_YEAST Protein-tyrosine phosp 0.00e+00
2 254 6.9 1445 1 PTPG HUMAN Protein-tyrosine phosp 6.39e-48
3 251 6.9 1422 1 PTPEG_CHICK Protein-tyrosine phosp 5.9B8e-47
4 248 5.8 1442 1 PTPG_MOUSE Protein-tyrosine phosp 5.55e-46
5 226 £.2 711 1 PYP2_SCHPO Protein-tyrosine phosp 5.73e-39
6 217 5.9 2316 1 PTPZ_RAT Receptor-type protein- 3.8le-36
7 208 5.7 595 1 PTN6_MCUSE Protein-tyrosine phosp 2.36e-33
8 208 5.7 6§13 1 PTN&_RAT Protein-tyrosine phosp 2.36e-33
5 208 5.7 1216 1 PTPO HUMAN Receptor-type protein- 2.36e-33
10 207 5.7 1452 1 PTPM_MOUSE Receptor-type protein- 4.7%e-33
31 181 4.9 550 1 PYP1l SCHPC Protein-tyrcsine phosp 3.43e-25
69 151 4.1 750 1 PTP2_YEAST Prctein-tyrosine phosp 1.35e-1é
S0 120 3.3 928 1 PTP3 YEAST Protein-tyrosine phosp 1.83e-08
31 117 3.2 171 1 VHO1l_RACVI Dual specificity prote 9.85e-08
52 117 3.2 171 1 DUSP_VACCV Dual specificity prote 9.8%e-08
93 117 3.2 171 1 DUSP VACCC Dual specificity prote 9.8%e-08
105 o8 3.0 551 1 CCl4 YEAST Prcbable protein-tyros 1.33e-05
108 97 2.7 489 1 M8G5 _YEAST Protein-tyrosine phosp 3.62e-03
110 33 2.5 468 1 YOPH_YERPS Protein-tyrosine phosp 2.47e-02
111 93 2.5 468 1 YOPH_YEREN Protein-tyrosine phosp 2.47e-02
140 84 2.3 312 1 DCTD_YEAST Deoxycytidylate deamin 1.41e+00
RESULT 69
1D PTP2Z_YEAST STANDARD; PRT; 750 An,
DE Protein-tyrosine phosphatase 2 (EC 3.1.3.48) {(PTPase 2).
DB 1; Score 151; Match 62.5%; QryMatch 4.1%; Pred. No. 1.35e-16;
Matches 15; Conservative 4; Mismatches 5; Indels 0; Gaps 0;
.* *hdk ok k * k ko *.‘** *_
Db 660 SPLLVHCSAGCGRTGVFVTLDFLL 683
oy 246 npiivhcsagvgrtgtfialdhlm 269

Fig. 7.1 (b) Selected parts of the output from MPsrch using the Swiss-Prot database and the sequence PTP1_YEAST as the query

with scoring matrix PAM 300,g = =40,g

open ext —

7.

chapter. In this example, the top hit is PTP1_YEAST
itself, as the query sequence is contained in the
database. The top 10 hits are shown in full, and
these include genes from the fission yeast Schizo-
saccharomyces pombe, and several vertebrates. All
these have very small E values. In total, 91 hits were
found with E < 0.05, and almost all of these are

known to be PTPs. In this discussion, we will use
the InterPro family TPRO0O0387 (tyrosine-specific
protein phosphatase and dual-specificity protein
phosphatase) as a reference for which sequences
are thought to be true PTPs. For more details on
InterPro and other protein family databases, see
Chapters 5 and 9.

Searching sequence databases ® 141

The highest-scoring sequences of other S. cere-
visiae genes, ranked 90 and 91, are PTP2_YEAST
and PTP3_YEAST, which are also PTPs. The next
two S. cerevisiae genes on the list are RN15_YEAST
and YH10_YEAST, with E values greater than 0.1.
Therefore, these probably do not represent a signi-
ficant similarity to the query. The highest-scoring
hits to bacterial sequences are also shown in Fig.
7.1(a). These are YDIU_SHIFL from Shigella flexneri
and YDIU_ECO57 from Escherichia coli. They have
E values greater than 1, and most likely these are
also chance matches between unrelated sequences.
Both these sequences belong to a different family
of proteins of unknown function (InterPro entry
IPRO03846) and not the PTP family.

The results of MPsrch also contain a printout
of the highest scoring local alignments between
the query and each of the related database sequ-
ences. Figure 7.1(a) shows the alignment between
PTP1_YEAST and PTP2_YEAST. These two sequ-
ences are relatively divergent. The alignment shows
several short regions of quite high similarity, sep-
arated by regions with rather little similarity. There
are also some fairly long gaps inserted. The query
sequence has length 335. As this is a local align-
ment, it does not necessarily cover the whole of the
query sequence. The alignment extends from posi-
tion 77 to position 324, which covers most, but not
all, of this sequence. The PTP2 sequence is much
longer (750), and the alignment goes from position
465 to 733. Thus, the algorithm has found that the
majority of the PTP1 sequence has a significant level
of similarity to a region of comparable length within
PTP2.

Figure 7.1(b) shows the results of a search using
the PAMS50 matrix and associated gap penalties,
Gopen =409, = 7. The same query sequence and the
same Swiss-Prot database were used. The results
are different from the previous case in some import-
ant respects. Most of the significant hits from the
previous search are also significant hits this time;
however, the ranking order is different. For example,
the two S. pombe genes, previously ranked 2 and 3,
are now ranked 5 and 31. This time there are 114
hits with E < 0.05, which is more than last time. The

142 @ Chapter7

two related S. cerevisiae sequences PTP2_YEAST
and PTP3_YEAST are again found as significant
hits, but this time two further S. cerevisiae sequences,
CC14_YEAST and MSG5_YEAST, also turn up with
E values considerably below 1. These are most likely
true relatives of PTP1_YEAST that were missed in
the previous search. Both are included in the list of
protein matches to the InterPro entry for PTPs
(IPRO0O0387).

There are some other notable hits not found in the
previous search. The three sequences ranked 91-93
are from Vaccinia and related viruses. At ranks 110
and 111, there are two significant matches to bacte-
rial sequences from Yersinia pestis and Y. enterocolit-
ica. These additional hits from viruses and bacteria
are probably biologically meaningful, and they are
included in the InterPro entry for PTPs. They share
significant similarity to PTP1_YEAST over a very
short domain of about 20 residues, but it is difficult
to align the sequences outside this domain. Low
PAM number matrices are appropriate for high sim-
ilarity sequences. When such a matrix is combined
with high gap costs, as in this example, it finds short
matching regions of very high similarity and almost
no gaps. This spots the short conserved tyrosine
phosphatase domains in this example. High PAM
number matrices are appropriate for sequences of
lower similarity. Such matrices give less weight to
exact amino acid matches and more weight to sim-
ilar but non-identical amino acids. They are thus
more effective at spotting relatively weak similarities
that extend over longer sequence lengths. The local
alignment of PTP1_YEAST and PTP2_YEAST with
the PAMS50 matrix is shown in Fig. 7.1(b). This is a
conserved domain of 24 residues with no gaps. This
same domain is contained within the alignment
produced with the PAM300 matrix in Fig. 7.1(a).

It should be pointed out that all these results
were obtained in December 2003, with a version
of Swiss-Prot containing 138,922 sequences. You
may like to repeat the same searches to see how
much has changed since then. You should expect to
see many of the same sequences, but the rankings
and the significance values will have changed as
more sequences have been added to the database.

7.1.2 Heuristic local alignment tools— FASTA
and BLAST

Although dynamic programming routines for
pairwise sequence alignment can be written very
efficiently, the size of biological sequence databases
continues to grow alarmingly rapidly. The more
sequences in the database, the longer each run of a
search program will take. Several heuristic search
tools have been developed that sacrifice the guar-
antee of finding exactly optimal alignments in the
interest of increasing the speed of the search. These
methods provide a quick way of locating as many
database sequences as possible that are in some
way similar to the query. If an exact alignment is
required, then we can always use a fast search tool
initially to locate the sequences of interest, and then
use an exact alignment algorithm on these sequences.

We are often only interested in sequences that are
quite similar to the query, so there is no point in
wasting time with exact alignment of sequences that
are very different from the query. Also, the region
of similarity may cover only a fraction of the
sequences, so there is little point in aligning the more
divergent regions. The FASTA program (Pearson
and Lipman 1988; also see http://www.ebi.ac.uk/
fasta33/fastadoc.html) begins by looking for sub-
sequences of the database sequence that exactly
match subsequences of the query and that are at
least of length ktup (for protein sequences, the
default is ktup=2 amino acids, and for DNA
sequences, the default is ktup = 6 nucleotides). It
then looks for diagonal regions in the alignment
matrix that contain as many of these ktup matches
as possible with only small distances between them.
The 10 highest-scoring regions are retained. These
regions correspond to high-scoring local alignments
without gaps. The algorithm then determines which
of these initial regions can be joined by allowing
gaps in the alignments of the sequences between
them. The score obtained from these approximate
alignments is used to rank the database sequences.
The highest-scoring sequences are then aligned
using a dynamic programming algorithm. Time is
only spent on dynamic programming for sequences

that are already known to be quite similar to the
query according to the simplified scoring system of
the first parts of the routine. As an additional time-
saving feature, the program only considers path-
ways through the alignment matrix that remain
within a band centered around the highest-scoring
initial regions. This saves time in calculating the
H(i,j) scores for cells in the matrix that are very far
from the presumed optimal alignment path.

The BLAST program, or Basic Local Alignment
Search Tool, in its original version (Altschul et al.
1990), tries to find the highest-scoring ungapped
local alignment between the query and a database
sequence. It uses a word length parameter, w, sim-
ilar to the ktup parameter in FASTA. Usually w is 3
for proteins and around 12 for DNA. BLAST scans
the database for words of length w that score higher
than a threshold T when aligned with words in the
query. The local alignment is then extended out-
wards from these words. In each direction, the
extension is stopped when the score falls more than
a certain distance below the best score reached so
far. The algorithm then returns the best-scoring
local alignment within the region considered. As an
example, we queried the protein

CAPTAINKIRKANDTHESTARSHIPENTERPRISECREW

against the non-redundant protein database using
the BLAST algorithm available on the NCBI Website
http://www.ncbi.nlm.nih.gov/BLAST/ and using the
PAM30 scoring matrix. The top hit is to a protein from
Caulobacter crescentus. The alignment looks like this:

Score = 30.3 bits (64), Expect = 2.4
Identities = 11/19 (57%), Positives

= 15/19 (78%)

Query: 17 ESTARSHIPENTERPRISE 35
E+TAR H+PEN E R++E
Sbjct: 43 ETTAREHLPENAEIARLTE 61

The line between the two sequences indicates ident-
ical and similar amino acids (the latter denoted by a
+). The algorithm has found a high-scoring word

Searching sequence databases ©® 143

(possibly pEN) and extended in both directions to
give a high-scoring ungapped local alignment of
length 19 residues.

More recent versions of BLAST (Altschul et al.
1997) have changed the initial step of the algorithm
by requiring two high-scoring words close together
on the same diagonal before initiating the extension
procedure. In the above alignment, TAR and PEN are
on the same diagonal because there are no gaps
inserted between them. This avoids wasting time
trying to extend alignments in a lot of cases that are
just chance matches of a single high-scoring word.

Score = 32.7 bits (67), Expect = 0.54

Identities = 15/39 (38%), Positives = 20/39

The new algorithm also allows gaps in the extension
procedure. The gapped extension is done using a
version of the Smith-Waterman algorithm that
stops if the score falls more than a certain distance
below the highest score yet found. This is a heuristic
rule that tries to avoid wasting time calculating
low-scoring cells in the alignment matrix. If the
CAPTAINKIRK protein is used as a query against the
non-redundant NCBI database with the BLOSUM62
matrix (rather than the PAM30 matrix used above),
the top hit is a gapped alignment to a capsid protein
precursor from Plautia stali intestine virus.

(50%), Gaps = 4/39 (10%)

Query: 1 CAPTAINKIRKANDTHESTARSHIPENTERPRISECREW 39
CAP +N+ R A+D E T I + ERPR+ W
Sbjct: 53 CAPQTMNESRPASDFREHT----IVDFLERPRVVATHIW 87

Database search tools are almost always able
to find a sequence with at least some degree of
similarity to the query sequence, even if the query is
nonsense, like the CAPTAINKIRK protein. It is
necessary to use common sense when looking at the
output of a program like BLAST. One thing that can
help to interpret the significance of results is the E
value. In the two examples above, the E values are
2.4 and 0.54, which suggests that the matches are
not significant (fortunately!).

BLAST is a frequently used program that has been
implemented in several ways to deal with different
types of sequence data. BLASTP compares a protein
query to a protein database; BLASTN compares a
DNA query to a DNA database; BLASTX takes a DNA
query, translates it, and compares it to a protein
database; and TBLASTN compares a protein query
to a translated protein database. These programs
all work in very similar ways.

7.1.3 PSI-BLAST

The basic version of BLAST looks for matches
between a single query and sequences in a database.
However, the more recent Position-Specific Iterated-
BLAST (PSI-BLAST) uses information from sets of
related sequences for database searches (Altschul

144 ® Chapter7

et al. 1997). The method begins with a single query
sequence and locates database sequences with
significant matches (say E < 0.01) using the original
BLAST algorithm. A multiple alignment is then con-
structed by placing all the locally aligned sections of
the database sequences below the query sequence.
In cases where the pairwise local alignment would
put a gap in the query sequence, the corresponding
residue from the database sequence is eliminated.
This means that the multiple alignment has the
same number of columns as the query sequence.
This is a quick and approximate way of making
a multiple alignment, as the algorithm is designed
for speed and simplicity.

The alignment produced in the first BLAST run
is then used as input to a second run. Scores are
now assigned for matching a new sequence from
the database with the set of sequences already
aligned, rather than for just matching the sequ-
ence with the original query. The score depends
on the frequencies of the residues in the columns
of the alignment, i.e., a V residue is more likely to
be aligned with a column that has several Vs in
it already, or a column with lots of other hydro-
phobic residues, than with a column containing
mostly, say, acidic amino acids. Scoring systems like
this are known as position specific scoring matrices

Sequences producing significant alignments:

Score E
{bits) Vvalue

gi|131557|sp|P25044|PTPL YEAST Protein-tyrosine phosphatase. .. 705 0.0

gi|417567|sp|P32586 |PYP2 SCHPO Protein-tyrosine phosphatase. .. 148 2e-35
g1|417568|sp|P32587|PYP3_SCHPO Protein-tyrosine phosphatase. .. 142 le-33
gi]33112421|sp|Q13332|PTNS_HUMAN Receptor-type protein-tyro. .. 137 3e-132
g1]1709906|sp|P23468|PTPD_HUMAN Protein-tyrosine phosphatas. .. 135 2e-31
gi|462551|sp|Q0590% | PTPG MOUSE Protein-tyrosine phosphatase. .. 134 le-31
g1]3183128|sp|Q62656|PTPZ_RAT Receptor-type protein-tyrosin. .. 133 7e-31
g1]20455509|sp|P35992 | PTPL DROME Protein-tyrosine phosphata. .. 132 8e-31
g1 |462550|sp|P23470|PTPG_HUMAN Protein-tyrosine phosphatase. . . 122 ge-31
gi|125978|sp|P10586 | PTPF HUMAN LAR protein precursor (Leuko. .. 132 le-30
gi|266860isp|P29461|PTP2 YEAST Protein-tyrosine phosphatase. .. 85 3e-16
gil731478|sp|P40048 | PTP3 YEAST Protein-tyrosine phosphatase... 49 le-05
gi|2499759|sp|[P80994|VHOL RACVI Dual specificity protein ph. .. 36 0.12

gi|138374|sp|P07239[DUSP_VACCV Dual specificity protein pho... 35 0.18
gi|138373|sp|P20495|DUSP_VACCC Dual specificity protein pho. .. 35 0.19
gi|418237|sp|{P33064|DUSP_VARV Dual specificity protein phos. .. 35 0.33
gi|1168807{sp|Q00684 |CC1l4 YEAST DProbable protein-tyrosine p... 33 1.2

Fig. 7.2 Query of PTP1_YEAST against Swiss-Prot using BLASTP. The top 10 hits are shown, plus the hits to other yeast

sequences and a few other sequences discussed in the text.

(PSSMs), and we will talk about them again in
Section 9.4.

Searching the database using the PSSM may turn
up further significant matches that were not found
by the original query. If so, the new sequences can
be added to the alignment, the scoring matrix can be
updated, and the search can be repeated. The whole
process is iterated until no additional sequences are
found. PSI-BLAST can sometimes lead to the detec-
tion of distantly related sequences that would not
be found by a straightforward BLAST search. This
is because there is extra information in the aligned
group of sequences that is not in any one sequence.
However, it is necessary to be careful when add-
ing sequences, because if the range of sequences
becomes too broad, then the alignment can end up
having little relationship to the original query, and
future matches to the alignment will not represent
biologically meaningful similarities. It is possible to
manually edit the list of new hits to include in the
PSSM at each iteration to avoid addition of spurious
matches that do not appear to be relevant.

7.1.4 Comparison of search methods

FASTA and BLAST produce ranked lists of hits against
a database in a similar way to MPsrch. The BLAST
results for PTP1_YEAST are shown in Fig. 7.2. This
was obtained using the NCBI BLAST facility with the
BLOSUMG62 scoring matrix and with Swiss-Prot
as the specified database (per-formed in December
2003). This time, 77 significant hits were found with
E <0.05. The top few, shown in Fig. 7.2, include
sequences from Schizosaccharomyces pombe, from
mammals, and from Drosophila. The list is similar, but
not identical to those produced by MPsrch (Fig. 7.1).
The two highest-ranking S. cerevisiae sequences are
PTP2_YEAST and PTP3_YEAST, as before. The only
other S. cerevisiae sequence is CC14_YEAST, which
is way down the list and is apparently not significant
(E=1.2). The MSG5_YEAST sequence that was found
by MPsrch does not appear on this list, because it has
an E value greater than the threshold, which was set
to 10 in this example. BLAST can spot the similarity
between these sequences, and would report it if the

Searching sequence databases ® 145

threshold were increased, or if a search were made
against only S. cerevisiae sequences. We return to this
point in Section 7.3, when we discuss the statistical
significance of alignments more carefully. For now,
we note that BLAST has also spotted the match to
the sequences from viruses found using MPsrch
with the PAM50 matrix.

Although the ranking of hits in BLAST output
gives some information about the degree of related-
ness of database sequences to a query, it should not
be assumed that the top hit is necessarily the most
meaningful evolutionarily. Several authors have
found human genes whose top BLAST hits are to
bacterial sequences. This has led to claims of hori-
zontal transfer of genes from bacteria to vertebrates.
However, more careful studies have shown that most
of these cases are not supported by phylogenetic
methods (Stanhope et al. 2001), and comparison of
BLAST results with phylogenetic trees (Koski and
Golding 2001) shows that frequently the top BLAST
hit is not the closest relative. In Chapter 12, we dis-
cuss horizontal transfer in bacteria in more detail.

In order to compare the effectiveness of different
search tools, we need to think more carefully about
what we actually want from a database search.
Usually, we have some idea of what we mean by
a “real” relationship between sequences. For ex-
ample, we might require that sequences should be
descended from a common ancestor, or we might
require that they should each contain at least one
domain that is descended from a common ancestor,
or we might require that they should share the
same function. Unfortunately, alignment algorithms
know nothing about evolutionary history or about
protein function — they only know about similarity
between characters in linear sequences. It is there-
fore necessary to find a measure of sequence similar-
ity that reflects real biological similarities as closely
as possible. Let us suppose that we have already
identified all the sequences in a database that belong
to a given protein family (by some combination of
hard work and biological knowledge that we will not
specify). We may now compare the ability of differ-
ent algorithms to identify members of this family.

We take one member of the family and use this as
a query against a database. The algorithm returns a

146 ® Chapter7

ranked list of hits and stops at some predefined thre-
shold score. Ideally, all family members will be at the
top of the list with scores above the threshold, and all
unrelated sequences will be at the bottom of the list
with scores below the threshold. Unfortunately, this
will not always be entirely true in reality, as often an
algorithm will fail to match true family members
and/or will incorrectly match unrelated sequences.
We use the following definitions: True Positives are
family members that are correctly identified by the
algorithm with a score above the threshold; False
Positives are unrelated sequences that are assigned
a score above the threshold by the algorithm; False
Negatives are family members that are missed by the
algorithm because their score is below the threshold;
and True Negatives are unrelated sequences that
correctly fall below the threshold. The sensitivity of
the algorithm is defined as the fraction of family
members that are correctly identified:

True Positives

Sensitivity = — -
True Positives + False Negatives

However, it is always possible to produce an algo-
rithm with 100% sensitivity by simply reducing the
threshold to a low enough value so that there are
no False Negatives. This is counterproductive in
practice, as reducing the threshold is likely to give
rise to greater numbers of False Positives. Therefore,
we need a second measure of effectiveness of the
algorithm. We define the selectivity as the fraction
of sequences with score above the threshold that are
real family members:

L. True Positives
Selectivity = — — (7.2)
True Positives + False Positives

Ifthe algorithm is any good at all, then at least the
top few hits will be family members. Therefore, if we
make the threshold high enough, we will achieve
100% selectivity, but in so doing we may obtain very
few hits (i.e., low sensitivity). In an ideal case, where
all the family members are ranked above any of the
unrelated sequences, it is possible to find a threshold
such that both sensitivity and selectivity are 100%.
In reality, we need to choose a threshold that is a

good compromise between the two quantities. A
sensible rule of thumb is to choose the threshold
where the two quantities are equal.

If we have a way of calculating the statistical
significance of hits, then we could choose a thresh-
old based on E values, e.g., all sequences with
E < 0.05 could be counted as positives. However,
estimates of significance are hard to calculate and
are not always accurate. Using 0.05 as a cut-off with
the BLAST example in Fig. 7.2, we obtained 100%
selectivity and low sensitivity. Once again, we used
the list of sequences in the InterPro PTP entry to
define true family members. If the threshold were set
at E = 10 (the end of the BLAST output in this case)
we would still have virtually 100% selectivity and
substantially higher sensitivity, so this is not a bad
compromise in this example.

More importantly than simply moving the thresh-
old up or down, we can change the scoring system so
that the rank order of the hits changes and we can
hope to increase both sensitivity and selectivity. One
important issue is the choice of amino acid substitu-
tion matrix. Henikoff and Henikoff (1993) used
BLAST and FASTA with many different matrices to
compare the ability of different matrices to detect
members of protein families. They found that BLO-
SUM62 was the most successful of the matrices
under the test conditions. The BLOSUM series of
matrices is based on counting substitutions between
proteins that are greater than a given evolutionary
distance apart, whereas the PAM matrices are based
on counting substitutions between closely related
proteins to give a PAM1 matrix, and then extra-
polating this to higher PAM distances. Henikoff and
Henikoff (1993) argue that this extrapolation does
not work well in practice, and that the BLOSUM
series is better at detecting distant sequence similar-
ities because it is explicitly calculated from align-
ments of distant sequences. However, the original
PAM matrices (Dayhoff 1978) were calculated at a
time when there were few sequences available. More
recent matrices, calculated using very similar meth-
ods (Jones, Taylor, and Thornton 1992, Gonnet,
Cohen, and Benner 1992), performed better than
the Dayhoff matrices because they were calculated
from much larger sequence sets. It is known that

different matrices are appropriate for finding simil-
arities at different evolutionary distances. When
searching a database, we do not know in advance at
which evolutionary distance matching sequences
will be found. Several authors have therefore sug-
gested doing searches with a set of different matrices
in order to increase the likelihood of finding related
sequences at all distances. The drawback of this is
that an increased number of False Positives are likely
to be found if searches are done with more than one
matrix. For the criteria used by Henikoff and
Henikoff (1993), using multiple matrices did not
improve on the performance of the single BLO-
SUM62 matrix because the increase in sensitivity
was outweighed by the loss of selectivity.

BLAST, FASTA, and Smith-Waterman searches
can all be performed with any of the substitution
matrices. It is therefore of interest to compare the
performance of the different algorithms using the
same substitution matrices. Pearson (1995) con-
cluded that the full Smith—-Waterman search per-
formed better than either of the heuristic algorithms
when optimized scoring systems were used. Never-
theless, BLAST is probably the most frequently used
search tool because of its speed and its free availabil-
ity on a number of Web sites. It also produces results
that are very similar to those of a full Smith—
Waterman search (as seen in the examples in
Figs. 7.1 and 7.2). Closely related sequences will be
identified in a search using any of these algorithms.
However, it should be remembered that no search
algorithm is guaranteed to find all the sequences of
biological interest. The matches found by a search
tool will depend on the details of the search algo-
rithm and the scoring system used. When we
are interested in finding as many distant matches as
possible, it is worth using more that one algorithm
and/or more than one set of parameters.

7.2 ALIGNMENT STATISTICS
(IN THEORY)

7.2.1 Why bother with statistics?
If we take any two sequences and run them through

a pairwise alignment program, there will always be

Searching sequence databases ® 147

some best alignment. Similarly, if we run a database
search with any query sequence, there will always
be some top-hit sequence in the database (remember
the caApTAINKIRK example discussed above). It is
possible to find some degree of similarity between
parts of two completely unrelated random sequences.
So, how do we know that the result we get from an
alignment or a database search is a biologically
meaningful one, and that it does not just arise simply
from chance similarities between unrelated sequ-
ences? If we have two biological sequences with a
recent common ancestor, there will be a high degree
of similarity and it will be easy to see that the
matching regions in the alignment are real. If we are
in the “twilight zone” of rather weak similarity, then
it may not be easy to tell from just looking at the
result whether it means anything. For this reason, it
isimportant to estimate the statistical significance of
any potential match that we find between sequences.

Sequence-matching algorithms assign scores to
alignments between two sequences. To determine
the significance of any particular score, it is neces-
sary to calculate the distribution of scores that we
would expect between pairs of random unrelated
sequences. From this distribution, we can then
obtain the p value, i.e., the probability that an align-
ment with a score greater than or equal to the
observed score would occur between unrelated
sequences. If p is small, this indicates that the align-
ment between the sequences is a significant one that
is unlikely to have occurred by chance. In the rest of
this section, we are therefore concerned with calcu-
lating the score distributions between pairs of ran-
dom sequences. However, the section comes with a
health warning — it is one of the most mathematic-
ally difficult in the book. Nevertheless, we include it
because of its fundamental importance.

7.2.2 Simplest possible case — Pairwise scores

Calculating the distribution of scores between ran-
dom sequences can be difficult for real alignment
algorithms. For this reason, we begin this section
with a very simplified version of the problem. Con-
sider an ideal world, where all gene sequences have
exactly the same length, N, and where sequence

148 ® Chapter7

evolution occurs with only point mutations and no
insertions or deletions. In this case, it is obvious how
to align two sequences — we simply put one below
the other with no gaps, like this:

ACCGTTAGGG
ACTTTTAGGA

* * * * K% * %

A straightforward measure of similarity between
two sequences is just the number of matching sites
m. In this case, m=7 and N = 10. Let the frequen-
cies of the bases be m,, 7., T, and 7. For any site in
the alignment, the probability that two unrelated
bases would both be A ism4, and the probability that
they are both C is &2, etc. Thus, the probability that
the two sequences match at this site, irrespective of
what base is present, is
a=73+ng+n+mni (7.3)
The probability that they do not match is 1 — a. If all
bases have equal frequency, then a = /4. The prob-
ability that there are m matching sites is given by a
binomial distribution:
P(m)=CNa™(1 —a)N-m (7.4)
(If you need a reminder, see Section M.9 in the
Appendix.) The expected number of matches be-
tween two random sequences is the mean of this
distribution i1 = Na, and the variance of the distri-
bution is given by 62 = Na(1 — a). If N is large, then
the binomial distribution can be well approximated
by a normal distribution with the same mean and
variance (see Section M.10). To calculate the
significance of a given alignment with an observed
number of matches, m ,, we first calculate the z
value, which is the number of standard deviations
the observed value is above the expected value:

m m

z=—ts — (7.5)
9

We know that z has a standard normal distribu-
tion, and hence that there is 95% probability that z

fallsin the range —1.96 <z < 1.96 (again, see Section
M.10). If the observed value of z is greater than 1.96,
the probability of the alignment having a number of
matches this high by chance is less than 2.5%. We
can then reject the null hypothesis that the sequ-
ences are unrelated.

For example, if the base frequencies are all equal,
then 1= 0.25N, and 6> =0.1875N. Suppose we
observe 120 base matches in a sequence of length
400. We calculate

z=(120-100)/4/75 =2.309

This is slightly outside the confidence interval, and
suggests that there are more matches than we
would expect by chance. We can calculate the ac-
tual probability of observing greater than or equal to
120 matches between random sequences by evalu-
ating the area under the tail of the normal distribu-
tion — this is the p value in Eq. (27) of the Appendix.
For an observed z of 2.309, p = 1.05%. Thus, some-
what surprisingly, this is a fairly significant match
according to our model, even though the percent-
age similarity between the sequences is quite low
(120/400 is only 30% similarity).

7.2.3 Simplest possible case — Database search scores

Now let us consider a database search algorithm in
our ideal world where all sequences have the same
length and there are no gaps. The database contains S
sequences. The search algorithm calculates the num-
ber of matches m between a query sequence and each
of the S sequences. It then returns the score m,, . of the
most closely matching sequence from the database.
We want to know whether this value is significant.
To determine this, we need to know the distribution
of scores F(m,,,,) that we would obtain for matching
a random query sequence against the database. We
already calculated the distribution P(m) of scores
between pairs of random sequences. However, m,, .
is the maximum of a large number of different values
of m, so it is likely to be considerably higher than the
value of m obtained from just two typical sequences.
Therefore F(m,,,) isnot the same distribution as P(m).
It can be shown that F(m__)is an example of a type

max

of distribution known as an extreme value distribu-
tion (EVD) and can be written as:
) - }Lg*}”(mnm.\'*“) exp(_e*)‘(mnmx*“))

F(m (7.6)

max
This is a smooth function with a single peak skewed
to one side. EVDs arise whenever we are dealing with
the maximum value taken from a large number of
independent alternatives. More details are given in
Box 7.1.

To show that this distribution applies in our
example, a database of 2000 random sequences of
length 200 was generated. The sequences contained
only C and G bases, each with frequency 50%. The
number of matches, m, was counted for each pair of
sequences in the database, and the distribution P(m)
is plotted in Fig. 7.3. This is a binomial distribution,
with N= 200 and a = 0.5. We then considered each
sequence in turn as a query sequence, and calculated
m,,..» the highest number of matches against any of
the other sequences in the database. The distribution
F(m,,,,) is shown in Fig. 7.3 as a solid line. A least-
squares fitting routine was then written to fit the
EVD function (Eq. (7.6)) to the simulated distribu-
tion. The dashed line is the best-fitting EVD, which
hasA =0.497 and u = 123.2. This fits the simulated
data rather well. Note that typical values of m,,, are
in the range 120-130. This is much larger than the
typical values of m, which are in the range 90-110.

We can now consider the problem of the signific-
ance of a match of a given query sequence against
the database. If the observed value of the top-hit
score for the query sequence is m,,, then the prob-
ability of obtaining a value m,,, greater than or
equal to this score by chance is given by the area
under the tail of the probability distribution (again
see Box 7.1 for the details):
Plmy,) = 1 — exp(—¢ M) (7.7)

The smaller the value of p, the less likely the match
is to arise by chance and therefore the greater the
significance of the match. Suppose we run a query
sequence against our database and the top hit has a
score of m ;. = 130, then using the measured values
of A and u in Eq. (7.7) gives p = 3.3%. (Note that

Searching sequence databases ® 149

0.201

0.15+

Probability
=}
=
T

0.05+-

0.00 ! L L

Fig. 7.3 Probability distributions

for match scores using the Simplest
Possible Case example of a database
search tool. P(m) is a binomial
distribution (Eq. (7.4)). F(m,,,,) is an
extreme value distribution. The solid
curve is calculated from simulated data,

50 60 70 80 90 100 110 120

Number of matches

there is a small tail of the distribution to the right of
130 visible in Fig. 7.3 that contains 3.3% of the area
under the curve.) Thus, a score of 130 is just big
enough to be significant.

However, the significance of a given score depends
on the size of the database. The more sequences there
are in the database, the higher the score of the best
match islikely to be. If the number of sequences in the
database increases from S, to S,, the new distribu-
tion of m,,,.is an EVD with the same value of A, but a
higher value of u. In other words, F(m,,,) is the same
shape but shifted to the right. Suppose we repeated
our simulation with a database of 10,000 sequences
instead of 2000. Equation (7.11) in Box 7.1 says that
we would expect the new value of u to be 123.2 +
In(5)/0.497 = 126.4. As a result of this, there will
now be a lower significance attached to the top hit
(i.e., the value of p will be larger). Let us suppose the
sequences in the smaller database are included in the
larger one. The score of the query against the original
top hit is still 130; however, with u=126.4, we find
p = 15.4%, which is not statistically significant. This
is slightly alarming the first time you see it. The score
for the match between the sequences is still the same,
but the significance has changed because the data-
base size has increased. The result is nevertheless
quite logical. The more sequences there are in the
database, the higher the best score will be for arandom

150 ® Chapter7

130 140 150 andthedashed lineis obtained by fitting

Eq. (7.6) to the simulated data.

sequence, and the higher the score needs to be for
a real sequence before we can conclude that the
match is significantly better than would be expected
by chance. We return to this point in an example
with real sequence databases in Section 7.3.

7.2.4 Word-matching example

We will now consider a second example of an align-
ment algorithm, which is also very idealized, but has
a lot in common with real algorithms like BLAST.
Consider two sequences of length N and M. The sim-
plest version of a local alignment algorithm is to look
for the longest exactly matching word between the
two sequences. We will say that the score for align-
ing the sequences is just the length I of this longest
word. In the example below, I = 6, corresponding to
the word caTatc.

GGATATCCAGCGCTCCTCT

*

ATCCGATATCTTGG

*

Suppose we pick any random site in one sequence
and any random site in the other sequence. Let n be
the length of the matching word we get by starting
at these two random sites. For example, if we start at

the two points indicated by asterisks above, then we
get a matching word Tcc of length n = 3. If we pick
two random sites that do not match at all, this cor-
responds to a word of length n = 0. Thus, there are
many different places at which we can choose the
start points, and [is the longest of all the different
word lengths that we get from all the different start
points. Once again, this is a situation where we are

taking the maximum value of a large number of pos-
sible alternatives. For this reason, we expect that the
distribution of F(I) will be an EVD. In Box 7.2, we
show in more detail why the EVD arises in this case.
To show that the derivation in Box 7.2 works, we
used the same simulated database as in the previous
example, with 2000 random GC sequences of length
200. The value of I was calculated for every pair of

Searching sequence databases ® 151

sequences in the database and the distribution F(I)
is plotted in Fig. 7.4. We know from Eq. (7.3) that
a="2 and hence A=1In 2, from Eq. (7.13). In this
example, M = N = 200. We do not know what u is,
and therefore we estimate u by doing a least-squares
fit to the simulated data. This gives u=13.6. The
fitted EVD function is shown as a dashed line in Fig.
7.4 — it is difficult to see because the fitted curve is
almost exactly on top of the data!

So far, we only considered the distribution of scores
for two sequences. If we use this scoring system in a
database search algorithm, we will calculate I, . the
length of the top-hit word between the query sequ-
ence and any of the sequences in the database. The

152 ® Chapter7

easiest way to imagine this is to consider all the data-
base sequences linked together into a single long sequ-
ence. The distribution can therefore be calculated in
the same way asin Box 7.2, except that the length of
the second sequence, M, isreplaced by the total length
of the sequences in the database (M = 2000 x 200 =
400,000 in our example). To calculate the distribu-
tion of . in the simulated database, each sequence
in turn was treated as the query and the top hit was
found against all the remaining sequences. Using
Eq. (7.11), we would expect that the peak of the dis-
tribution would be shifted fromu; =13.6tou, =13.6
+ In(400,000/200)/In(2) = 24.5. From the least-
squares fitting routine, we found u = 24.4, which is

0.301

0.25-

0.20

Probability
o
&
T

o

-

(=}
T

Fig. 7.4 Probability distributions for
matching word lengths in the word- L
matching example. Solid curves show
simulated data for the distributions

oflandl, . Both are extreme value F
distributions. Dashed curves are 0.00 " }

0.05+

1

obtained by fitting Eq. (7.6) to the 0 5
simulated data.

consistent with expectations. In Fig. 7.4, the fitted
EVD is visible as a dashed line that closely approxim-
ates the simulated distribution of I ..

There is an important difference between the
simplest possible case example and the word-match-
ing example in this section. For the word-matching
example, the distribution of pairwise scores F(I) is
itself an EVD, because I is the longest matching word
from many possible words that can be chosen from
the two sequences. The distribution of the top-hit
score, F(I,,,.).is an EVD because the longest word is
calculated for each pair of sequences and because the
best-scoring sequence in the database is returned as
the top hit. This contrasts with the simplest possible
case example, where the distribution P(m) of pair-
wise scores isnot an EVD (because m is not obtained
by calculating the best of many alternatives), but the
distribution F(m) of top-hit scores is an EVD.

max:

7.3 ALIGNMENT STATISTICS
(IN PRACTICE)

Real database searching algorithms have more com-
plicated scoring systems than either of the above
examples. BLAST works by looking for high-scoring
local alignments, as described in Section 7.1.2, and
allows for different paired scores between different

10 15 20 25 30 35 40
Word length

residues by using the BLOSUM matrices. In the earlier
versions of BLAST, gaps were not allowed. In that
case, it can be shown (Karlin and Altschul 1990)
that the distribution of pairwise local alignment
scores is an EVD. More recent versions of BLAST
allow gaps, as do FASTA and Smith—Waterman
algorithms. It is believed that for all these versions of
local alignment algorithms, the distribution of scores
between random sequences is also an EVD. The con-
stants A and u in the EVD formula cannot be calcu-
lated theoretically for these programs, but they can
be obtained by running the algorithm against many
random sequences in order to obtain an empirical
probability distribution, and then fitting this dis-
tribution to an EVD (examples are given by Altschul
et al. 1997). Accurate estimation of the parameters
of EVDs from simulations with random sequences is
a current area of research (Altschul et al. 2001).
Once the EVD parameters are known for a given
search algorithm and a given scoring system, it is poss-
ible to estimate the significance of a given match
against a database. Results of database search pro-
grams are usually presented in terms of E values,
where E is the expected number of sequences in the
database that will match the query sequence with a
score greater than or equal to the observed score S. As
in the word-matching example (Box 7.2, Eq. (7.15)),
the E values decrease exponentially with the score:

Searching sequence databases ® 153

(a)

Score E

gi|131557|sp|P25044 |PTP1_YEAST Protein-tyrosine phosphatase. .. 708 0.0
gi|266860|sp|P29461|PTP2_YEAST Protein-tyrosine phosphatase. .. 85 2e-17
gi|731478|sp|P40048|PTP3_YEAST Protein-tyrosine phosphatase. .. 43 6e-07
gi|1168807|sp|Q00684|CC14_YEAST Probable protein-tyrosine p... 33 0.072
gi|1709121|sp|P38590|MSG5_YEAST Protein-tyrosine phosphatas. .. 30 0.34
gi{417225|sp|P32B95|KPR1_YEAST RIBOSE-PHOSPHATE PYROPHOSPHO. .. 29 0.67
gi|1730719|sp|P53965 | YND2_YEAST HYPOTHETICAL 32.8 KD PROTEI... 28 1.6
gi|731615|sp|P38732|YHDY_YEAST Hypothetical 7.5 kDa protei... 28 1.8
gi|41689%|sp|P32872 ! DHAY YEAST Aldehyde dehydrogenase 2, mi... 28 2.4
gi|3914316|sp]Q07418|PEXJ_YEAST Farnesylated protein PEX19 ... 27 3.0
gi|1730735|sp|P53949|YNF§ YEAST HYPOTHETICAL 22.5 KD PROTEIL. .. 27 5.0
gi{731579|sp|P38893|YH1Q_YEAST Hypothetical 37.9 KDa protei... 27 5.5
gi|2497216|sp| 03254 |YMBK YEAST Hypothetical 83.4 kDa prote... 26 5.2
gi|731527|sp}PL0356|YEY2 YEAST Hypothetical 43.5 kDa protei... 26 7.3
g1|2494310|5p|Q04660|YMTI_YEAST Hypothetical $1.7 kDa Trp-&... 26 7.5
(b)

Saccharomyces cerevisiae (yeast, ...) [ascomycetes] taxid 4932
gi|63192971|ref|NP_010051.1| phosphotyrosine-specific prote... 705 0.0 =PTP1
gi|6324782|ref|NP_014851.1| protein tyrosine phosphatass; ... 84 2e-15% =pTP2

gi|172382|gb|ARBS59323.1| tyrosine phosphatase 80
gi|6320919|ref|NP_010998.1f Protein tyrosine phosphatase; ... 49

3e-14 =PTPZ
Je-05% =PTP3

Fig. 7.5 BLAST results using PTP1_YEAST as query sequence. (a) Search made only against other yeast sequences in
Swiss-Prot. The complete list of hits is shown. (b) Search made against all proteins in the non-redundant database. Only hits

against yeast sequences are shown.

E(S) = KMNe™S. Here, N is the length of the query
sequence, M is the total length of all the sequences
in the database, and K and A have been determined
from random sequences prior to running the search.

As an example of this, we chose the sequence
PTP1_YEAST from S. cerevisiae, which was also used
in Section 7.1. The BLASTP output for this sequence
against the whole of Swiss-Prot was shown in Fig. 7.2.
In Fig. 7.5(a), this query is repeated using the same
search program, but with the option specified to search
only the S. cerevisiae sequences in Swiss-Prot. The top
hit is, of course, PTP1 itself, with a score of 705. The
nextis PTP2, with score 85, and E= 2 x 107'7, indi-
cating a highly significant relationship to PTP1.
When the search is made against the whole of Swiss-
Prot (Fig. 7.2), the score of the hit against PTP2 is
still 85, but the E value increases to 3 x 1071¢, Thisis
an order of magnitude higher because the database
is an order of magnitude larger. This does not matter
much in this case, because the hit is obviously highly
significant. However, with borderline cases, it might
make a difference to our conclusions. The match to

154 ® Chapter7

the CC14 sequence is of borderline significance with
E=0.072 in Fig. 7.5(a), which might suggest it is
worth investigating further, whereas in Fig. 7.2 the
same hit has E = 1.2, and we would probably ignore
this if we had no further evidence.

The largest protein database available on the
NCBIBLAST site is the “nr” database of non-redund-
ant proteins. When PTP1_YEAST is run against
this database, E values are increased with respect
to the search against Swiss-Prot, because the nr
database is larger. The output from this search was
grouped into species using the taxon-specific sum-
mary facility. Figure 7.5(b) shows the hits against
yeast sequences. With the larger database, the E
value for the CC14 gene isincreased from its value in
Fig. 7.2, and this time it does not even appear in the
output. The genes PTP2 and PTP3 appear as before,
except that there are two hits against PTP2 which
arise because the same gene has been sequenced and
submitted to GenBank by different people. The two
PTP2 sequences appear to be identical in length but
differ at just a couple of amino acids.

Although the nr database is supposed to be non-
redundant, it clearly contains examples of sequences
that are almost identical (often, these are errors that
have been corrected in Swiss-Prot, but reintroduced
when nr’s different source databases are merged).
This means that the effective size of the database is
smaller than it would be if all sequences were really
independent, and the E values may be inaccurate for
this reason. Which sequences we include in a data-
base depends on our definition of non-redundant.
This is a very gray area. What about alleles of the
same gene in different organisms, or duplicate genes
in the same genome, or related proteins in the same
family, or pseudogenes, or copies of transposable
elements? Significance values based on properties of
random sequences cannot capture all these levels of
biological complexity.

These examples show that alignment statistics
need to be taken with a pinch of salt. We cannot draw
a strict borderline at E=0.05 (or anywhere else)
and say that all hits below this value are significant,
while all hits above this value are not. It is necessary
to use common sense to decide whether we believe
that a local alignment between sequences is biolo-
gically relevant or not. The E values we calculate
depend on the assumptions underlying the statistical
test and the null model that we use to calculate the
distribution of scores between random sequences.
For BLAST, the significance is calculated relative to
the distribution of scores expected for random pro-
tein sequences composed of amino acids with the

SUMMARY
Tools are available for sea
ences that are similar to
MPsrch is an imple

same frequency as real proteins but in random
order. The null model for BLAST therefore assumes
that the likelihood of any amino acid occurring is the
same at any point in the sequence, and is independ-
ent of the amino acids next to it in the sequence.
Real sequences are likely to have some degree of cor-
relation between consecutive residues. For example,
proteins tend to have hydrophilic and hydrophobic
regions, so that the probability of a residue being
hydrophobic is probably slightly larger if the pre-
vious residue was hydrophobic too. There are also
particular short protein motifs that appear with high
frequency (e.g., simple sequence repeats like poly-
glutamine regions). Although more complicated null
models can be envisaged, it is difficult to account for
all of these factors properly. The null model used for
calculations is bound to be unrealistic to a certain
extent, and the significance values we get from the
model are therefore not as useful as we might like.
One approach is to avoid using random sequences
for the null model. We can calculate the expected
distribution of scores by aligning many pairs of un-
related proteins, and we can use this distribution to
estimate the significance of a match in the case of a
pair of putatively related proteins. It has the advan-
tage that any unusual properties of real sequences like
correlations and common motifs will automatically
be accounted for in the distribution of scores. How-
ever, it has the disadvantage that we have to define
in advance what we mean by related and unrelated
proteins. This method is therefore rather circular.

® 155

Searching sequence databases

REFERENCES

Altschul, S.F., Gish, W., Miller, W., Myers, EW., and
Lipman, D.J. 1990. Basic Local Alignment Search Tool.
Journal of Molecular Biology, 215:403-10.

Altschul, S.F.,Madden, T.L., Schiffer, A.A., Zhang, J., Zhang,
Z.,Miller, W., and Lipman, D.J. 1997. Gapped BLAST and
PSI-BLAST: A new generation of protein database search
programs. Nucleic Acids Research, 25: 3389-402.

Altschul, S.F., Bundschuh, R., Olsen, R., and Hwa, T. 2001.
The estimation of statistical parameters for local alignment
score distributions. Nucleic Acids Research, 29:351-61.

Dayhoff, M. 1978. Atlas of Protein Sequence and Structure.
Vol. 5, suppl. 3. Washington, DC: National Biomedical
Research Foundation.

Gonnet, G.H., Cohen, M.A., and Benner, S.A. 1992.
Exhaustive matching of the entire protein sequence
database. Science, 256: 1443-5.

Henikoff, S. and Henikoff, J.G. 1993. Performance evalu-
ation of amino acid substitution matrices. Proteins:
Structure, Function and Genetics, 17:49—-61.

Jones, D.T., Taylor, W.R., and Thornton,].M. 1992. The
rapid generation of mutation data matrices from protein
sequences. CABIOS, 8:275-82.

Karlin, S. and Altschul, S.F. 1990. Methods for assessing
the statistical significance of molecular sequence fea-
tures by using general scoring schemes. Proceedings of
the National Academy of Sciences USA, 87: 2264-8.

Koski, L.B. and Golding, G.B. 2001. The closest BLAST hit
is often not the nearest neighbour. Journal of Molecular
Evolution, 52: 540-2.

Pearson, W.R. 1995. Comparison of methods for search-
ing protein sequence databases. Protein Science, 4:
1145-60.

Pearson, W.R. and Lipman, D.]. 1988. Improved tools for
biological sequence comparisons. Proceedings of the
National Academy of Sciences USA, 85: 2444—8.

Stanhope, M.]J., Lupas, A., Italia, M.]., Koretke, K.K.,
Volker, C., and Brown, J.R. 2001. Phylogenetic analyses
do not support horizontal transfer from bacteria to ver-
tebrates. Nature, 411: 940—4.

156 ® Chapter7

Searching sequence databases ® 157

Phylogenetic
methods

CHAPTER PREVIEW

We discuss the principal methods used in
from sequence data, including distance
imum-likelihood methods. An ex
sequences from primate mitochoi
to illustrate the differences tha

8.1 UNDERSTANDING
PHYLOGENETIC TREES

Molecular phylogenetics is the use of molecular
sequences to construct evolutionary trees. Typic-
ally, we study a family of related sequences that
we know evolved from a common ancestor and we
want to know in which order these sequences
diverged from one another. This information is
usually presented in the form of a phylogenetic tree
diagram. There are numerous methods for con-
structing trees but, before considering these meth-
ods in detail, we will discuss the different ways in
which trees are presented, and how the information
in a tree can be interpreted.

(a) Root (b)

CHAPTER

The simplest type of tree
to understand is a rooted tree
with a time axis — Fig. 8.1(a).
The diagram shows that spe-
cies A diverged from species B,
C, and D 30 million years ago
(Ma), that species B diverged
from Cand D 22 Ma, and that
species C and D diverged from each other 7 Ma. The
root of the tree is the most recent common ances-
tor of all the species shown. It is the earliest point in
time shown on the tree. As the divergence times
are known in Fig. 8.1, the lengths of the vertical
branches can be drawn proportional to time. Thus,
we get a clear impression from the diagram that
species C and D are evolutionarily close to one
another whereas species A and D are distant. The
lengths of the horizontal lines in this form of tree do
not signify anything. They are merely drawn to
space the species out conveniently.

It is often said that trees are like hanging mobiles.
You can imagine suspending them from the root
and allowing the horizontal lines to swing around.
Figure 8.1(b) shows one possible arrangement that

< Time

| o

158 @ Chapter8

Fig. 8.1 Rooted trees with a time
axis. Tree (a) can be converted to tree

branches like mobiles. Hence (a) and
(b) are equivalent to one another.

% (b) by swinging around the horizontal

could arise from allowing the tree in (a) to swing
around. There are, of course, many others. It isimport-
ant to realize that although these trees look different,
in fact they are the same. We say that these trees
have the same topology. In this context, the word
topology means the branching order of the species
on the tree. When we draw the tree, we are entitled
to draw any version of the tree we like (by swinging
the mobile around) as long as it does not change the
topology. Although there are many rearrangements
of the tree that can be made, there are also many
that cannot. For example, in Fig. 8.1a, we can swap
Cand D around, but we cannot swap B and C.

It is often difficult to estimate divergence times
from molecular data. Sometimes, the timing of the
events isnot known, but the order of events is. In this
case, arooted tree can be drawn with branch lengths
that are not to scale. When looking at a tree, it is
therefore important to recognize whether the
authors have drawn branches to scale in order to
avoid getting a false impression about the relative
distance between different species.

In Chapter 4, we discussed evolutionary distance.
If the sequences under study all evolve at the same
rate, then the evolutionary distance between each
pair of sequences is proportional to the time since
divergence. In this case, the branch lengths can
again be drawn to scale and the branch points
can be labeled with the evolutionary distance,
rather than with time in Ma. The UPGMA method
described below assumes that the sequences evolved
at the same rate and produces scaled rooted trees of
this form. If the sequences do not all evolve at the
same rate, it is not possible to have a well-defined
time axis on the tree. It is nevertheless possible
to draw a rooted tree with branch lengths scaled
according to the amount of evolutionary change
thought to have happened on each branch, as in
Fig. 8.2. The main difference from Fig. 8.1(a) is that
the present-day species on the tips of the tree do not
all line up level with each other. For example, the
branch leading to C in Fig. 8.2 is longer than the
branch leading to D. This means that there has been
more evolutionary change (i.e., a faster rate of
molecular evolution) on the line leading to C than
the line leading to D. When the time axis is strict, as

Order of branch
points in time

Fig. 8.2 Arooted tree with branches scaled according to the
amount of evolutionary change.

inFig. 8.1(a), the branch length leading to C must be
equal to that leading to D, because both are drawn
proportional to the length of time since the diver-
gence of C and D. Note that even though the time
axis in Fig. 8.2 is not strict, there is still some infor-
mation about the order of events in time. The tree is
still rooted: this means that we can still say that species
A was the earliest species to diverge, and we can still
say that C and D diverged from each other more
recently than any other pair of species. Trees like
this contain a lot of information. They tell us about
the temporal order of events, and which species have
high rates of molecular evolution (i.e., which species
have long branches). For these reasons, this type of
tree is probably the most useful way of representing
the results of molecular phylogenetic studies.
Having said this, most phylogenetic methods pro-
duce unrooted trees. Figure 8.3(a) shows the same
four species drawn on an unrooted tree. The four
present-day species for which we have sequence
data are shown on the tips of the tree. The internal
nodes of the tree (labeled i and j) represent ancestors
for which we do not have sequence data. The branch
lengths are drawn scaled with evolutionary dis-
tance. There has been a lot of change along the
branch fromito A, and ratherlittle change along the
branch from j to D, for example. Other than saying
that the internal nodes must have occurred earlier
in time than the tips of the tree, we cannot conclude
anything related to time from this unrooted tree. We
cannot say whether the branching at i occurred
earlier than that at j. We cannot say which of the

Phylogenetic methods ® 159

species was the earliest to diverge. The length of a
branch tells us how much evolutionary change has
happened along that branch but we cannot tell in
which direction the change was happening.

Unrooted trees are thus much less informative
than rooted ones, and it is desirable to convert
unrooted trees to rooted trees, where possible. To do
this, we need to know where the root is. Usually, we
have to use prior knowledge to tell us. This could
come from the fossil record, from previous phylogen-
etic studies using morphological data, or from plain
biological “common sense”. The earliest branching
species (or group of species) in a tree is called the
outgroup. It is common to include a species that
we know is the outgroup in the set of species to be
analyzed. For example, if we are interested in the
phylogeny of Eutherian mammals, then we might
add a marsupial as an outgroup. Our prior biological
knowledge tells us that the Eutherian mammals are
all more closely related to each other than to the
marsupial. Hence the marsupial is the outgroup,
and the root of the tree must lie on the branch con-
necting the marsupial to the rest of the tree.

There are many different ways to position the root
on an unrooted tree. In Fig. 8.3(a), if we know that A
is the outgroup, we can place the root on the branch
fromito A. We can then bend the tree around to pro-
duce the rooted tree shown in Fig. 8.2. On the other
hand, if B is the outgroup, then the resulting rooted
tree is shown in Fig. 8.3(b); but we could equally
well place the root on the internal branch from i to j,
in which case we obtain Fig. 8.3(c). It is clear that
Figs. 8.2, 8.3(b), and 8.3(c) are all different from
each other. They imply different things about evolu-
tionary history. For example, in Fig. 8.3(c), species A
and B form a related group that are closer to each
other than to either C or D, whereas in Fig. 8.2,
species A is just as distant from B as from C and D.
Nevertheless, all three rooted trees correspond to the
same unrooted tree.

In cases where we want to turn an unrooted tree
into a rooted tree and we do not know a definite out-
group, it is possible to use what is known as the
“midpoint method”. This consists of finding a point
on the tree such that the mean distance measured
along the tree to the sequences on one side of the

160 @ Chapter8

(@)

(b) © |

® g} %

® ®

Fig. 8.3 The unrooted tree in (a) can be converted to the
rooted trees in (b) and (c) and to the tree in Fig. 8.2 by placing
the root in different positions.

point is equal to the mean distance to the sequences
on the other side. This amounts to assuming that the
average rate of evolution in the two halves of the tree
is the same.

When a tree is drawn with branches spreading
radially, as in Fig. 8.3(a), it is obvious that it is
unrooted. However, occasionally trees are drawn
with all branches vertical, as in Fig. 8.3(b), even
though they are unrooted. This can be confusing. It
is therefore important to read the small print in order
to make sure whether the author of a tree intends it
to be read as rooted or unrooted. When drawing
trees, the default option on some tree-drawing pro-
grams is to draw a rooted tree with the first species in
the list of sequences as the outgroup, unless other-
wise specified. This can lead to misinterpretation of
resultsif the tree isreally an unrooted one. When the
root is not known, our advice is to draw a radially
branching tree, with the species labeled around
the edge, as in Fig. 8.3(a). When the root is known,
it is clearly better to draw a rooted tree, but it is

important to ensure that the drawing program has
putitin the right place.

A clade (or monophyletic group) is the term for
the complete set of species that descends from an
ancestral node. In Fig. 8.3(b), the group C + D forms
a clade, and so does the group A + C + D. However,
the group A + Cis not amonophyletic group because
there is no ancestral node that has only A and C as
descendants and no other species. Another way of
defining a clade is to say that it is a subset of species
that are all more closely related to each other than to
any other species in the tree that is not included in
the subset.

All the trees discussed so far are bifurcating trees.
This means that there is a two-way split at each
branch point. Sometimes, trees are drawn with
trifurcations (three-way splits), or multifurcations
(many-way splits). This may indicate that the
author believes there was a rapid radiation of these
taxa at the same time, so that the multifurcation
cannot be split into individual bifurcations. More
usually, it is an indication that the author is unsure
of the precise ordering of the branch points. A multi-
furcating tree contains less information than a
strictly bifurcating tree, but it avoids giving a false
sense of certainty to the reader. Nearly all phylo-
genetic programs produce bifurcating trees. It is
straightforward to draw the bifurcating tree that is
deemed “best” by the method used. Sometimes, there
will be alternative trees that are almost as good.
Information on alternative trees is sometimes hidden
in the small print of papers: space usually prevents
drawing more than one or two trees. There are ways
ofindicating how reliable the different branch points
in a tree are deemed to be by using bootstrapping
(Section 8.4) or posterior probabilities (Section 8.8).
Often, some parts of a tree are extremely reliable
while others are very uncertain, and it is important
to be aware of this. When interpreting published
trees, a healthy element of skepticism is required!

8.2 CHOOSING SEQUENCES

When choosing the sequences to study, we are
usually motivated by a biological question. If we are

interested in the phylogeny of a particular group of
organisms, then we are entitled to choose any par-
ticular gene sequence we want from those organ-
isms that we think will be informative about the
pattern of divergence of the species. On the other
hand, we may be interested in the evolution of a
particular gene, or of a related family of genes. In this
case, we will probably want to choose sequences of
this type from as wide a range of species as possible.
In general, we are likely to pick a gene where there
are sequences available from many species, and
where the degree of sequence variation within the
species under consideration is neither too high nor
too low. If the gene evolves too slowly, there will be
very little variation among the sequences, and there
will be too little information to construct a phy-
logeny. If the gene evolves too rapidly, it will be
difficult to get a reliable alignment of the sequences.
It is also difficult to get accurate estimates of evolu-
tionary distances when sequences are highly diver-
gent. Thus, phylogenetic methods are likely to
become unreliable if the sequences are too different
from one another, and this should be borne in mind
when the choice of gene sequences is made initially.

Phylogenetic programs usually require a multiple
sequence alignment as input. By specifying the
alignment, we are implying that all the nucleotides
(or amino acids) in a given column of the alignment
are homologous to one another. If this is not true,
the whole basis from which we construct the phylo-
geny is invalid. The results of phylogeny programs
are sensitive to changes in the alignment; therefore,
it is worth spending some time in getting an accur-
ate alignment before beginning. It is also important
to consider which bits of the sequence to include in
the phylogenetic analysis. Some bits of the sequence
may be very variable and prone to large insertions
and deletions. Tt is usual to eliminate sections like
this from the analysis because they do not contain
a strong phylogenetic signal, and they can create
noise that adds to the uncertainty of the results. As
emphasized in Chapter 6, automated methods of
multiple alignment cannot be relied on to get all the
details correct, and time spent in manual checking
of alignments before beginning phylogenetic work is
likely to pay off.

Phylogenetic methods ® 161

*

Mouse AAN) ‘GAAUAGA AGCUURVAUUGA 788
GuineaPig AABINAAGAAUAGAGAGCUD®NUUGAA 789
T.belanger AGUCGGARY: lor:Xer\ 'UCCGAC|uferY: 788
T.tana CCGG‘AAUAGAGH UCCAC 787
Bushbaby ABINAACAAUAGAGAGCUURVAUUGA 790
Lemur AlU) GAAUAGAGRGC VAUUGA 789
W.Tarsier AGGAACAAUAGAGGECUUENIUG. 787
Ph.Tarsier AUClL GAAUAGAGRGC GALsfe) 789
SakiMonk AB[GEACAAUAGAGGCUGENUUG. 788
HowlerMonk ANGAACAAUAGAS GAL|fe) 790
SpiderMonk "'UC"GAAUAGAGRGC GALS|ufe] 790
Capuchin GGAUUUAGECAGUAAABGAACAAUAGAGAGCULENSUG. 789
Marmoset GGAUUUAGCAGUAAAGEAAGAAUAGAGAGCUUENUUG. 786
Tamarin AAAGGAACGAAUAGAGRGCUUCAUUGAR 785
Proboscis AASISAAGAAUAGAMEGCUULRVAUUGAGUSNCCCE! 788
Baboon ASIWAAGAAUAGAGE GCUURVAUUGAA 786
RhesusMonk BSAACAAUAGACYGCUUINATUUGA 788
Gibbon ABIYAAGAAUAGAGEGCUU 790
Orangutan GGAUUUAGECAGUAAAW AGAEUAGAGEGCUURY 789
Gorilla HI 2 A A A GGAUUUAGECAGUAAAW AGAEUAGAGHGCUURX 789
Human HI 2 A A A GGAUUUAGECAGUAARAW AGAEUAGAGEHGCUUR 790
Chimpanzee : B A A A GGAUUUAGCAGU"‘C AGAEUAGAGEGCUUR 789
PygmyChimp A B GGAUUUAGEAGUAARAW AGAC UAGAGGCUUNRY 786
A uvuaa g c AAGG GGAUUUAGCAGUAAa aagAaUAGAg Gcuu

Fig. 8.4 Part of the alignment of the mitochondrial small subunit rRNA gene from primates, tree shrews, and rodents.

As an example for this chapter, we will consider a
set of sequences for the small subunit rRNA gene
taken from the mitochondrial genome of various
primate species. The gene has a total length of
around 950 bases. A short section from the middle
of the multiple sequence alignment is shown in
Fig. 8.4. These sequences are relatively conserved
within the group of species chosen. There are many
sites that do not vary (shaded in black). This means
we can be fairly sure about the alignment. There are,
nevertheless, several variable positions that contain
useful phylogenetic information. There are also a
few very variable parts of the molecule that we could
not reliably align, and these were removed from the
alignment prior to beginning the phylogenetic
analysis.

Table 8.1 lists the species used in our example.
Representatives of the major primate groups
have been chosen. The taxonomic groups follow the
classification used in the NCBI taxonomy browser
(http://www.ncbi.nlm.nih.gov/Taxonomy/taxono-
myhome.html/). The main primate groups are the
Strepsirhini (lemurs and related species), the Tarsii
(tarsiers), the Platyrrhini (new-world monkeys),
and the Catarrhini (old-world monkeys and apes). In
addition, two tree shrew species have been included.
These are members of the order Scandentia, which is

162 @ Chapter8

usually thought to be closely related to primates. As
outgroups, we have added two rodent species. These
are more distantly related, although recent studies
of mammalian phylogenies place rodents, tree
shrews, and primates together in one of the four
major clades of mammals (see Chapter 11). As these
species have been well studied, we can be reasonably
sure of the true evolutionary relationship between
most of the species. This illustrative example in-
cludes both straightforward relationships that are
easy for the methods to get right and difficult rela-
tionships that do not always come out correctly.

8.3 DISTANCE MATRICES AND
CLUSTERING METHODS

8.3.1 Calculating distances

In Chapter 4, we discussed different models for
calculating evolutionary distances. The choice of
evolutionary model is important in phylogenetic
studies. For this example, we will use the Jukes—
Cantor (JC) model, because it is the simplest, and this
makes it straightforward to compare results from
different methods. There is a fairly strong phylo-
genetic signal in this data set that can be seen with
the simplest model. We should note, however, that

Table 8.1 Classification of species used in the examples in this chapter.

the JC model is not often used in modern studies. The
implicit assumption of the JC model that the four
bases have equal frequencies is definitely not true in
the rRNA genes studied here, so some of the more
complex models discussed in Chapter 4 would
almost certainly give better fits to the data than the
JCmodel.

From a multiple alignment, we can easily calculate
the JC distance between each pair of sequences using
Eq. (4.4). We can then construct a matrix whose
elements, dl.j, are the distances between each pair of
species, i and j. The matrix for the sequences from
the Catarrhini is shown in Fig. 8.5. The matrix is
symmetric (i.e., dij must be equal to dﬁ) and the diago-
nal elements, d,, are zero, because the distance of a
sequence from itself must be zero. To get an idea of

scale, the human to chimpanzee distance is 2.77%.
The smallest distance is 1.49% between chimpanzee
and pygmy chimpanzee, and the largest distance in
the figure is the orangutan to proboscis monkey dis-
tance, which is close to 20%. The distances from the
mouse to the primates (not shown) are around
26-30%. In fact, mitochondrial sequences are relat-
ively rapidly evolving. If we had used a nuclear gene,
we would have obtained smaller distances for the
same set of species. It should also be remembered
that we have removed some of the most rapidly
changing regions of the molecule from the align-
ment prior to calculating these distances because
these regions were deemed to be unreliably aligned.
Ifthese parts had not been removed, all the distances
would have come out slightly higher.

Phylogenetic methods ® 163

Probos Baboon Rhesus Gibbon Orang Gorilla Human Chimp Byg.ch.
Probosclis M. 0.0000 ©0.1284 0.1458 0.1781 ©0.2062 0.1856 (¢.1853 0.1784 0.1790
Baboon Q.1284 0.0000 0.0934 0.1671 0.1817 0©.1674 0.1559 ©0.1617 ©0.1581
Rhesus M. 0.1458 0.09%%¢ 0.0000 0.1738 0.1755 (0.1s855 ©0.1738 0.1627 ©.1577
Gibbon 0.1781 0.1671 0.1738 0.0000 0.1280 0.1068 (0.1106 0.1003 0.1072
Orangutan 0.2062 0.1817 0.1755 0.1280 0.0000 0.0875 0.0875 0.0%00 0.0891
Gorilla 0.1856 0.1674 0.1655 0.1068 0.08B75 0.0000 0.0371 0.03%5 0.0372
Human ¢.1853 0.1559 0.1738 0.1106 0.0875 0.0373 0.0000 0.0277 0.0277
Chimpanzee 0.1784 0.1817 0.1627 0.1002 0.08500 0.0385 0.0277 0.0000 0.0149
Pygmy chimp 0.1790 6.1581 0.1577 | 0.1072 0.0891 0.0372 0.0277 0.014% 0.0600

Fig. 8.5 The]C distance matrix for the some of the rRNA sequences in Fig. 8.4. The matrix has been divided into sections in order
to indicate the most important split within the Catarrhini group: that between the old-world monkeys and the apes.

A distance matrix can be used as the input to a
clustering method. Algorithms for clustering work
in the following way:

1 Join the closest two clusters to form a single larger
cluster.

2 Recalculate distances between all the clusters.

3 Repeat steps 1 and 2 until all species have been
connected to a single cluster.

Initially, each species forms a cluster on its own. The
clusters get bigger during the process, until they are
all connected to a single tree. We already discussed
clustering methods in a different context in Chap-
ter 2. We will discuss two clustering methods here
that are particularly relevant for phylogenetics: the
UPGMA (unweighted pair group method with arith-
metic mean) and neighbor-joining methods.

8.3.2 The UPGMA method

This is one of a family of hierarchical clustering
methods described by Sneath and Sokal (1977).
It has some important limitations, which means that
it is now not often used in phylogenetic research
studies. However, we will discuss it first, because it is
conceptually the simplest phylogenetic method.
Step 1 of the clustering algorithm is to connect the
two closest species, in this case the chimpanzee and
the pygmy chimpanzee. Step 2 is to calculate the
distance from the chimpanzee/pygmy chimpanzee
cluster to all the other species. In the UPGMA
method, the distance between two clusters is simply
defined as the mean of the distances between species
in the two clusters. For example, the distance of

164 ® Chapter8

human from the chimpanzee/pygmy chimpanzee
cluster is the mean of the human—chimpanzee and
human-pygmy chimpanzee distances. If, at some
point, we want to calculate the distance between a
cluster with two species and a cluster with three
species, then this will be the average of six (= 2 x 3)
numbers. Defining the distances between clusters as
an arithmetic mean in this way is a fairly obvious
definition. However, there are many other ways of
doing it. It is this definition that distinguishes the
UPGMA from the other clustering methods given by
Sneath and Sokal (1977).

Proceeding with our primates, it turns out that
the distance from the human to the two chim-
panzees is smaller than any of the other remaining
distances, and therefore the next step is to connect
these together. After repeating the steps of the
clustering algorithm, we eventually obtain the tree
in Fig. 8.6. This is a rooted tree, with branch lengths
that are proportional to the inferred amount of
time separating the species, i.e., the UPGMA method
assumes that there is a strict molecular clock and
that all species evolve at the same rate. The lengths
of the branches are determined by the heights of the
internal nodes in the tree above the base line. The
height of the node connecting chimpanzee and
pygmy chimpanzee is 0.0074. This is half the dis-
tance between the two species. The factor of a half
arises because we are assuming that half of the
changes separating the two species occurred on the
branch leading to one species and half occurred on
the other. Now consider the earliest node in Fig. 8.6,
which connects the old-world monkeys to the apes.

Proboscis monkey

Baboon

Rhesus monkey

Gibbon

Fig. 8.6 Treeobtained using the
UPGMA method with the matrix in Fig.
8.5. The PHYLIP package was used for
tree construction (Felsenstein 2001)

Orangutan

Gorilla

Human

Chimpanzee

Pygmy chimp
->
0.0074

and the Treeview program (Page 2001)
was used to prepare the figure.

The distance between these groups is the mean of
the 18 numbers in the top right section of the matrix
in Fig. 8.5. The height of the node is half this mean
distance, which is 0.0865. Notice that this method
tells us that the root of the tree is at the point where
the last two clusters are connected — in this case the
old-world monkeys and the apes. Most other meth-
ods do not give the position of the root.

If we pick any three species from the UPGMA tree,
there are always two that are more closely related to
each other than to the third. According to the tree,
the distances from the third species to the first and
second species are equal to one another, because
these two distances are both determined by the same
branch point. The distance from the first to the
second species is smaller than this. This property is
called ultrametricity: whichever three species we
take from the UPGMA tree, the two largest of the
three distances between these species will be equal.
It is clear that if we consider divergence times
between species, as in Fig. 8.1(a), the two largest
divergence times for any three species must be equal.
Thus, divergence times form an exactly ultrametric
matrix. If sequences evolve according to a molecular
clock, the distances between them will be approx-
imately ultrametric, but not exactly so. This is
because substitutions in gene sequences are random

0.0865

events. The two lineages descending from a node will
have the same number of substitutions on average,
but in any one particular case, one lineage will by
chance have slightly more substitutions than the
other. Thus, even in an ideal world where the mole-
cular clock is exactly true, the distances between
sequences will only be approximately ultrametric.
In our case, if the matrix were exactly ultrametric,
all the 18 distances in the top right section of the
matrix would be exactly equal, whereas in reality
they are only approximately equal. What the UPGMA
method does is to find an ultrametric tree such that
the distances measured on the tree are a close appro-
ximation to the distances in the original matrix.

In the real world, it may not be just chance that
makes distances violate the ultrametric rule. If
species evolve at different rates, then we get trees like
Fig. 8.2, rather than Fig. 8.1. In this case, there is no
reason why the two largest distances of any group of
three must be equal. The problem with the UPGMA
method is that it forces the species to lie on an ultra-
metric tree, even when the original distance matrix
is far from ultrametric. In this case, the resulting
tree is usually wrong. In many real data sets, the
molecular clock assumption may not be a good one
and, for this reason, UPGMA is often not a reliable
method. We have discussed UPGMA because it is

Phylogenetic methods ® 165

(b)

conceptually one of the simplest clustering methods.
Although it would not be recommended for most
serious phylogenetic studies, it is nevertheless import-
ant to understand how it works and how it differs
from other methods. For the species in Fig. 8.6, the
UPGMA result corresponds to what is generally
believed to be true. This is not bad, considering we
used the simplest possible method of calculating dis-
tances and the simplest possible clustering method.
This indicates that there is quite a strong phylo-
genetic signal in the sequences from the Catarrhini.
When the more distantly related species from
Table 8.1 were included, the UPGMA did not give
the correct topology, and therefore we have not
shown these species in Fig. 8.6.

8.3.3 The neighbor-joining method

Neighbor joining (NJ]) (Saitou and Nei 1987) is a
clustering method that produces unrooted trees,
rather than the rooted ones produced by UPGMA.
There is a property of unrooted trees called additiv-
ity that we need to introduce at this point. A tree
is said to be additive if the distances between the
species on the tips of the tree are equal to the sum
of the lengths of the branches that connect them. For
example, inFig. 8.3(a), d,. = d,; +d1.j + de. A distance
matrix is said to be additive if it is possible to find a
tree with specified branch lengths such that all the
pairwise distances in the matrix are exactly equal to
distances measured by summing along the branches
of the tree. Additivity is a less restrictive condition
than ultrametricity. If a distance matrix is ultramet-
ric, it is also additive, but the reverse is not necessar-
ily true. The NJ method constructs an additive tree
such that the distances between species measured
on the tree are a good approximation to the dis-
tances in the original matrix. If the original matrix

166 ® Chapter8

O

O

Fig. 8.7 Step one of the neighbor-
joining method.

@) O

is exactly additive, NJ is guaranteed to give the
correct tree, just as UPGMA is guaranteed to give
the correct tree if the original distance matrix is
ultrametric. However, in the real world, the dis-
tances will not be exactly additive; therefore, NJ is
just one approximation.

Two species are said to be neighbors on an
unrooted tree if they are connected via a single inter-
nalnode. InFig. 8.3(a), A and B are neighbors, C and
D are neighbors, but A and C are not neighbors. The
NJ method begins with a set of disconnected tip
nodes representing the known sequences. These
are shown as white circles in Fig. 8.7(a). We know
the distances between all these nodes, as specified in
the input distance matrix. The method chooses two
nodes, i and j, that are neighbors and connects them
by introducing a new internal white node, n. The
original nodes, i and j, are now eliminated from
the problem because they are already connected to
the growing tree. They have been colored black in
Fig. 8.7(b). We now have a set of disconnected white
nodes that has one fewer than before. This process
can be repeated until all the nodes are connected to
asingle tree. Details are given in Box 8.1.

Applying the NJ method to the distance matrix for
the primate sequences gives the result in Fig. 8.8(a).
This tree topology agrees with what we expected
from the taxonomic classification (Table 8.1) in
most respects. The Catarrhini and the Platyrrhini
form two well-defined groups. The lemur and bush-
baby cluster together, as do the two tarsiers, the two
tree shrews and the two rodents. The result is easier
to interpret if we place the root of the tree on the
branch leading to the rodents and redraw the tree as
in Fig. 8.8(b). It should be remembered, however,
that the N] method does not tell us where to place the
root —we must use prior knowledge to decide where
to putit.

The part of the tree covering the Catarrhini is sim-
ilar to the result of the UPGMA (Fig. 8.6). The
branching order within the Platyrrhini is worth not-
ing. The marmoset and the tamarin cluster together.
These are members of the Callitrichidae family in the
NCBI taxonomy. In contrast, the other four new-
world monkeys, classified as Cebidae, do not form a
monophyletic group, and this suggests that it is not
evolutionarily meaningful to group these species in
the Cebidae taxon. We should beware of jumping to
conclusions, because so far we have only considered
asingle simple phylogenetic method. However, in all
the methods we tried, the same branching pattern
for the new-world monkeys was found. Therefore, we

can be reasonably confident that the Cebidae are
not monophyletic, according to the evidence from
the rRNA gene. A more detailed study of phylo-
genetics of the Platyrrhini has been carried out by
Horovitz, Zardoya, and Meyer (1998). Their results,
using small subunit rRNA sequences, agree with
our Fig. 8.8(a) in that the Saki monkeys form the
earliest-branching new-world monkeys. However,
results using different gene sequences and morpho-
logical evidence give different branching patterns.
Thus, the Platyrrhini phylogeny is still not fully
resolved.

There is another, more serious, problem with
Fig. 8.8(b): the tree shrews are apparently the sister

Phylogenetic methods ® 167

Large Tree shrew

(@

tarsier
Northern Tree shrew

Bushbaby

Pygmy chimp

Chimpanzee
Human
Gorilla

0.1 Rhesus monkey

Western

Philippine tarsier

Guinea pig

Mouse

Saki monkey
Capuchin

Howler monkey
Spider monkey

Marmoset
Tamarin

Proboscis monkey

Baboon
(b) -I Guinea pig
Mouse
Bushbaby
90
Lemur
24 Northern Tree shrew
100
Large Tree shrew
—75
| Western tarsier
100
‘ Philippine tarsier
Saki monkey
-1 45
100 .
Capuchin
65 Howler monkey
98
Spider monkey
53
Marmoset
52
100 Tamarin
Proboscis monkey
100 Baboon
92
Rhesus monkey
100
Gibbon
100 Orangutan
98 Gorilla
100 Human Fig. 8.8 Treeobtained with the
i neighbor-joining method and JC
Chimpanzee distances. (a) Unrooted. (b) Rooted
0.1 96P hi with the rodents as outgroup, and with
ygmy chimp bootstrap percentages added.

group to the tarsiers. This is almost certainly wrong.
It would mean that the primates were not a mono-
phyletic group and that the order Scandentia should
actually be included within the primates. We would
not be willing to propose this phylogenetic arrange-
ment, given the morphological evidence that favors
placing tree shrews as a separate group outside the
primates. The NJ tree must be misleading us in this
case, and we will return to this point below.

To summarize: the NJ method is a practical, rapid
way of getting a fairly reliable result and, as such,
it is often used in real phylogenetic studies. The
clustering algorithm runs in a time that is O(N?).
In practice, the result can be obtained almost in-
stantaneously, even when there are very large
numbers of sequences, whereas the more complex
methods described below can take large amounts
of computer time. As stated above, NJ is exact if the
distance matrix is additive, and it stands a good
chance of giving the correct tree topology if the
matrix is not far from additive. If the input distances
are not close to being additive (e.g., because an inap-
propriate method of calculation of the pairwise dis-
tances was used, or because the sequences were not
properly aligned), then NJ will give the wrong tree.

8.4 BOOTSTRAPPING

You will have noticed the numbers that appeared on
the internal nodes of the tree in Fig. 8.8(b). These are
called bootstrap percentages. Bootstrapping is a
method of assessing the reliability of trees, intro-
duced by Felsenstein (1985), and has since become
a standard tool in phylogenetics.

real segquences:

resample columns at random: ‘//i/////

Fig. 8.9 Anillustration of resampling
columns for the bootstrapping method.

Substitutions in sequences are random events.
Even if the sequences are evolving in a way that is
well described by the model of evolution that we use,
the number of substitutions occurring on any
branch of a real tree can deviate substantially from
the mean value expected according to the model.
This means that the distances we measure between
sequences are subject to chance fluctuations. We
would like to know whether these fluctuations are
influencing the tree that we obtain. The bootstrap-
ping method answers this question by deliberately
constructing sequence data sets that differ by some
small random fluctuations from the real sequences.
The method is then repeated on the randomized
sequences in order to see whether the same tree
topology is obtained.

The randomized sequences are constructed by
sampling columns from the original sequence align-
ment, as shown in Fig. 8.9. The randomized
sequences are the same length as the real ones. Each
column in the randomized sequences is constructed
by copying one random column from the original
sequence alignment. During this sampling process,
some columns happen to be chosen more than once,
while some columns happen not to be chosen at
all (technically, this is known as “sampling with
replacement”). This means that the random sequ-
ences contain slightly different information from
the real ones. When we construct a tree with the
randomized sequences, we are not guaranteed to get
the same answer as before. If the phylogenetic signal
in the data is strong, there is a lot of information
about the degree of relatedness of the species spread
along the whole length of the sequence. There-
fore, resampling should make very little difference.

Human CAACAGAGGC TTACGACCCC TTATTTACC
Chimp O
Gprilla T......... LCUUBA L e
Orangutan T..T..G.C. CC..A..
Gibkon LT LGC

Human C T G etc.
Chimp .
Gorilla A
COrangutan . T A
Gibbon . T A

Phylogenetic methods ® 169

However, sometimes the signal indicating one tree
topology over another may be rather weak. In this
case, the noise that we introduce to the data when
we resample may be sufficient to cause the tree-
construction method to give a different result. Note
that the resampling procedure is not equivalent to
just reshuffling the columns of the original align-
ment. Phylogenetic methods treat each column
independently, so a reshuffled alignment would give
exactly the same answer as the original sequences,
and would not tell us anything.

To carry out bootstrapping analysis, many sets of
randomized sequences are constructed (usually 100
or 1,000). The tree-construction method is repeated
on each set of sequences to produce a set of possible
trees, some of which will be equivalent to the ori-
ginal tree and some of which will be different. We
then look at each group of species in the original tree
and we determine what percentage of the random-
ized trees contain this same group. This percentage
gives us a measure of confidence that those species
really do form a related group. The bootstrap results
for the primate sequences using the NJ method are
shown in Fig. 8.8(b). 1,000 replicates were done,
but the numbers are shown as percentages in the
figure. There are many strongly supported clades in
this tree. For example, the taxa Hominidae, Cercopit-
hecidae, Catarrhini, and Platyrrhini (as defined in
Table 8.1) all have 100% bootstrap support, as do
the tarsiers and the tree shrews. The prosimian
group (lemur and bushbaby) also has 90% support.
Other relationships in the tree are much less certain.
Although the new-world monkeys, as a group, have
100% support, there are several low bootstrap val-
ues within the group, indicating that the branching
order within the new-world monkeys is not well
resolved by this method. The weakest point in this
phylogeny is the very low value of 24% at the node
linking the prosimians, tarsiers, and tree shrews. We
really cannot be sure at all that these three groups
form a clade. Indeed, other evidence tells us that
most likely they do not, as discussed above. There is
no precise rule to say how high a bootstrap percent-
age has to be before we can be sure that the group of
species in question forms a “true” clade, although
values greater than 70% are often thought to be

170 ® Chapter8

reasonably strong evidence. It is slightly worrying
that the grouping of tarsiers and tree shrews has a
bootstrap value of 75%, because this is very likely an
incorrect relationship. We will see below that this
apparent relationship goes away when we use a
more realistic model of sequence evolution. For the
moment, we note that bootstrap numbers need to be
treated with caution. They are often a very useful
indication of the reliability of different parts of a
phylogenetic tree, but they do not “prove” anything
conclusively.

Let us consider one particular point in Fig. 8.8(b)
in more detail —the 71% value for the human +
chimpanzee + pygmy chimpanzee clade. This value
is sandwiched between two very high figures, i.e.,
the two chimpanzees almost always form a clade
(96%), and the group gorilla + human + chimpanzee
+ pygmy chimpanzee always forms a clade. Thus,
what is at stake is the relationship between gorilla,
human, and the chimpanzees. The topology shown
has the gorilla as the most distantly related of these
three — this can be denoted as (gorilla,(human,
chimpanzees)). The other two topologies — (human,
(gorilla, chimpanzees)) and (chimpanzees,(gorilla,
human))—also turn up occasionally in the bootstrap
replicates, but much less frequently than the topo-
logy in the figure. In fact, it is now generally agreed
that the humans and chimpanzees are the closest
of the three, although there has been considerable
discussion in the past (see Hasegawa, Kishino, and
Yano (1985) and references therein).

Bootstrap results are often presented in the form of
consensus trees. The frequency of occurrence of
each possible clade in the set of bootstrap trees is
determined, and clades are ranked in descending
order of frequency. The consensus tree is con-
structed by adding clades one at a time working from
the top of the ranking list. Each clade added is the
one with the highest frequency that is consistent
with all the clades already added. The final con-
sensus topology may differ slightly from the tree
obtained with the original full set of data. It is then a
matter of choice whether to present the original tree
labeled with bootstrap percentages for the clades
contained in that tree, or to present the consensus
tree, which will tend to contain clades with slightly

higher bootstrap values that were not present in the
original tree. Well-determined clades, with high
bootstrap values, will almost always occur in both
the consensus and the original tree, so this issue
affects only the way the results are presented for the
least well-determined parts of the tree.

8.5 TREE OPTIMIZATION CRITERIA
AND TREE SEARCH METHODS

8.5.1 Criteria for judging trees

As explained above, NJ constructs an additive tree
such that the distances measured on the tree are
approximately equal to the distances specified in the
distance matrix. It is possible to define the following
function, E, which measures the error made in this
process:

(di' _ dlgg'ee)z
E= 2] d2]
1

ij

(8.7)

where di]. is the distance specified in the distance
matrix, lejm is the distance measured along the
branches of the tree, and the sum runs over all pairs
of species. This function is the sum of the squares of
the relative errors made in each of the pairwise dis-
tances. E can be used as a criterion for evaluating
trees. Fitch and Margoliash (196 7) proposed a phylo-
genetic method that consists of searching for the tree
that minimizes the function E. This can be consid-
ered as finding the additive tree that differs least from
the input data. If the distance matrix is exactly addi-
tive, then it is possible to find a tree such that every
term in the sum is exactly zero. However, usually,
this is not possible, because the number of pairs of
species is N(N — 1)/2, while the number of indepen-
dent branch lengths to be optimized on an unrooted
treeisonly 2N — 3. Therefore, the method finds a tree
for which E is as small as possible, but it cannot set E
to zero exactly.

Clustering methods like NJ and UPGMA have a
well-defined algorithm for constructing a tree. How-
ever, they do not have a well-defined criterion by
which trees may be compared. Such a criterion is not
necessary because clustering algorithms give rise

automatically to a single tree as output. In contrast,
the Fitch—-Margoliash method has a well-defined cri-
terion for judging trees (the best tree is the one for
which E is the smallest), but there is no well-defined
algorithm for constructing the best tree. It is neces-
sary to use a program that constructs many alter-
native trees and then tests each one out using the
criterion. This means that the Fitch—Margoliash
method is much slower than NJ. In practice, if the
matrix is approximately additive, NJ will give a very
similar answer to Fitch—Margoliash in a shorter time.
On the other hand, if the matrix is far from being
additive, then neither of these methods is appropriate,
and both are likely to give inaccurate tree topologies.

The idea of testing alternative trees using some
criterion of optimality is a key one, because two very
important phylogenetic methods, the maximum-
likelihood and the parsimony methods, both use this
principle. In brief, the maximum-likelihood criterion
is to choose the tree on which the likelihood of
observing the given sequences is highest, while the
parsimony criterion is to choose the tree for which
the fewest number of substitutions are required in
the sequences. These criteria will be discussed fully
in the following sections. In this section, we wish to
consider how we might search for candidate trees.
The method for tree searching is independent of the
criterion used for judging the trees.

8.5.2 Moves in tree space

There is an enormous number of tree topologies,
even for very small numbers of species, as shown in
Table 8.2. The notation !! means the product of
the odd numbers, sothat U, =9!!=9x 7x 5x 3 x 1
=945. Only if the number of species is very small
(i.e., less than about eight) will it be possible to
exhaustively test every tree. More usually we will
need heuristic search programs. It is useful to think
of “tree space”, which is the set of all possible tree
topologies. Two trees are usually considered to be
neighboring points in tree space if they differ by
a topology change known as a nearest-neighbor
interchange (NNI). To make an NNI, an internal
branch of a tree is selected (a branch has been high-
lighted in bold in Tree 1 of Fig. 8.10). There are two

Phylogenetic methods ® 171

Table 8.2 How many trees topologies are there?

No. of species

(N)

3
4

subtrees linked to each end of this branch. A subtree
may be either a single species (like A), or a branching
structure that may contain any number of species
(like D + E). The NNI move consists of swapping any
one subtree from one end of the internal branch with
any one subtree from the other end. In Fig. 8.10,
Tree 2 is obtained by swapping B and C, and Tree 3 is
obtained by swapping A and C. We could also swap
the D + E group with either A or B, but this would
also create either Tree 2 or 3. Thus, Trees 1, 2, and 3
are all neighbors of each other by a single NNI about

172 @ Chapter8

the highlighted branch, and there are no other trees
that can be formed by making rearrangements
about this same branch. Tree 4 is not a neighbor of
Tree 1, as it is not accessible by a single NNI. The
shortest path from 1 to 4 involves two NNIs (can you
work out what these are?). It is possible to create any
rearrangement of a tree by a succession of NNIs.

Moving from Tree 1 to Tree 4 is an example of
another type of topology change called subtree prun-
ing and regrafting (SPR). This consists of choosing
any subtree in the original tree (in this example,
just the single species D), cutting it from the tree,
and then reconnecting it to any of the branches
remaining on the original tree (in this example,
the branch leading to B). The SPR is one type of
a long-range move in tree space. Another possible
long-range move, described by Swofford et al
(1996), is tree bisection and reconnection, in which
an internal branch is selected and removed, thus
forming two separate subtrees. These subtrees are
reconnected by selecting one branch at random
from each subtree and connecting these by a new
internal branch.

We now return to the question of searching tree
space to find the tree that is optimal by some criter-
ion, such as likelihood, parsimony, or least-squares
error E. Suppose we have an initial guess at an

Fig. 8.10 Examplesof changesin tree
topology. Trees 1, 2, and 3 all differ
from each other by a single nearest
neighbor interchange. Tree 4 differs
from tree 1 by a subtree pruning and
regrafting operation.

optimum tree. This could be the tree produced by a
distance-matrix method, for example. We would
expect this tree to be “not too bad”, according to our
optimization criterion; therefore, we would expect
thatlooking at other trees that are similar to this one
might be a sensible strategy for finding the optimum
tree. One way of proceeding is to test trees that are
neighbors of our current tree. If we find a neighbor-
ing tree that is better, then we move to this new tree
and search the neighbors of the new tree. We keep
doing this until we reach a tree that is a local opti-
mum, i.e., it has no neighbors that are better than it.
This is a hill-climbing algorithm, because we always
move “uphill” to a better tree at each step. We can-
not guarantee that the local optimum we reach will
be the global optimum tree that we are looking for.
One way to check this would be to try hill climbing
from lots of different starting points. A possible way
to generate the starting points is by sequential addi-
tion of species. Suppose the species are listed in a ran-
dom order. There is only one unrooted tree topology
for the first three species in the list. We then add one
species at a time to the tree. Each species is added by
connecting it in the optimal way to the tree that is
already present, until all species have been added.
We can then try to improve the tree by hill climbing,
using NNIs, until a local optimum is reached. This
procedure can be repeated many times, starting with
different random orders of species. We may obtain
many different local optima. If we continue for long
enough, then it is very likely that the best of the local
optima that we find will be the global optimum. This
is a heuristic search procedure, so we cannot guar-
antee that we have found the global optimum. All
we can do is hope that if we have run the search for a
long time without finding any improvement, then
we have probably found the best tree.

The definition of a local optimum tree depends on
the definition of what is a neighbor. If we use NNIs to
define neighbors, then we may reach trees that can-
not be improved by NNIs, but that could be improved
by longer-range moves. In principle, long-range
moves could also be included in the search strategy
(and some programs do this). However, the problem
with long-range moves tends to be that they are
rather disruptive. If we already have a fairly good

tree, then most long-range moves will create a tree
that is much worse, and they will thus be a waste of
computer time. The longest-range move we could
imagine would be to try a completely random tree
each time. We would eventually hit on the global
optimum by this strategy, but it would be a very slow
and inefficient search procedure. Most real search
programs use a combination of NNIs and slightly
longer-range moves that has been tested and found
to be reasonably efficient at finding optimal trees as
quickly as possible. We also note, at this point, that
search strategies are not limited to moving uphill. If
we occasionally allow downhill moves, then this
may prevent us getting stuck on very poor local
optima, and allow better optima to be found more
quickly. The Markov Chain Monte Carlo method,
discussed in Section 8.8, is a way of searching tree
space that allows both uphill and downhill moves.

8.6 THE MAXIMUM-LIKELIHOOD
CRITERION

Given a model of sequence evolution and a proposed
tree structure, we can calculate the likelihood that
the known sequences would have evolved on that
tree. The maximum-likelihood (ML) criterion is to
choose the tree that maximizes this likelihood
(Felsenstein 1981). An algorithm for doing this is
discussed in Box 8.2. Three qualitatively different
types of parameter must be specified to calculate the
likelihood of a sequence set on a tree: the tree topo-
logy; the branch lengths; and the values of the
parameters in the rate matrix (base frequencies,
transition/transversion ratio, etc.). It is possible to
optimize all of these things at the same time. Pro-
grams are available that will search tree space
making changes that alter all three types of para-
meter, and attempt to find the ML solution. On the
other hand, it is possible to fix some things while the
others are optimized. For example, we might want to
find the ML tree topology and branch lengths, while
keeping the rate-matrix parameters fixed at particu-
lar numerical values.

The ML criterion can be used to distinguish
between a set of tree topologies specified in advance.

Phylogenetic methods ® 173

For example, the bootstrapping analysis using a
distance-matrix method shows where the uncer-
tainties lie in a tree; therefore, we might wish to test
a set of alternative trees that differ in their branching
orders at the uncertain points in the tree. It is pos-

174 @ Chapter 8

sible to estimate the value of the ML for each of the
user-specified trees, by allowing the branch lengths
and rate parameters to vary but keeping the topo-
logy fixed. This gives a ranking of the specified trees.
Often the likelihoods of several different trees will

differ by only a small amount. It is then important to
decide whether one tree is really better than the
alternatives. This can be done using a test proposed
by Kishino and Hasegawa (1989). The total log like-
lihood is the sum of values from each site, as in Eq.
(8.10). If the sites evolve independently, then we can
estimate the error in the total log likelihood by calcu-
lating the standard deviation of the log likelihoods of
the sites. We can then compare two different trees,
and ask whether the difference in log likelihoods
between the trees is significant in comparison to the
error in estimation of this difference.

We would now like to see what the ML criterion
says about the primate phylogeny example. We
have used a search algorithm from our own phylo-
geny package, PHASE (Jow et al. 2002), to do this.
There are several closely related groups of which we
are already fairly certain. We are really interested in
the early branch points on the tree that define the
way these closely related groups are related to one
another. For the ML analysis, we specified the fol-
lowing clades in advance:

1. (Mouse,Guinea Pig)

2. (Bushbaby, Lemur)

3. (Northern Tree Shrew,Large Tree
Shrew)

4. (Western Tarsier,Philippine
Tarsier)

5. (Saki Monkey, (Capuchin, ((Tamarin,

Marmoset), (Howler Monkey, Spider
Monkey))))

6. ((Proboscis Monkey, (Baboon,Rhesus
Monkey)), (Gibbon, (Orangutan, (Gorilla,

(Human, (Chimpanzee, Pygmy
Chimpanzee))))))

Each of these clades is a rooted subtree that
occurs on the NJ tree for which we are willing to
assume that we know the correct branching order.
There are 105 unrooted tree topologies that can
be obtained by connecting these clades together.
An ML algorithm was used to optimize the branch
lengths and rate parameters for each of these 105
topologies separately, and to find the ML topology.
Note that this involves changing the branch lengths

within the clades, as well as the branch lengths
on the internal branches connecting the clades;
however, rearrangement of the species within the
cladesisnot allowed. As this algorithm is an exhaust-
ive search of topologies, we can be sure we have
found the correct ML solution (provided the clades
were defined correctly at the outset). This algorithm
also has the advantage of being rapid, because the
number of topologies is relatively small when the
number of clades is small, as in this example. We
could equally well have used a standard ML search
program that would not have required specifying
the clades in advance, but this would have taken
more computer time, and we would not have been
completely sure that all the relevant trees had been
searched.

Running this algorithm with the JC evolution
model shows that the ML tree topology is the same as
the NJ tree in Fig. 8.8(b), although the branch
lengths are slightly different. There are, however,
several other topologies for which the likelihood is
only very slightly less than this one, and statistical
tests show that these alternatives are not signific-
antly worse than the ML topology. Hence, ML has
so far not resolved any of the problems that were
present with the NJ tree. One reason for this is that
we are still using a very simple model of sequence
evolution. The JC model makes the very restrictive
assumption that the frequencies of the four bases are
equal. In fact the frequencies in the sequences being
studied here are 37.5% A, 24.7% C, 12.6% G, and
25.2% U, which are definitely not equal. We would
also expect that the ratio of transition to transver-
sion rates might be significantly different from 1. We
therefore repeated the ML analysis using the HKY
model, which allows differing base frequencies and
different transition and transversion rates (see Sec-
tion 4.1.3). We also know, from the alignment, that
several parts of the sequence appear to be invariant
across all sequences, while other sites seem to vary
much more rapidly than average. To account for
this, we used a model of variable rates across sites
that includes a certain fraction of invariable sites,
plus six categories of variable sites with a gamma
distribution of rates (see Section 4.1.4). The 105
topologies for the same six clades as above were

Phylogenetic methods ® 175

‘I Mouse

Guinea pig

Bushbaby

Lemur

Western tarsier

Philippine tarsier

Northern Tree shrew

Large Tree shrew

Saki monkey
Capuchin
Tamarin
— Marmoset
Howler monkey
Spider monkey
Proboscis monkey
e Baboon

Rhesus monkey

Gibbon
Orangutan
0.1 E

Gorilla

Human
Fig. 8.12 Maximum-likelihood

Chimpanzee topology using the HKY model with
Pygmy chimp invariant sites, plus six gamma-

evaluated using this model. The ML tree is shown
in Fig. 8.12. The main difference from Fig. 8.8(b)
is that the tree shrews are now positioned as out-
groups to the primates. Thus, by using a more real-
istic evolutionary model we have removed the main
problem with the tree arising from the JC model.
Another point to note is that there is a trifurcation
between the lemurs, tarsiers, and the monkeys/
apes. There are three different bifurcating topologies
consistent with this, i.e., any one of these three
groups could be the outgroup to the other two.

176 ® Chapter8

distributed rate categories.

These three topologies all give exactly the same ML
value, because the length of the internal branch at
this point shrinks to zero, resulting in a trifurcation.
There is evidence from morphological studies that it
is the lemurs that are the earliest diverging of these
three groups, but there is insufficient information to
distinguish these possibilities in this single gene
sequence. There are also several other topologies
among the 105 that have lower likelihoods than the
one shown, but that are not significantly less likely
according to statistical tests.

(@ () ©
+
+
Fig. 8.13 The parsimony criterion . + 4
used with morphological character
states shows that tree (a) is preferable 0 9 @ ® 0 ® @ 6 0 @ @ 9
to trees (b) and (c). 0 0 1 1 0 1 1 0 0 1 1 0

8.7 THE PARSIMONY CRITERION
8.7.1 Parsimony with morphological characters

The parsimony criterion has a long history in phy-
logenetics based on morphological characters. It
states that we should use the simplest possible expla-
nation of the data, or the explanation that requires
the fewest arbitrary assumptions. Often, parsimony
is used with sets of binary character states, O and 1,
where O represents a state thought to be ancestral,
and 1 represents a state thought to be derived. For
example, 1 might be the bone structure in the bird
wing, and O might be the ancestral tetrapod forelimb
bone structure. In practice, the characters used are
much less obvious than this and require trained
anatomists and paleontologists to identify.

Figure 8.13 shows an example where species C
and D possess a derived character that is not pos-
sessed by A and B. If the species are arranged as on
tree (a), the character must have evolved once on
the branch marked +. If they are arranged as on tree
(b), the character must have evolved once (+) and
then must have been lost once (*). If the arrange-
ment is as on tree (c), the character must have
evolved independently (+) on the two branches lead-
ing to C and D. The first explanation is the simplest,
or most parsimonious. The parsimony criterion says
that tree (a) is to be preferred, because it has a single
character-state change, whereas the other trees
require two character-state changes.

If there is a single character, then it is always pos-
sible to find a tree that divides the species into two
groups: the “haves” and the “have-nots”. This char-
acter alone does not say anything about the branch-
ing order within each of the two groups. In order to
construct a full tree, we need a large set of characters
that evolved at different points in time. A shared

derived character is called a synapomorphy. In an
ideal case, we would try to find a set of characters
that form synapomorphies nested one within the
other, so that each character is informative about a
different branch point on the tree. It would then be
possible to find a tree such that there is only a single
change of state in each character. In practice, there
are often conflicts between different characters. For
example, in Fig. 8.13, there may be a second charac-
ter possessed by B and C, but not by A and D, and this
character would suggest that tree (b) is preferable.
Whichever tree we choose, there must be at least
one of these two characters having more than one
character state change. Parsimony programs take
input data from a large number of characters and
use a heuristic tree-search algorithm to find the tree
such that the total number of changes required in all
the characters is as small as possible. It is often the
case that loss of a derived character can occur in
species that no longer require that character — the
“use it or lose it” principle. On the other hand, the
independent origin of the same character twice
seems much more unlikely. To account for this, it is
possible to give a higher weight to a character gain
than to a loss when calculating the parsimony score
(see Swofford et al. 1996 for more details). Some
characters do evolve more than once, however. This
is called homoplasy. Characters that are subject to
homoplasious changes can be misleading in parsi-
mony, and often it is not known which characters
these will be in advance.

8.7.2 Parsimony with molecular data

Parsimony can also be applied to molecular datain a
straightforward way (Fitch 1971). Each column in
the sequence alignment is treated as a character

Phylogenetic methods ® 177

(@

Human (C) Gibbon (T)
*
Chimp (C) Gorilla (C) Orangutan (T)
© Human (C) Gibbon (T)
*
Chimp (C) Gorilla (C) Orangutan (C)

®) Gibbon (T) Human (C)
*
*
Chimp (C) Gorilla (C) Orangutan (T)
@ Gibbon (T) Human (C)
*
Chimp (C) Gorilla (C) Orangutan (C)

Fig. 8.14 The parsimony criterion applied to molecular data shows that tree (a) is preferable to tree (b) according to this
informative site. Parsimony does not distinguish between trees (c) and (d) as this is a non-informative site.

state. A substitution event is a change in this char-
acter state, hence we simply look for the tree with
the fewest substitutions. We do not know what
the ancestral sequence was, hence there is no dis-
tinction between the gain and loss of a charac-
ter. Molecular parsimony algorithms therefore use
unrooted trees. Consider a site that is a C in human,
chimpanzee, and gorilla, andisa T in orangutan and
gibbon. Tree (a) in Fig. 8.14 requires a single sub-
stitution (denoted *), whereas tree (b) requires two
separate substitutions. According to this site, tree
(a) is preferable to (b). Not all sites are informative in
the parsimony method. If a site is identical in all
species, clearly this gives no information. However,
the example shown in trees (c) and (d) is also
non-informative. Thisis C in all species except for the
gibbon, where it is T. Whichever tree topology we
choose, it is always possible to put a single substitu-
tion on the branch leading to the gibbon, hence this
site does not help us distinguish between alternative
trees. The rule is that a site must have at least two of
the four bases present in more than one species for it
to be informative in the parsimony method.

We applied the parsimony method to the primates
example. The most parsimonious tree has the same
topology as obtained with both the NJ method and

178 @ Chapter 8

the ML method with the JC model (shown in
Fig. 8.8). There are several other topologies that
require only one or two more substitutions than this
one. The issue of distinguishing between alternative
trees arises in the same way as for ML. In fact, the KH
test can be used in a similar way for parsimony
scores as for log likelihoods (Kishino and Hasegawa
1989). In our case, the alternatives with only a few
additional substitutions are not significantly differ-
ent from the most parsimonious tree. Thus, for these
data, three different methods give the same answer
for the best topology, and they largely agree on
which parts of the tree are poorly determined. It is
not always the case that parsimony gives the same
answer as ML. The parsimony and ML criteria are
different, and there is no guarantee that the same
optimal tree will be found by the different criteria.

8.7.3 Comparison of parsimony and maximum-
likelihood methods

There has been considerable debate in the literature
about the relative merits of parsimony and ML.
Parsimony has a longer track record in the liter-
ature, and many people still use it. Parsimony has
the advantage of being fast. There is an efficient

algorithm for evaluating the parsimony score on
any given tree topology (Fitch 1971, Swofford et al.
1996), whereas with ML, for each tree topology
there is still a relatively complex problem of optimiz-
ing the branch lengths and the rate-matrix parame-
ters. Evaluation of each proposed tree therefore takes
much longer for ML. Advocates of parsimony often
dislike the models of sequence evolution used with
ML and with distance-matrix methods, and claim
that parsimony is superior because it avoids making
assumptions about evolutionary models. In our
example, we used the JC model with both NJ and ML
methods, i.e., we assumed equal rates of all types of
substitutions, and we also assumed equal rates of
evolution at all sites. However, with the parsimony
method, we made similar assumptions: all types of
substitution contributed equally to the parsimony
score, and changes at all sites were weighted equally.
We saw that improving the evolutionary model by
using HKY and variable rates gave a significantly
different answer with ML. In principle, the parsi-
mony score could also be improved in a similar way
by weighting transitions and transversions differ-
ently, and by weighting changes at rapidly evolving
sites less than those at slowly evolving sites. How-
ever, it is difficult to know what these weightings
should be. In the ML framework, these effects are
included as parameters in the model, and optimum
values of these parameters are determined from the
data. Thus, with ML, there is a systematic way of
improving the evolutionary models used. There is
also a rigorous way of checking whether each addi-
tional parameter gives a significantly better fit to the
observed data (we will not discuss this until Sec-
tion 11.2.1). We know that the models we use will
never be an exact description of the true mechanism
of sequence evolution, but the models we have at
present do account for many of the important
evolutionary factors. Therefore including these in
the analysis seems preferable to ignoring them alto-
gether. For a recent discussion of the parsimony/
likelihood debate, see Steel and Penny (2000).
Parsimony methods try to minimize the number
of substitutions, irrespective of the branch lengths
on the tree. A substitution on a long branch counts
just as much as a substitution on a short branch. ML

methods allow for the fact that changes are much
more likely to happen on longer branches. In fact, if
a branch is long, then we expect that substitutions
will have happened along this branch, and there is
no reason to try to minimize the number of substitu-
tions. Due to its neglect of branch lengths, parsi-
mony suffers from a problem known as long-branch
attraction. If two branches are long due to rapid evo-
lutionary rates along them, then tree-construction
algorithms tend to put these branches together. This
can lead to the mistaken grouping of species that
have little in common other than rapid evolutionary
rate. This is a potential problem for many phylogen-
etic methods, but is particularly severe in parsi-
mony. It is not just a problem of lack of sequence
information with which to determine the correct
tree: in some cases, it has been shown that parsi-
mony will give the wrong tree, even when the length
of the sequences used tends to infinity (Felsenstein
1978, Swofford et al. 1996).

In conclusion, parsimony is a strong method for
evaluating trees based on qualitative characters for
which there is no good quantitative model of evolu-
tion. It does not really mean much to have a model of
the rate of evolution of birds’ wings, because, as far
as we know, their evolution was a one-off histor-
ical event. However, the substitutions occurring in
molecular evolution occur many times in essentially
the same way, and therefore it does make sense to
have a quantitative model for the rates of these
different types of change. When quantitative models
are available to describe the data, we feel that likeli-
hood-based methods are preferable to parsimony.

8.8 OTHER METHODS RELATED TO
MAXIMUM LIKELIHOOD

8.8.1 Quartet puzzling

As stated previously, likelihood-based methods have
several theoretical advantages over other methods
but tend to be slow when dealing with large sequ-
ence sets. One way of getting around this is only to
use ML to test a relatively small set of user-defined
trees. It is then only necessary to optimize the par-
ameters and branch lengths on each of the trees

Phylogenetic methods ® 179

of interest, rather than to spend time searching
through the space of tree topologies, when the vast
majority of these topologies have extremely low like-
lihood. Predefining the known clusters, as we did
in Section 8.6, is one way of restricting the search
space to the region of interest.

Quartet puzzling (Strimmer and von Haeseler
1996) is another fairly rapid heuristic method of
searching for the ML tree. This consists of calculating
the ML tree for each quartet of four species, A, B, C,
and D that can be taken from the full set. This in-
volves testing the three unrooted trees: ((A,B),(C,D));
((A,C),(B.D)); and ((A,D),(B,C)). The complete list of
species is then considered in a randomized order.
The first four are placed according to their optimal
ML quartet tree. Each subsequent species from the
list is then added to the growing tree one at a time
in such a way that the topology of the growing tree
contains as many of the ML quartet trees as possible
at each step. When all the species have been added,
this gives one possible candidate tree whose overall
likelihood can be tested. The whole process is re-
peated many times, using different random orders
of species. The final tree depends on the order in
which the species are added, because the algorithm
for species addition is a “short-sighted” or “greedy”
algorithm, i.e., it does the best it can do at each step,
without regard for what might happen at the next
step. The set of candidate trees arising from each of
the random addition orders will contain many dif-
ferent tree topologies. In the primates example, the
most-frequently occurring topology occurred 96 times
outof 1,000, and the second most-frequent topology
occurred 95 times. The second most-frequent topo-
logy is the same as that given by NJ and ML with the
JC model. The most frequent topology differs only in
the branching order at the node linking the lemurs
to the tree shrew/tarsier group. This has a very low
bootstrap support of 24% in Fig. 8.8(b).

As well as using the set of trees arising from quar-
tet puzzling as candidate trees for testing by ML, they
can also be used to obtain percentage support values
for the different clades. For each clade of interest we
can calculate the percentage of times it occurs in the
list of candidate trees. This gives percentages that
can be interpreted in a similar way to bootstrap

180 @ Chapter8

percentages, but which are not exactly equivalent
because the set of trees used for the bootstrap per-
centages is calculated in a different way.

8.8.2 Bayesian phylogenetic methods

We have seen that often there are many trees that
are only slightly worse than the optimal one accord-
ing to whatever criterion we use to judge them. This
tells us that there is an ensemble of possible trees
consistent with the data, rather than telling us pre-
cisely what is the “correct” tree. Given this degree of
uncertainty, it is rather unlikely that any one “best”
tree we might choose to publish will be exactly
correct in all respects. This suggests that we should
consider methods that deal directly with ensembles
of possible trees, rather than chasing after a single
best one. This is what Bayesian methods do. The
likelihoods of different trees are calculated as for
ML but, rather than search for the single ML tree, a
sample is taken of a large number of trees with high
likelihoods. Bayesian methods calculate the poster-
ior probabilities of different events of interest, given
the information in the data and any prior informa-
tion about the probabilities of these events. Bayesian
methods also appear in the context of machine
learning in Chapter 10. We therefore recommend
that you read this section in conjunction with
Section 10.2, where the ideas of prior and posterior
probabilities are explained in more detail.

Aswith maximum likelihood, there are three types
of parameter involved (the tree topology, the branch
lengths, and the rate-matrix parameters), and it is
necessary to specify prior probabilities for all of these.
Sometimes with Bayesian methods, we have strong
information about the prior values of parameters
and there is relatively little information in the data.
In such a case, the choice of priors would be very
important. However, with phylogenetic methods,
there is a large amount of information in the data,
i.e., the likelihood function changes rapidly as para-
meters are altered. In this case, the choice of prior is
not very important and it is possible to use uniform
or non-informative priors. For topologies, the non-
informative choice of prior is to set all possible tree
topologies to have an equal prior probability. How-

ever, it would be possible to specify zero prior prob-
ability to trees that contained clades that we believed
were impossible, for example, or to trees that did not
contain a clade that we believed was definitely cor-
rect from prior information. For branch lengths, we
have almost no idea what to expect before looking at
the data; therefore, a non-informative prior again
seems appropriate, such as a uniform prior distribu-
tion where all branch lengths are equally probable
between zero and a specified large maximum value.
For most of the rate matrices used with nucleic
acids, the base frequencies are parameters of the model
(see Section 4.1). The sum of the base frequencies
must equal one. A suitable non-informative choice
of prior for base frequencies is therefore to set all sets
of frequencies that add up to one as equally prob-
able. A more constrained prior would be possible in
this case by using peaked distributions of base fre-
quencies. A limiting case would be to specify the
base frequencies exactly and not treat them as vari-
ables at all. Substitution rate ratios also appear in
models (e.g., transition/transversion parameter). If
these are known, they can be specified, but it is more
usual to use a non-informative prior and to allow the
information in the data to determine the values.

8.8.3 The Markov Chain Monte Carlo method

In Box 8.3, we show that to calculate the posterior
probabilities of different possible clades in Bayesian
methods, we need to generate a large sample of trees
with the property that the probability of finding
a tree in the sample should be proportional to its
likelihood X prior probability. The Markov Chain
Monte Carlo (MCMC) method is a way of generating
such a sample. If non-informative priors are used
for all the parameters, then the prior probabilities
cancel out of Egs. (8.13) and (8.14), because they
are constants. For this reason, we will ignore the
prior in the following discussion.

The MCMC method begins with a trial tree and
calculates its likelihood, L;. A “move” is then made
on this tree that changes it by a small amount, e.g.,
one or more branch lengths might be changed, one
or more of the rate parameters might be changed, or
the topology might be changed either by a nearest-

neighbor interchange or by one of the other possibil-
ities for searching tree space discussed in Section 8.5.
The likelihood of the new tree, L,, will be slightly
higher or lower than L,. The new tree s either accepted
or rejected, using a rule known as the Metropolis
algorithm. If L, > L,, tree 2 is accepted and it becomes
the next tree in the sample. If L, <L,, tree 2 is
accepted with probability L,/L, and rejected other-
wise. If it is rejected, then the next tree in the sample
isarepeat oftree 1. The Metropolis algorithm always
allows moves that increase the likelihood, but it also
sometimes allows moves that decrease the likelihood.
It is not just a “hill-climbing” algorithm. It allows
downhill moves with the correct probability, so that
the equilibrium probabilities of observing the differ-
ent trees are given by the likelihoods.

Suppose there were just two trees, and the MCMC
moved back and forward between them. Let P, and
P, be the equilibrium probabilities of observing these
two trees, or, in other words, the fractions of trees in
the sample that will be trees 1 and 2. At equilibrium,
the probability of observing each tree must be con-
stant, so that the probability of being in tree 1 x the
rate of change from 1 to 2 must equal the probability
of being in tree 2 X the rate of change from 2 to 1.
This property is known as detailed balance. We
can therefore write:

P r
Pyr,, =P,r,,, orequivalently, Fl = r2_1 (8.16)
2 o

As we wish to generate trees in proportion to their
likelihood, we must have P,/P, = L,/L,. Combining
this with Eq. (8.16) gives us

L
2 (8.17)
n, L,

We must therefore set the ratio of the transition rates
in the simulation to be equal to the ratio of like-
lihoods. The Metropolis algorithm defined above
doesthis. If L, > L, thenr,,=1,andr,, = L,/L,, and
so Eq. (8.17) is satisfied. If L, < L, then ry, = L,/L,,
and r,; =1, and so Eq. (8.17) is again satisfied.
It follows that if the forward and backward rates
are set correctly for any pair of states, then the

Phylogenetic methods @ 181

equilibrium probabilities of all the possible states will
come out correctly.

The Metropolis algorithm was introduced to do
simulations in statistical physics. In physical systems,
the equilibrium distribution is the thermodynamic
equilibrium at a fixed temperature, and the likelihoods
of the states are functions of the energies of the states,
L = exp(=E/kT). Application of MCMC to phylogenetics
is relatively new (Larget and Simon 1999, Lewis
2001, Huelsenbeck et al. 2002, Jow etal. 2002). The
art of developing a good MCMC program is in the
choice of the move set. It is necessary to strike a bal-
ance between moves that alter branch lengths and
those that alter topology. If changes are very small,

182 @ Chapter8

the likelihood ratio of the states will be close to 1, and
the move has a good chance of being accepted. How-
ever, a very large number of moves would be required
to change the tree significantly and to obtain a broad
sample of tree space. If changes are very large, then
the likelihood ratio of the states will be far from 1, and
the likelihood of accepting the downhill move will be
very small. It is necessary to be somewhere between
these extremes to have an efficient algorithm.

8.8.4 Anexample using MCMC

We used an MCMC program (PHASE; Jow et al.
2002) to analyze the primate data set. The HKY

Saki monkey Saki monkey
Spider monkey Capuchin
Howler monkey Spider monkey

Capuchin Howler monkey
Marmoset Marmoset
Tamarin Tamarin

Tree 1: 61% Tree 2: 27%

Saki monkey Saki monkey
Marmoset Spider monkey
Tamarin Howler monkey
Capuchin Tamarin

Spider monkey Capuchin
Howler monkey Marmoset
Tree 3: 5% Tree 4: 4%

Fig. 8.15 The top four trees for the Platyrrhini group obtained by MCMC using the HKY model with invariant sites, plus six

gamma-distributed rate categories.

model was used, allowing for invariant sites and four
gamma-distributed rate categories. Several runs
were performed to check consistency between the
runs and to make sure that the program had
converged to an equilibrium state. The tree shrews,
tarsiers, lemurs, Catarrhini, and Platyrrhini were all
well defined, i.e., they were all present 100% of the
time during the MCMC run. However, there was
substantial rearrangement of species within some of
these groups and substantial variation in the posi-
tioning of these groups with respect to each other.
Results for the Platyrrhini are shown in Fig. 8.15.
The trees are ranked according to the frequency
with which they occur in the MCMC run. Tree 1
occurs 61% of the time. In this tree, the capuchin is
sister group to the marmoset and tamarin. The
topology found by the NJ method (Fig. 8.8(b)), and
by quartet puzzling, has the capuchin in a different
position. This corresponds to Tree 2 in the MCMC
method, which only occurs 27% of the time. In fact,
all four top trees are identical, apart from the posi-
tioning of the capuchin. One of the strengths of the
MCMC method is to illustrate which parts of a tree
are well defined by the data and which parts are less
well defined.

One of the hardest questions to answer with this
set of sequences is the positioning of the earliest
branch points in the tree. One way of presenting
the MCMC results would be to give probabilities
of occurrence of tree topologies for the full set of

species. However, there are very many topologies
that occur, and each individual tree occurs with a
rather small probability. A better way to understand
theresultsis to look at the arrangements of the high-
level groups directly, rather than individual species.
Figure 8.16 summarizes the results of one MCMC
run in terms of the four groups: tree shrews, tarsiers,
lemurs, and monkeys (= Catarrhini + Platyrrhini).
The figure shows the seven most-frequently occur-
ring topologies for these groups, ranked in order,
with the percentage of the time each configura-
tion occurred. We can present the results this way
because these groups are all well defined. Rear-
rangements at the species level within these groups
(such as the movement of the capuchin in Fig. 8.15)
are ignored in Figure 8.16. Here, the most frequent
tree occurs only 34% of the time. This is not much
more than the trees ranked 2 and 3. So this method
tells us that the information in this single gene is not
sufficient to determine the relationship between
these groups with any certainty.

It is interesting to compare these results with
those of Ross, Williams, and Kay (1998) who con-
structed phylogenetic trees of both living and fossil
primate species using the parsimony method applied
to characters derived from tooth and skull shape.
The morphological evidence indicates that tarsiers
and monkeys are more closely related to each other
than they are to the lemurs. This corresponds to
Tree 7 in Fig. 8.16, which has only 2% support from

Phylogenetic methods ® 183

Guinea pig Guinea pig
Tree shrews Monkeys
Tarsiers Lemurs
Lemurs Tree shrews
Monkeys Tarsiers

Tree 1: 34% Tree 2: 27%

Guinea pig Guinea pig

Tree shrews Tarsiers

Monkeys Tree shrews
Tarsiers Lemurs
Lemurs Monkeys

Tree 5: 3% Tree 6: 2%

Guinea pig Guinea pig
Tree shrews Lemurs
Tarsiers Monkeys
Lemurs Tree shrews
Monkeys Tarsiers
Tree 3: 23% Tree 4: 5%
Guinea pig Guinea pig

Tree shrews Tree shrews

58
Lemurs Tarsiers
Tarsiers Lemurs
60
Monkeys Monkeys
Tree 7: 2% Consensus tree

Fig. 8.16 Top seven trees for the principal groups obtained by the MCMC method. The consensus tree is also shown.

the MCMC method. Recent molecular work, using
Alu sequences inserted into nuclear genes, also
supports Tree 7 (Schmitz et al. 2001). The evidence
from the small subunit rRNA gene is therefore in
disagreement with both of these studies. We emphas-
ize that the primates example discussed in this chap-
ter uses a single gene only. It is presented as an
illustration of the methods and is not intended as a
serious attempt at the phylogeny of these species.
Recent studies of the phylogeny of mammals with
much larger sequence data sets (Murphy et al. 2001,
Hudelot et al. 2003) group tarsiers with lemurs, as
in Tree 5.

One point to note in Fig. 8.16 is that the top four
trees differ only in the position where the guinea pig
outgroup joins the rest of the tree. In other words,
the guinea pig was “wandering about” on the tree
during the Monte Carlo run. This may suggest that
the guinea pig was a poor choice of outgroup.
However, we have also performed runs with the
mouse as outgroup and these did not prove any

184 ® Chapter8

more conclusive. This example is fairly typical in
that it contains both easy and difficult parts of the
tree to determine. In using MCMC, we have used
much more computer time than with a simple
method like NJ. It is therefore slightly disappointing
that, even with a sophisticated method, we cannot
be sure about some important aspects of the tree.
Nevertheless, this conclusion is better than the false
conclusion that we might draw by looking only at
the single best tree obtained by some simpler
method. We recommend the use of MCMC in phylo-
genetics because it is the best way of making max-
imum use of the information in the data. In a long
MCMC run, we consider very many trees and very
many sets of rate parameters. These are evaluated
and averaged over in a way that has a sound statist-
ical basis. If, at the end of the day, the information in
the data is insufficient to answer some questions
with confidence, then we simply need more data.
Figure 8.16 also illustrates an interesting point
with respect to consensus trees. Majority-rule con-

sensus programs are used to calculate consensus
trees from sets of trees obtained via bootstrapping, as
described in Section 8.4. The same method can be
used to obtain consensuses of the set of trees gener-
ated in an MCMC run. The result is shown in the bot-
tom right of the figure. The consensus tree is the
same as Tree 3, and not Tree 1. The clade of tree
shrews + tarsiers occurs 58% of the time. This is
obtained by summing the frequencies of Trees 2, 3,
4, and several other low-frequency tree topologies
that are not shown. Similarly, the clade lemurs +
monkeys occurs 60% of the time. The consensus tree

has topology 3, because this is the only topology that
contains both these clades. It is therefore important
to realize that a consensus tree is not necessarily the
most frequent tree in the set of trees from which it
was derived. Drawing a consensus tree is just one
way of summarizing the set of trees, and it does not
give complete information about the set.

This completes our survey of phylogenetic meth-
ods. In Chapter 11, we will return to further ques-
tions related to molecular evolution and we will give
several examples of interesting studies in molecular
phylogenetics.

® 185

Phylogenetic methods

of different parts of a phyloge
(at least 100) of random
generated, where eac
domly selected col
The method is rep
sets, giving

REFERENCES

Durbin, R., Eddy, S.E., Krogh, A., and Mitchison, G. 1998.
Biological Sequence Analysis — Probabilistic Models of
Proteins and Nucleic Acids. Cambridge, UK: Cambridge
University Press.

Felsenstein, J. 1978. Cases in which parsimony or compat-
ibility methods will be positively misleading. Systematic
Zoology, 27:401-10.

Felsenstein, J. 1981. Evolutionary trees from DNA sequ-
ences: A maximum likelihood approach. Journal of
Molecular Evolution, 17: 368-76.

Felsenstein, J. 1985. Confidence limits on phylogenies:
An approach using the bootstrap. Evolution, 39: 773—
81.

Felsenstein, J. 2001. PHYLIP Phylogeny Inference Pack-
age version 3.6. Available from http://evolution.
genetics.washington.edu/phylip.html.

Fitch, W.M. 1971. Towards defining the course of evolu-
tion: Minimum change for a specific tree topology.
Systematic Zoology, 20: 406—16.

Fitch, W.M. and Margoliash, E. 1967. Construction of
phylogenetic trees. A method based on mutation dis-
tances as estimated from cytochrome ¢ sequences is of
general applicability. Science, 155: 279-84.

Hasegawa, M., Kishino, H., and Yano, T. 1985. Dating
of the human—ape splitting by a molecular clock of
mitochondrial DNA. Journal of Molecular Evolution, 22:
160-74.

Horovitz, 1., Zardoya, R., and Meyer, A. 1998. Platyrrhini
systematics: A simultaneous analysis of molecular and
morphological data. American Journal of Physical Anthro-
pology, 106: 261-81.

186 ® Chapter8

Hudelot, C., Gowri-Shankar, V., Jow, H., Rattray, M., and
Higgs, P.G. 2003. RNA-based phylogenetic methods:
Application to mammalian mitochondrial RNA sequ-
ences. Molecular Phylogeny and Evolution, 28: 241-52.

Huelsenbeck, J.P., Larget, B., Miller, R.E., and Ronquist, F.
2002. Potential applications and pitfalls of Bayesian
inference phylogeny. Systematic Biology, 51: 673-88.

Jow, H., Hudelot, C., Rattray, M., and Higgs, P.G. 2002.
Bayesian phylogenetics using an RNA substitution
model applied to early mammalian evolution. Molecular
Biology and Evolution, 19: 1591-601.

Kishino, H. and Hasegawa, M. 1989. Evaluation of the
maximum likelihood estimate of the evolutionary tree
topologies from DNA data, and the branching order in
Hominoidea. Journal of Molecular Evolution, 16: 111-20.

Larget, B. and Simon, D.L. 1999. Markov Chain Monte
Carlo algorithms for the Bayesian analysis of phylogen-
etic trees. Molecular Biology and Evolution, 16: 750-9.

Lewis, P.O. 2001. Phylogenetic systematics turns over a
new leaf. Trends in Ecology and Evolution, 16: 30-7.

Murphy, W.]., Elzirik, E., Johnson, W.E., Zhang, Y.P.,
Ryder, O.A., and O'Brien, S.]J. 2001. Molecular phylo-
genetics and the origins of placental mammals. Nature,
409: 614-18.

Page, R. 2001. Treeview version 1.6.6. Available from
http://taxonomy.zoology.gla.ac.uk/rod/treeview.html.

Ross, C., Williams, B., and Kay, R.F. 1998. Phylogenetic
analysis of anthropoid relationships. Journal of Human
Evolution, 35:221-306.

Saitou, N. and Nei, M. 1987. The neighbor-joining
method: A new method of constructing phylogenetic
trees. Molecular Biology and Evolution, 4: 1406-25.

Schmitz, J., Ohme, M., and Zischler, H. 2001. SINE inser-
tions in cladistic analyses and the phylogenetic affili-
ations of Tarsius bancanus to other primates. Genetics,
157:777-84.

Sneath, P.H.A. and Sokal, R.R. 1977. Numerical Taxonomy.
San Francisco: W.H. Freeman.

Steel, M. and Penny, D. 2000. Parsimony, likelihood, and
the role of models in molecular phylogenetics. Molecular
Biology and Evolution, 17: 839-50.

Strimmer, K. and von Haeseler, A. 1996. Quartet puzzling:
A quartet maximum likelihood method for reconstruct-
ing tree topologies. Molecular Biology and Evolution, 13:
964-9.

Swofford, D.L., Olsen, G.]., Waddell, P.J., and Hillis, D.M.
1996. Phylogenetic inference. In D.M. Hillis (ed.),
Molecular Systematics, 2nd edition. Sunderland, MA:
Sinauer.

® 187

Phylogenetic methods

T C T C G
P S F M \

188 @ Chapter 8

Phylogenetic methods ® 189

190 ® Chapter8

B
D
B
D

Phylogenetic methods ® 191

192 @ Chapter 8

GTTAATGAGTGGE
GTTAATGAGTGGE
GTTAATGAGTGGE
GTEAATGAGTGGE

CTEAATGARNTCCE
GTTAATGAGTGGT
GTEAASGAGTGGT

Wombat
Opossum

Rhinoceros

Rhinoceros

Wombat
Opossum
Hedgehog
Human

Hare

Hare

TCCAGAAGTGACIATE
ATINCAGAAGTG. A
TEEAGAAGECAINIT
TCEAGAAGEGAﬁﬂTE
TECAGAAGTGANET
TECAGAAGTGANGT
TECAGAAGTGARNAT

Wombat

Opossum

Hedgehog

Human

Rhinoceros

Wombat
Opossum

Rhinoceros

Hare

Human

E g E
)
=
el

Hedgehog

Phylogenetic methods ® 193

194 @ Chapter 8

Patterns in protein

Jamilies

CHAPTER PREVIEW

In this chapter, we look beyond the fa
niques and begin to appreciate the a
mance that accrue from the use
we focus on the different patt
conserved regions in se
fingerprints, and blocks
tein families and to bui

sidering how thes

9.1 GOING BEYOND PAIRWISE
ALIGNMENT METHODS FOR
DATABASE SEARCHES

In Chapter 7, we discussed database search methods
based on pairwise alignment of a query and data-
base sequences (e.g., BLAST (Altschul, Gish, and
Miller 1990, Altschul et al. 1997) and FASTA
(Pearson and Lipman 1988, Pearson 2000)). In
many cases, such search tools are highly effective;
however, they are not infallible and additional evid-
ence may sometimes be required in order to reliably
diagnose a sequence as a member of a given family
and hence to make a meaningful functional assign-
ment. There are many reasons for this. With more
than 30 million sequences from over 150,000
organisms in GenBank in 2004 (Benson et al. 2004),
search outputs can be complex and redundant: e.g.,

CHAPTER

results can be dominated by
irrelevant matches to low-
complexity or highly repetit-
ive sequences; the presence
of modular or multi-domain
proteins can also complicate
interpretation, as it may not
be clear at what level a match
has been made (e.g., at the
level of a single module/
domain, or several modules/
domains, or of the whole
protein); multi-gene families
may likewise complicate matters, as distinguishing
orthologs and paralogs may be problematic; the
annotation of retrieved matches may be incorrect;
and, given database size and increasing levels of
noise, a correct match may simply fail to achieve
a higher score than a random database sequence, or
sequences.

Some of these problems can now be tackled more
or less automatically, for example by using mask-
ing devices in BLAST to filter out low-complexity
regions from queries. However, recognizing ortho-
logy with any degree of reliability is a far more exact-
ing task (Huynen and Bork 1998), but nevertheless
an important one if we wish to establish the correct
phylogenetic relationships between genes. Protein
family databases offer a small step in this direction.
Depending on the type of analysis method used, they
may help to elucidate relationships in considerable
detail, including superfamily, family, subfamily, and
species-specific sequence levels. The ability to make

Patterns in protein families ® 195

familial distinctions in such precise ways makes
these techniques useful and often powerful adjuncts
to routine sequence database searches (Attwood
2000a,b).

It is often said that bioinformatics is a “know-
ledge-based” discipline. This means that many of the
search and prediction methods that have been used
to greatest effect in bioinformatics exploit infor-
mation that has already been accumulated about
the problem of interest, rather than working from
first principles. Most of the methods discussed in
this chapter adopt this kind of knowledge-based
approach to sequence analysis. Typically, we have
a set of known examples of sequences of a given
class and we try to identify patterns in the data that
characterize these sequences and distinguish them
from those that are not of this class. The basic prob-
lem addressed by the methods described here is then
to determine whether an unknown sequence is a
member of the class or classes of sequences that
we have already identified by means of such charac-
teristic patterns.

A pattern can be more or less anything that
is unique to the sequences of the class of interest,
and hence that is different from other sequences.
Usually, we are interested in the most conserved
aspects of sequence families, so the patterns describe
features that are common to all members of the
class. The simplest type of pattern would be a set
of specific amino acids found in every example of
a protein of a given type. However, life is rarely as
simple as this. Even the most conserved parts of
sequences tend to vary somewhat between species.
Therefore, patterns have to be sufficiently flexible to
account for some degree of variation.

To make allowance for different degrees of vari-
ation, the methods discussed here use some type of
scoring system, where the object is to assign a high
score to sequences that are believed to be members of
the class and a low score to those that are not. In
Chapter 7, we defined the sensitivity and selectivity
of a method (Egs. 7.1 and 7.2). At that point, we
were thinking of database search algorithms using
a single query sequence. In the present context,
we are thinking of scoring systems for recognizing
sequences in a protein family. The same considera-

196 ® Chapter9

tions apply, however. A good method should have
high sensitivity, i.e., it should correctly identify as
many true-positive (real) members of the family as
possible. It should also have high selectivity, i.e.,
very few false-positive sequences should be incor-
rectly predicted to be members of the family.

It should be clear that the more sequences we
already have in a given family, the more information
we have about it and the more likely we are to be
able to find some pattern that accurately diagnoses
its members. This is typical of knowledge-based
methods, where the more we know to start with,
the easier the problem becomes. An important way
in which information from many sequences can be
combined is by defining some kind of position-speci-
fic scoring matrix (or PSSM, usually pronounced
“possum”). PSSMs are sometimes also termed “pro-
files”, and there are several different ways of con-
structing them. However, the key point is that the
score of matching any given amino acid at a given
position depends on the set of amino acids that
occurred at that position in the family of proteins we
are studying. So, for example, our protein family
might have a conserved leucine residue at position
10, so the PSSM would have a high positive score
for aligning a leucine from the query sequence to
position 10 of the family. This is in contrast to pair-
wise alignment algorithms, where the score for
aligning a leucine with a leucine is always the same,
no matter where it occurs in the sequences. Scoring
systems for pairwise alignment like PAM (Dayhoff
1965, Eck and Dayhoff 1966) and BLOSUM
(Henikoff and Henikoff 1992) are derived from
average properties of many sequence alignments.
Leucines are not always conserved, and the PAM
score for an I-L match is not particularly high by
comparison with some other scores, such as for
W-W and C-C. A PSSM is able to capture the addi-
tional information that the matching leucine is very
significant for this particular sequence family, and
hence to assign this feature a correspondingly high
score. Several of the methods discussed in this
chapter use PSSMs.

In Chapter 5, we described a range of protein
family databases and mentioned the different ana-
lytical techniques used to create them. It is import-

oo

Insertions

Fig. 9.1 Schematicillustration of a sequence alignment,
showing how gap insertion brings equivalent parts of the
alignment into the correct register, leading to the formation
of conserved regions, or motifs (shaded blocks). These provide
tell-tale signatures that can be used to diagnose new family
members.

ant to understand the differences between the vari-
ous approaches, because they have different diag-
nostic strengths and weaknesses and hence work
best under different circumstances. The underlying
principle behind all of the methods we described
is that within multiple alignments can be found
conserved regions, or motifs (Fig. 9.1), that are
believed to reflect shared structural or functional

characteristics of the constituent sequences. These
regions can be used to build diagnostic signatures
by means of which we can potentially recognize
new family members (Attwood 2000a,b). The main
methods used to derive such signatures fall essen-
tially into three groups, based on the use of single
motifs, multiple motifs, or full domain alignments
(recall Fig. 5.6). Some of these techniques are out-
lined in the sections that follow.

9.2 REGULAR EXPRESSIONS
9.2.1 Definition of regexs

Probably the simplest pattern-recognition method
to understand is the regular expression, or regex,
often simply (and confusingly) referred to as a “pat-
tern”. Here, sequence data within a motif are
reduced to a consensus expression that captures the
conserved essence of the motif, disregarding poorly
conserved regions. Regexs, then, discard sequence
data, retaining only the most significant motif infor-
mation, as shown in Table 9.1.

Slightly different conventions are used to depict
regexs: the one we shall describe is the format
specified in PROSITE (Falquet et al. 2002). Here,

Table 9.1 Derivation of a regex from a conserved motif from the prion protein family.

e 197

Patterns in protein families

residues that are absolutely conserved at a particu-
lar position in a motif are denoted by single charac-
ters on their own; where different residues with
similar properties occupy the same position, those
residues are “allowed” within square brackets;
where different residues that share no similar prop-
erties occupy the same position, a wild-card “x”
denotes that any residue may occur; where specific
residues cannot be tolerated at a position, those
residues are “disallowed” within curly brackets;
where there are consecutive positions with identical
characteristics, the number of such positions is indi-
cated in parentheses; where a numerical range is
given (usually following a wild-card), the sequences
defined by the regex are of different length (this
notation tends to be used to describe variable loop
regions).

Using this convention, in the expression derived
from the 19-residue motif shown in Table 9.1, we
see that positions 1, 5, 10, 14, 15, 18, and 19 are
completely conserved; positions 3, 9, 11, and 13
allow one of two possible residues; positions 6 and 7
allow one of three possible residues; and positions 2,
4,8,12,16,and 17 can accommodate any residue.

9.2.2 Searching with regexs

Typically, the software that makes use of regexs does
not tolerate similarity, and searches are thus limited
in scope to the retrieval of identical matches. For
example, let us suppose that a sequence matches the
expression in Table 9.1 at all but the ninth position,
where it has His conservatively substituting for the
prescribed Lys and Arg. Such a sequence, in spite of
being virtually identical to the expression, will nev-
ertheless be rejected as a mismatch, even though the
mismatch is a biologically feasible replacement.
Alternatively, a sequence matching all positions of
the pattern, but with an additional residue inserted
at position 16, will again fail to match, because the
expression does not cater for sequences with more
than two residues between the conserved Cys and
Glu. Searching a database with regexs thus results
either in an exact match, or no match at all.

The strict binary outcome of this type of pattern
matching has severe diagnostic limitations. Creating

198 @ Chapter 9

a regex that performs well in a database search is
always a compromise between the tolerance that
can be built into it, and the number of matches it will
make by chance: the more permissive the pattern,
the noisier its results, but the greater the hope of
finding distant relatives; conversely, the stricter the
pattern, the cleaner its results, but the greater the
chance of missing true-positive sequences not
catered for within the defined expression.

A further limitation of this approach hinges on
the philosophy of using single motifs to characterize
entire protein families. This effectively requires us to
know which is the most conserved region of a
sequence alignment, not simply with the data cur-
rently at our disposal, but in all future sequences
that become available. In some cases (highly con-
served enzyme active sites, for example), the choice
of motif may be clear-cut. However, for families
where there are several conserved regions, how can
we know which will remain the most conserved as
the sequence databases grow, and new, possibly
more divergent, family members become available?

Sometimes, part of an alignment originally used
to characterize a particular protein family may
change considerably, more so than neighboring
regions. For PROSITE, this has three main conse-
quences: (i) if the diagnostic performance of the ori-
ginal regex has fallen off with time, it will eventually
require modification to more accurately reflect cur-
rent family membership; (ii) if new family members
are too divergent and cannot simply be captured by
modification of the existing expression, either com-
pletely new (i.e., taken from different regions of con-
servation) or additional regexs must be derived; and
(iii) if multiple regexs still cannot provide adequate
diagnostic performance, it may become necessary to
create a profile (Section 9.4).

9.2.3 Rules

Regexs are most effective when used to characterize
protein families, where well-conserved motifs (typ-
ically 15-25 residues in length), perhaps diagnostic
of some core piece of the protein scaffold, are clearly
discernible. However, it is also possible to identify
much shorter (3—6 residues), generic patterns of

Table 9.2 Example functional sites
and the regexs used to detect them.

Gly:
P

Table 9.3 Illustration of the effects of
introducing tolerance into regexs, and
of motiflength and database size, on
the number of matches retrieved from
sequence database searches.

residues within alignments that are not family
specific, but are typical of functional sites found
across all protein families. Such sequence features
are believed to be the result of convergence to a com-
mon property: they may denote, for example, lipid or
sugar attachment sites, phosphorylation or hydro-
xylation sites, and so on (see Table 9.2). Because of
their often extremely short length, such residue pat-
terns cannot provide discrimination and can only be
used to suggest whether a certain type of functional
site might exist in a sequence, information which
must ultimately be verified by experiment.

The diagnostic limitations of short motifs are
readily explained — simply, the shorter the motif
(and the greater the size of the database), the greater
the chance of making random matches to it. Con-
sider, for example, the sequence motif Ala-Asn-Asn-
Ala (ANNA). In Swiss-Prot there were 373 exact
matches to this motif (and 2522 matches in its
six-fold larger supplement, TrEMBL), and 5734
exact matches to the shorter form Ala-Asn-Asn
(ANN) — see Table 9.3. Not surprisingly then, each
of the regexs in Table 9.2, which are derived from
real biological examples, has more than 10,000
matches in Swiss-Prot (version 40.26), begging
extreme caution in their interpretation! Thus, short

a0

motifs are diagnostically unreliable (because they
are non-specific), and matches to them, in isolation,
are relatively meaningless. In early versions of
PROSITE, residue patterns for generic functional
sites were termed “rules” to distinguish them from
family-specific regexs, although this helpful distinc-
tion now seems to have been discarded.

9.2.4 Permissive regexs

As already discussed, rules and family-specific
regexs are the basis of PROSITE. The diagnostic
problems outlined above led to the inclusion into
this database of alternative discriminators (profiles)
where regexs failed to provide adequate discrimina-
tion (these are discussed in more detail in Section
9.5). Another response to the strict nature of regex
pattern matching is to build an element of tolerance
or “fuzziness” into the expressions. As we saw in
Chapters 2 and 5, one approach is to consider amino
acid residues as members of groups, as defined by
shared biochemical properties: e.g., FYW are arom-
atic, HKR are basic, ILVM are aliphatic, and so on.
Taking such biochemical properties into account,
the motif depicted in Table 9.1 yields the more per-
missive regex shown in Table 9.4.

Patterns in protein families ® 199

Table 9.4 Permissive regex derived using amino acid property groups.

Ali

It is evident from this example that such regexs
are more relaxed, accepting a wider range of
residues at particular positions. This has the poten-
tial advantage of being able to recognize more dis-
tant relatives, but has the inherent disadvantage
that it will also match many more sequences simply
by chance. For example, let us return to the motif
ANNA, which had 373 exact matches in Swiss-Prot
(Table 9.3). If we introduce one permissive position
(say, the final A may belong to the group AV), then
we find 743 matches; if we extend the group to
include Leu (i.e., AVL), we retrieve 1227 matches;
with two permissive positions, the number increases
to 1684; and with slight variation at all positions,
the number soars to 7936 — searching TrEMBL,
the number of matches exceeds 10,000. Clearly, the
more tolerant each position within a motif with
regard to the types of residue allowed, the more per-
missive the resulting regex; and the larger the
database and shorter the motif (as with regex rules),
the worse the situation becomes.

Because a regex represents the minimum expres-
sion of an aligned motif, sequence information is lost
and parts of it become ill-defined. The more diver-
gent the sequences, the fuzzier the regex, and the
more likely the expression is to make false matches.

200 ® Chapter9

Results of searching with regexs must therefore be
interpreted with care — if a sequence matches an
expression, the match may not be biologically mean-
ingful; conversely, if a sequence fails to match an
expression, it may still be a family member (it may
simply deviate from the regex by a single residue). To
address some of these limitations, more sophistic-
ated approaches have been devised to improve diag-
nostic performance and separate out biologically
meaningful matches from the sea of noise contained
in large databases.

9.3 FINGERPRINTS
9.3.1 Creating fingerprints

Typically, sequence alignments contain not one, but
several conserved regions. Diagnostically, it makes
sense to use as many of these regions as possible to
build a signature for the aligned family, so that, in a
database search, there is a higher chance of identify-
ing a distant relative, whether or not all parts of the
signature are matched.

The first method to exploit this approach was
“fingerprinting” (Attwood, Eliopoulos, and Findlay
1991, Parry-Smith and Attwood 1992, Attwood

Table 9.5 (a) An ungapped motif; and (b) its corresponding frequency matrix (each motif column corresponds to a row in

the matrix).

and Findlay 1993). Here, groups of motifs are ex-
cised from alignments, and the sequence information
they contain is converted into matrices populated
only by the residue frequencies observed at each
position of the motifs, as illustrated in Table 9.5. This
type of scoring system is said to be unweighted,
in the sense that no additional scores (e.g., from
mutation or substitution matrices) are used to
enhance diagnostic performance.

In the example shown in Table 9.5(a), the motif
is 13 residues long and 12 sequences deep. The
maximum score in the resulting frequency matrix
(Table 9.5(b)) is thus 12. Inspection of the matrix

indicates that positions 7, 9, and 12 are completely
conserved, corresponding to Lys, Leu, and Pro
residues, respectively. Any residue not observed in
the motif takes no score — the matrix is thus sparse,
with few positions scoring and most with zero score.

The use of raw residue frequencies is not popular
because their scoring potential is relatively limited
and, for motifs containing small numbers of similar
sequences, the ability to detect distant homologs is
compromised because the matrices do not contain
sufficient variation. In a protein fingerprint, how-
ever, this effect is to some extent offset by the com-
bined use of multiple motifs and iterative database

Patterns in protein families ® 201

searching, which together increase the diagnostic
potential of the final signature.

In practice, then, the motifs are converted to fre-
quency matrices, which are used to scan sequences
in a Swiss-Prot/ TrEMBL composite database using
a sliding-window approach (where the width of the
window is the width of the motif). This is our first
example of a position-specific scoring system in this
chapter. For each window position, an absolute score
is calculated and stored in a hit list, rank-ordered
with the highest score at the top of the list. During
the fingerprint-creation process, in order not to
miss true family members, it is usual to capture the
top 2000 scores, but more may be culled from the
database on request (e.g., if a family contains many
thousands of members — a quick rule of thumb is to
collect approximately three times the number of hits
as there are likely family members).

After the database-scanning and hit-list-creation
processes, a hit-list comparison algorithm is used
to discover which sequences match all the motifs,
in the correct order with appropriate distances
between them. It is unusual to include all 2000 hits
in this process — normally, about 300 are top-sliced
from the lists (but this value can be modified,
depending on family size). Sequences that fulfil the
true-match criteria are then added to the seed
motifs, and the process is repeated until convergence
—i.e., the point at which no further fully matching
sequences are identified between successive data-
base scans. At convergence, the comparison step is
repeated one last time but with substantially fewer
hits (often 100 or less, again depending on family
size) to ensure that no false matches have been
included in the final fingerprint.

9.3.2 The effect of mutation data matrices

As mentioned above, in creating a fingerprint, dis-
criminating power is enhanced by iterative database
scanning. The motifs therefore grow and become
more mature with each database pass, as more
sequences are matched and further residue informa-
tion is included in the matrices — effectively, this
process successively shifts the seed frequencies
toward more representative values as the finger-

202 @ Chapter9

print incorporates additional family members. For
example, after three iterations, the motif shown in
Table 9.5(a) has grown to a depth of 73 sequences;
as seen in Table 9.6(a), at the end of this process,
only position 9 remains conserved, and more vari-
ation is observed in the matrix as a whole. Never-
theless, although clearly more densely populated
than the initial frequency matrix, this matrix is still
relatively sparse: there are still more zero than non-
zero positions. In database searches, therefore, this
matrix will perform cleanly (with little noise) and
with high specificity.

This is to be contrasted with a situation where,
for example, a PAM matrix is used to weight the
scores, in order to allow more distant relationships
to be recognized. The effect of weighting the initial
matrix in this way is illustrated in Table 9.6(b). As
can be seen, the PAM-weighted result, even though
based on the initial sparse matrix, is highly popu-
lated. Consequently, in database searches, such a
matrix will perform with high levels of noise and
relatively low specificity. Thus, a distant relative
may well achieve a higher score, but inevitably so
will random matches, as residues that are not
observed in the initial (or indeed in the final) motifs
are given significant weights. Compare, for example,
the ninth motif position, which even after three
database iterations had remained conserved; in the
PAM-weighted matrix, this position is no longer
completely conserved, four other residues (Phe, Val,
Ile, and Met), which were not observed in 73
true family members, being assigned large posit-
ive scores.

As a result of the poor signal-to-noise per-
formance of weighted matrices, the technique of
fingerprinting that underpins the PRINTS database
has adhered to the use of residue frequencies.
Diagnostic performance is enhanced through the
iterative process, but the full potency of the method
is gained from the mutual context of matching
motif neighbors. This is important, as the method
inherently implies a biological context to motifs that
are matched in the correct order, with appropriate
intervals between them. This allows sequence
identification even when parts of a fingerprint are
absent. For example, a sequence that matches only

Table 9.6 (a) Frequency matrix derived from the initial motif shown in Table 9.5(a) after three database iterations;
and (b) PAM-weighted matrix derived from the same motif.

five of eight motifs may still be diagnosed as a true
match if the motifs are matched in the right order
and the distances between them are consistent with
those expected of true neighboring motifs. Note,
however, that for the purposes of fingerprint cre-
ation, only sequences that match all the motifs are
admitted into the iterative process and hence are
allowed to contribute to the evolving frequency
matrices. Partial matches are nevertheless still

recorded in the database in order to provide as com-
plete a picture as possible of all fingerprint matches
in a given version of Swiss-Prot/ TrEMBL.

9.3.3 Searching with fingerprints
Once stored in PRINTS (Attwood et al. 2003), finger-

prints may be used to diagnose new family members.
At this point, it isimportant to note that the scanning

Patterns in protein families ® 203

(a) PRION_HUMAN vs. PRION

(b) PRION_CHICK vs. PRION

3

3

N

00 SCOre =

o
|_|

q

—

0 253

Residue number

0 273
Residue number

Fig. 9.2 Graphs used to visualize protein fingerprints. The horizontal axis represents the query sequence, the vertical axis the %
score of each motif (0—100 per motif), and each block a residue-by-residue match in the sequence, its leading edge marking the
first position of the match. Solid blocks appearing in a systematic order along the sequence and above the level of noise indicate
matches with the constituent motifs. The graphs depict prion fingerprints of the human prion protein (a) and of its chicken
homolog (b). The human prion protein is clearly a true-positive match, containing all eight motifs; the chicken homolog fails to
make a complete match, but can still be identified as a family member because of the diagnostic framework provided by the five

well-matched motif neighbors.

algorithms used to create fingerprints (Parry-Smith
and Attwood 1992) and to search against them
once deposited in the database (Scordis, Flower, and
Attwood 1999) are rather different. The fingerprint-
creation process is deliberately conservative, exploit-
ing only observed residue frequencies to generate
clean, highly selective discriminators; this is vital, as
inadvertent inclusion of false matches would com-
promise diagnostic performance. Conversely, to
allow a wider diagnostic net to be cast, the finger-
print-search method is more permissive; the onus is
then on the user to determine whether a match is
likely to be true or not. Here, then, the motifs stored
in PRINTS are used to generate (ungapped) profiles,
using BLOSUM matrices to boost the matrix scores.
The rest of the algorithm is much the same as for
fingerprint creation, in so far as motifs are required
to be matched in the correct order with appropriate
distances between them. However, rather than rely
on the rank-ordering of absolute scores in a hit list,

204 ® Chapter9

probability (p) and expect (E) values are calculated
both for individual-motif matches and for multiple-
motif matches, giving an overall estimate of the like-
lihood of having matched a fingerprint by chance
(Scordis, Flower, and Attwood 1999).

Probably the best way of appreciating what it
means to match a fingerprint is to depict the result
graphically, as illustrated in Fig. 9.2. Within the
graphs shown, the horizontal axis represents the
query sequence, the vertical axis the percent score
of each motif (0—100 per motif). Using a sliding-
window approach, for each motif, a window whose
width is the width of the motif is moved one residue
at a time from N to C terminus, and the profile score
calculated for each position. Where a high-scoring
match is made above a predefined threshold
(17-20% identity), a block is drawn whose leading
edge marks the first position of the match. Blocks
appearing in a systematic order along the sequence
and above the level of noise indicate matches with

each of the constituent motifs. In Fig. 9.2, graphs are
plotted for (a) a complete match of the human prion
sequence against the prion fingerprint, and (b) a
partial, but nevertheless true, match of the chicken
prion sequence against the same fingerprint. Here,
we can see that even though parts of the signature
are missing (motifs 2, 7, and 8), the chicken is
related to the human sequence. Inspection of the
human prion database entry reveals that motifs 2—4
reside in the region of the N-terminal octapeptide
repeat. When we compare the chicken sequence,
not surprisingly, we find that it is characterized by
a modified repeat, which explains why a match
to motif 2 is missing, and why the matches to motifs
3 and 4 are relatively weak; the sequence also shows
considerable divergence toward the C terminus,
which is why motifs 7 and 8 are missing. Thus
fingerprints not only allow the diagnosis of true fam-
ily members that match them completely, but also
permit the identification of partially matching relat-
ives, yielding important insights into the differences
between them.

9.4 PROFILES AND PSSMS
9.4.1 Blocks

As we have discussed, the scoring system for match-
ing the motifs of a fingerprint uses unweighted
residue frequencies and, in situations where few
sequences are available, this may compromise diag-
nostic performance. With the signal-to-noise caveats
mentioned in Section 9.3, it is possible to build altern-
ative motif representations by applying different
weighting schemes.

One such approach isembodied in the Blocks data-
base (Henikoff et al. 2000, Henikoff and Henikoff
1994a). Here, conserved motifs, termed blocks, are
located by searching for spaced residue triplets
(e.g., Asn-x-x-Glu-x-x-x-x-x-X-X-Xx-x-x-Glu, where x
represents any amino acid). Any redundant blocks
generated by this process are removed, only the
highest-scoring blocks being retained — block scores
are calculated using the BLOSUM62 substitution
matrix. The validity of blocks found by this method
is confirmed by the application of a second motif-

finding algorithm, which searches for the highest-
scoring set of blocks that occur in the correct order
without overlapping. Blocks found by both methods
are considered reliable and are stored in the database
as ungapped local alignments. These are then calib-
rated against Swiss-Prot to obtain a measure of the
likelihood of a chance match. Two scores are noted
for each block: one denotes the score above which a
match is likely to be significant (the median true-
positive score); the other denotes the score below
which a match is probably spurious (the 99.5th per-
centile of true-negative scores). The ratio of these
calibration scores multiplied by 1000 is referred to
as the block strength, which allows the diagnostic
performance of individual blocks to be meaningfully
compared (Henikoff and Henikoff 1991, 1994b).

A typical block is illustrated in Fig. 9.3. Sequence
segments within the block are clustered to reduce
multiple contributions to residue frequencies from
groups of closely related sequences. This is particu-
larly important for deep motifs (i.e., with contribu-
tions from tens or hundreds of sequences), which
can be dominated by numerous virtually identical
sequences. Each cluster is then treated as a single
segment, each of which is assigned a score that gives
a measure of its relatedness. The higher the weight,
the more dissimilar the segment is from other seg-
ments in the block; the most distant segment is given
aweight of 100.

9.4.2 Searching with blocks

As with fingerprinting, blocks may be used to detect
additional family members in sequence databases.
In a manner reminiscent of fingerprint searches,
blocks are converted to position-specific substitution
matrices, which are used to make independent
database searches. The results are compared and,
where several blocks detect the same sequence, an
E value is calculated for the multiple hit. Clearly, the
more blocks matched, the greater the confidence
that the sequence is a family member. However,
as with all weighting schemes, there is a diagnostic
trade-off between the ability to capture all true
family members with a block or set of blocks, and
the likelihood of making false matches. Unless a

Patterns in protein families ® 205

in Prion; BLUCK

AC IPBOGOBLTA; distance from previous block=(-16,28

DE Prion protein

BL GPG; width=42; segs=920; 99.5%=188B; strength=1666

BRIO CHICK{P2717?7 (29} GKPSGGGWGAGSHRQPSYPRQPGYPHNPGYPHNPGYPHNEGY 36

FRIQ TREIVU]ES1780 (26) KEKPRPGGGWNSGGSNRYPGQPGSPGGNRYDPGWGHPQGGGTN 100

PRIO ACTTR|Pa024% 16} KKRPKPGGWNTGGSRYPGQSSPGGNRYPPQSGGWGRPHGGGW 8

CRIO_ATEPA | P51446 21} KKRPKPGGWNTGGSRYPGQGSPGGNRYPPQUGGWGOPHGGGH &

PRIQ B 26) KRPKPGGGWNTGGSRYPGQGSPGGNRYFPPQGGGGWGQPHGGS 4

PRI 21) KKRPKPGGWNTGGSRYPGQGSPGGNRY PPQGGGWGQPHGGGW 6
26) KRPKPGGGWNTGGSRYPGOGSPGONRY PPQGGCGHWGQPHGGS 4

402851
360506
AIOL18754

ERid COLGU
ERIC CRIGR
PRIC T

26)
26}
23}
28}
23)
23)
286)

KRPKPGGGWNTGGSRY PGQGSPGGNRY P PQGGEGHGQPHGGG
KRPKPGGGWNTGGSRY PGOGS PGONRY PPQGGCGHGQPHGGG
KKRPKPGGWNTGGSRY PGQGSPGGNLY PPQGGGWEOPHGGEGW
KRPKPGGGWNTGGSRY PGRGSPGGNRY PPQGGGGWGQPHCGS
KKRPKPGGWNTGGSRY PGDGSPGENRY PPQGGGGWGQPHGGS
KKRPKPGGWNTGGSRYPGQGSPGGNRY PPQGCGTWGQPHGGS
KRPKPGGGWNTGGSRY PGQGSPGGHRY PPQGGCGWGRPHGGSE

PR[Q DRG0 P4an252 23) KERPKPGGWNTGGSRYPGQGSPGGNRY PPQGCGGWGEOPHGGG
PRIO HUMAN| PQ4156 23] KKRPKPGGWNTGGSRYPGQCSPGONRY PPOGGGGWEQPHGGG

PRIO MACFA!PA0254
PRIO MANSPIPAG2ES
£04271

23]
16]

KKRPKPCGGWNTGGSR Y PGQGSPGGNRY PPQLGGGWGOPHGGG
KKRPKPCGWNTGGERYPGOGSPGGNRY PPQGGGEWEQPHGGS

ER (O MESAU 23} KKRPKPUGWNTGGSRYPGOGSPGGNRYPPQGGGTHGQPHGGEG
PRIO MOUSE | PO4525 23} KKRPKPCGWNTGGSRYPGQGSPGGNRY P PQGGTWGOPHGGGHW
PRIO MUSPF | P52114 26) KRPXPGGGWNTGGSRY PGQGSBGGNRYEPOGGGGHGQPHGES
PRIO ODROHE| #7852 26) KRPKPGGGWNTGGSRY PGQGSPGGNRYPPQGGGGHGYPHGEG

PRI PANTR

240253

PRID_ATEOS!Fa024f
7 o B
9

PRIO_CRIMIQ4(
PRIO_MUSVI |24

iy

23
26}
21)
23)
24)
23}
23)
26)
23)
16}
25)
25)
26)

18]
186)
234
161
16}
18]
161
23}
26)

KKRPKPGGWNTGGSRY PGQGSPGGNRY P PQGGGGWGQPHGEG
KRPKPGGGWNTGGSRY PGQGSPFGGNRY PPQGGGGHGRPHGEG
KKRPKPGCWNTGGSRY PGQGSPGGNRY PPQGGGGHGQ PHGGG
KKRPKPGGWNTGGSRY PGRGSPGGNRY PPQGGGGWGQPHGGE
KRPKPGGGWNTGGSRY PGQSSPGGNRY PPQGGGWGOPHGGGW
KKRPKPGGWNTGGSRY PGQGSPGENRYPPQSGGTWGQPHGGG
KKRPKPGGWNTGGSRY PGOGSPGGNRY PPQGGGWGQPHGGGH
KRPKPGGGWNTGGSRY PGOGSPCONRY PPOGGGCOWGQ PHGGG
KKRPKPGGWNTGGSRY PCQGNPGONRYPPOGGGTWGQPHGGS
KERPKPGGWNTGGSRY PGQGSPGGNRYPPQGCGCWGQPHGGE
KRPKPGGGWNTGGSRYPGQGSPGGNRY PSQGEGEWGQPHGGE
KRPKPGGGWNTGGSRY PGQGSPGGNRY P BQGEGGWEQPHGGE
KRPKPGGGWNTGGSRY PGQCSPCGNRY PPQEGGDWGQPHGGE

KKRPKPGGWNTGGSRY PGQGSPGGNRY PPQGGGWG PHOGGW
KKRPKPGGWNTGGSRY PGQGSPGGNRY PPQGGGSWGQPHGGS
KKRPXPGGWNTGGSRY PGOGSPGGNRY PPQGGGGWGQPHGGG
KKRPKPGGWNTGGSRY PGQGSPGGNRY P PQGGGOWGQPHGGG
KKRPKPGGWNTGGESRY PGRQGSPGGNR Y P PQGGGOWGQPHGGG
KKRPKPGGWNTGGSRY PGQGSPOGNRY P POGGGGOWGQPHGGG
KKRPKPGGHNTGGSRY PGQGSPGGNRY PPOGGGGHGQPHGCG
KXRPKPCGWNTGGSRYPGQGSPGGNRY PPOGGGTWGQPHGGG
KRPKPGGGWNTGGSRY PGQGSPGGNR Y PPQGGGGHGQPHGGE

R N - N Y . L R

-

PRSP Y

Fig. 9.3 Block for the prion protein
family, in which sequence segments are
clustered and weighted according to
their relatedness — the most distant
sequence within the block scores 100
(for convenience, part of the block has
been deleted, asdenoted by . . .).

family is characterized by only one block, individual
block matches are not usually biologically signific-
ant; multiple-block matches are much more likely to
be real, provided the blocks are matched in the cor-
rect order and have appropriate distances between
them.

The information content of blocks can be visual-
ized by examination of their so-called sequence logos
(Plate 9.1(a)). A logo is a graphical display of an
aligned motif, consisting of color-coded stacks of let-
ters representing the amino acid residues at each
position in the motif. Letter height increases with

206 © Chapter9

increasing frequency of the residue, such that the
most conserved positions have the tallest letters.
Within stacks, the most frequently occurring re-
sidues also occupy the highest positions, so that the
most prominent residue, at the top of the stack,
is the one most likely to occur at that position. To
reduce bias resulting from sequence redundancy
within blocks, weights are calculated using a PSSM.
This reduces the tendency for over-represented
sequences to dominate stacks, and increases the
representation of rare amino acid residues relative
to common ones. The logo calculated for the prion

block depicted in Fig. 9.3 is illustrated in Plate
9.1(a). The highly conserved anchor triplet, GPG, is
clearly visible toward the center of the logo.

9.4.3 Profiles

By contrast with motif-based pattern-recognition
techniques, an alternative approach is to distil the
sequence information within complete alignments
into scoring tables, or profiles (Gribskov, McLachlan,
and Eisenberg 1987, Bucher and Bairoch 1994).
A profile can be thought of as an alternating sequ-

ence of “match” and “insert” positions that contain
scores reflecting the degree of conservation at each
alignment position. The scoring system is intricate:
as well as evolutionary weights (e.g., PAM scores), it
includes variable penalties to weight against inser-
tions and deletions occurring within core secondary
structure elements; match, insertion, and deletion
extension penalties; and state transition scores.

Part of a typical profile is illustrated in Fig. 9.4.
Position-specific scores for insert and match states
are contained in /I and /M fields respectively. These
take the form:

Fig. 9.4 Example PROSITE profile,
showing position-specific scores for
insert and match positions. Penalties
within insert positions are highlighted
bold: here, the values are more tolerant
of indels by comparison with the large
overall penalties set by the DEFAULT
parameter line.

/DEFAULT: MI=a-26;
: SYs'F';M=-2,-3,-2,-4,2,-3,-2,1,-2,0,-1,-2,-3,-3,-4,-2,-1,0,-5,2;

I=-3; IMagd; MD=-26; D=-3; DM=0;

: 5¥='[';M=-1,~5,-2,-3,-2,-3,¢,1,1,-1,1,-%,-2,-1,1,-1,0,1,-4,-4;
: S5Ya'A
: 5Y="'L';M=-3,-8,-5,-4,2,-6,-2,2,-4,6,4,-3,-3,-2 -

';M=22,-3,1,0,-5,2,-2,-1,-1,-3,-2,1,1,0,-2,2,2,0,-8,-5;

-3,-2,1,-3,0;

: 5Ya'Y! ;M=-4 -2 -6,-6,9,-7,0,-%,-5,-1,-3,-3,-6,-5%,-6,-4,-4,-4,-1,11;

: 5¥='D';m=1,-6,3,3,-7,0,0,-2,-1,-4,-3,2,0,1,-2,0,0,-2,-9,-6;

- 8¥='Y';Ma-5,-3,-6,-6,10,-7,-1,-1,-2,-1,-2,-3,-6,-5,-5,-4,-4,-4,-1,11;
: 8¥=2'K';M=-1,-6,1,1,-4,-2,0,-2,2,-3,-1,1,-1,1,1,0,0,-3,-7,-6;

. &Y='A' ;/M=1,-4,1,0,-5,1,-1,-1,0,-3,-1,1,0,0,0,1,1,-1,-7,-6;

: 8¥='R';M=0,-%,0,0,-5,-1,0,-1,1,-3,-1,1,0,1,1,0,0,-2,-5,-5;

: SY=2'R' ;Mm0,-5,1,1,-6,0,1,-2,1,-4,-2,1,0,1,2,1,0,-2,-5,-5;

: SYs'E';Mmsl,-6,2,2,-56,0,0,-2,-1,-4,-2,1,1,1,-1,0,0,-3,-8,-§;

: SY='D' MaG, -6,2,2,-6,0,1,-3.0,-5,-3,2,-1,2,-1,0,0,-4,-7,-4;

: 5Ya'D';Ma0,-8,4,3,-6,0,40,-2,-1,-3,-2,2,-2,2,-2,0,-1,-3,-9,-5;

: 5Y='L';Mm-2,-8,-5,-5,2,-5,-3,3,-4,7,5,-4,-3,-3,-4,-3,-2,3,-4,-2;
: 5Ya'S';Mal,-4,1,1,-5,1,0,-2,1,-4,-2,1,0,0,0,1,2,-2,-6,-5;
: S5Y='F';M=-3,-7,-6,-6,6,-5,-3,3,-2,5,3,-4,-5,-4,-5,-4,-3,1,-3,3;

: SYy='Qy' ;M=-1,-56,0,0,-3,-2,1,-1,1,-2,0,0,-1,1,1,-1,0,-1,
: SY=a'¥' ;M=-1,-8,0,1,-3,-2,0,-2,3,-3,0,1,0,2,2,0,0,-3,-6

6,-4;

: SY='Gf;M=2,-5,1,0,-7,7,-3,-4,-2,-6,-4,1,-1,-2,-4,2,0,-2,-10,-8;
: §Y='D';M=1,-7,5,4,-8,1,1,-3,0,-5,-3,2,-1,2,-2,0,0,-4,-10,-58;

: SY='I';M=0,-5,-1,-2,-2,-2,-1,2,0,0,1,-1,-2,¢0,0,-1,0,2,-6,~5;

: S¥Ya'l';M=-2,-6,-5,.-5,3,-5,-3,4,-3,6,4,-4,-4,-3,-4,-3,-2,3,-5,0;
: SYs'Q';Ma-1,-5%,-1,.-1,-3,-2,0,0,0,-2,-1,02,-1,0,0,-1,0,-1,-%8,-3;
: SYa'V!:Mal,-4,-3,-4,-1,-3,-3,5,-3,3,3,-2,-2,-2,-3,-2,0,5,-8,-4;

: 8Y='D';M=0,-6,3,3,-6,0,1,-3,2,-5,-2,2,-1,2,1,0,0,-4
» 8¥='K' ;M=»-1,-6,0,0,-2,-1,0,-3,3,-4,-1,1,-1,0,1,0,0

y

: SY=a'G';Mal,-5,8,0,-5,1,-2,-1,

sSY=a'L' ;Ma-1,-6,-3,-3,-1,-3,-2,2,-3,3,2,-2,-2,-2,-3,-2,-1,2,-5,-3,

L
SY¥='N';M=1,-4,1,1,-5,0,0,-2,0,-3,-2,1,1,0,-1,1,1,-1,-7,-5;

I: MI=0; I=-1; MD=0; fM: SY='X'; M=D; Da-1l;
,-3,-2,0,0,-1,-2,8,0,-1,-8,-&;

: BY='G';M=l,-6,3,2,-7,3,0,-4,-1,-5,-4,2,-1,1,-2,1,0,-3,-10,-4;
: §Y='W';M=-9,-12,-9,-11,1,-1%,-4,-8,-5,-3,-6,-6,-8,-7.3,-4,-8,-9,26,0;

SYa'W' ;M=-7,-9,-9,-5,0,-9,-4,-5,-5,-1,-4,-6,-7,-6,2,-3,.-6,-6,18,-1;

: §¥='K';M=-1,-7,0,0,-3,-2,0,-2,2,-3,-1,1,-1,1,2,0,-1,-3,-5,-5;
: SYa'G';M=2,-3,0,-1,-6,2,-3,-2,-3,-4,-3,0,0,-2,-3,1,0,0,-10,-6;

Y

5¥='Q*;M=-2,-5,0,0,-3,-3,1,-2,0,-2,-1,0,-2,1,1,-1,-1,-3,-5,-3;
I: MI=D; I=-2; MD=0; /M: S¥='X'; M=0Q; Da-2;

: §Y='T';M=0,-4,-1,-1,-4,0,-2,0,-1,-2,0,0,-1,~-1,-1,0,1,0,-7,-5;

: S5Y=a'T";M=0,-%,0,0,-3,-2,-1,-1,1,-3,-1,1,-1,0,0,1,1,-1,-6,-4;

: 8Y=a'G';M=0,-5,0,-1,-5,3,-2,-3,-1,-5,-3,0,-1,-1,-1,1,0,-2,-7,-6;
: 8¥='K';M=0,-6,1,1,-5,-1,1,~-2,2,-4,-1,1,-1,2,2,0,0,-3,-6,-6;
: 5Y='R';M=-1,-6,-1,-1,-5,-3,1,-1,1,-3,-1,0,-1,1,3,-1,-1,-2,-2,-6;

: §Y=a'G';M=},-5,0,0,-6,6,-3,-3,-3,-5,-4,0,-1,-2,-4,1,0,-2,-10,-§;

: SY=a'W' :Ma-5,-5 -5, -5,2,-6,-2,-2,-4,-1,-3,-3,-6,-5,-3,-3,-4,-4,4,3;
: 5¥a'F' ;M=-3,-5,-6,-6,6,-5,-3,4,-1,3,2,-4,-4,-5,-4,-3,-2,2,-4,73;

: 8§Y='p';M22,-4,-1,-1,-7,-1,0,-3,-2,-4,-3,-1,8,0,0,1,0,-2,-8,-7;

: 8Y='G';M=1,-3,0,0,-4,2,-1,-2,0,-3,-2,0,0,-1,-1,1,1,-1,-6,-5;

¢ §¥='N';M=1,-5,2,1,-5,0,1,-2,1,-4,-2,2,0,0,0,1,1,-2,-7,-4;

: SYm'Y!;

' i

¥=-%,-1,-7,-7,10,-8,-1,-1,-5,-1,-3,-3,-7,-6,-6,-4,-4,-5,0,13;

; 8Ya'V';M=0,-3,-3,-5,-2,-2,-3,5,-3,2,2,-2,-2,-3,-4,-1,0,5,-8,-5§;
: SY«'E";M=1,-6,2,3,-6,0.0.-2,1,-4,-2,1,0,2,0,0,0,-3,-8,-6;

SY='P';M=0,-5.-1,-1,-2,-2,-:,-2,-1,-3,-2,0,1,-1,-2,0,-1,-2,-6,-3;

Patterns in protein families ® 207

/I: [SY=charl; parameters;]
/M: [SY=char2; parameters;]

where charil is a symbol that represents an insert
position in the parent alignment; char2 is a symbol
that represents a match position in the parent align-
ment; and parameters is a list of specifications
assigning values to various position-specific scores
(these include initiation and termination scores,
state transition scores, insertion/match/deletion
extension scores, and so on).

In the example shown in Fig. 9.4, the sequence
can be read off from the successive /M positions: F-I-
A-L-Y-D, etc. It is evident that the profile contains
three conserved blocks separated by two gapped
regions. Within the conserved blocks, small inser-
tions and deletions are not totally forbidden, but are
strongly impeded by large gap penalties defined in
the pEFAULT data block: MT=-26, T=-3, MD=-26,
D=-3 (MI is a match-insert transition score, I is an
insert extension score, MD is a match-delete transi-
tion score, and Dis a deletion extension score). These
penalties are superseded by more permissive values
in the two gapped regions (e.g., in the first of these,
MI=0, I=-1, MD=0,etc.).

The inherent complexity of profiles renders them
highly potent discriminators. They are therefore
used to complement some of the poorer regexs in
PROSITE, and/or to provide a diagnostic alternative
where extreme sequence divergence renders the use
of regexs inappropriate. Before finishing this section
on profile methods, we note that PSI-BLAST, which
we already discussed in Chapter 7, can also be
classed as a profile method, as it builds up a PSSM
based on the first BLAST search, and uses this to per-
form further searches.

9.5 BIOLOGICAL APPLICATIONS - G
PROTEIN-COUPLED RECEPTORS

9.5.1 What are G protein-coupled receptors?

The best way to try to understand the range of
pattern-recognition methods described in this chap-
ter is to consider how they have been applied to
real biological examples. To this end, the following

208 ® Chapter9

sections concern the analysis of G protein-coupled
receptors, comparing and contrasting the results of
using pairwise and family-based search tools, and
examining the biological insights that each of these
approaches affords.

G protein-coupled receptors (GPCRs) constitute
a large, functionally diverse and evolutionarily tri-
umphant group of cell-surface proteins (Teller et al.
2001). They are involved in an incredible range of
physiological processes, adapting a common struc-
tural framework to mediate, for example, vision,
olfaction, chemotaxis, stimulation and regulation of
mitosis, and the opportunistic entry of viruses into
cells (Lefkowitz 2000, Hall, Premont, and Lefkowitz
1999). This functional diversity is achieved via
interactions with a wide variety of ligands (including
peptides, glycoproteins, small molecule messenger
molecules (such as adrenaline), and vitamin derivat-
ives (such as retinal)), the effects of which stimulate
a range of intracellular pathways through coupling
to different guanine nucleotide-binding (G) proteins.

9.5.2 Where did GPCRs come from?

How did this extraordinary functional versatility
arise? The GPCRs we see in modern organisms are
part of a vast multi-gene family, which is thought
to have diverged from an ancient ancestral mem-
brane protein. Details of the origins of GPCRs are
still contentious, but clues are perhaps to be found
in the bacterial opsins. The bacterial opsins are reti-
nal-binding proteins that provide light-dependent
ion transport and sensory functions to a family of
halophilic bacteria. They are integral membrane
proteins that contain seven transmembrane (TM)
domains, the last of which contains the chromophore
attachment point. There are several classes of this
bacterial protein, including bacteriorhodopsin and
archaerhodopsin, which are light-driven proton
pumps; halorhodopsin, a light-driven chloride pump;
and sensory rhodopsin, which mediates both photo-
attractant (in the red) and photophobic (in the UV)
responses.

From an evolutionary perspective, two features of
bacterial opsins are particularly interesting. First, the
protein has a 7TM architecture (bacteriorhodopsin

was the first membrane protein whose structure was
determined at atomic resolution (Henderson et al.
1990, Pebay-Peyroula et al. 1997)); second, its
response to light is mediated by retinal (a vitamin A
derivative), which is bound to the protein via a
lysine residue in the seventh TM domain. There are
striking parallels here with the protein rhodopsin, a
GPCR that plays a central role in light reception in
higher organisms. For a long time, the architecture
of rhodopsin was believed to be like that of bacterio-
rhodopsin, with 7TM helices snaking back and forth
across the membrane (NB, GPCRs are sometimes
referred to as “serpentine” receptors). Indeed, so
great was the confidence in their structural similar-
ity that almost all of the early models of the structure
of rhodopsin were based on the bacteriorhodopsin
template. The crystal structure of bovine rhodopsin
was solved relatively recently (Palczewski et al. 2000),
and confirmed both the 7TM architecture and the
location of its bound chromophore, retinal, which is
attached via a Schiff 's base to a lysine residue in the
seventh TM domain.

In spite of these striking similarities, however,
there are also significant differences. First, bacterio-
rhodopsin does not couple to G proteins. Second,
there is no significant sequence similarity between
rhodopsin and bacteriorhodopsin, beyond the gen-
eral hydrophobic nature of the TM domains and the
retinal-attachment site. Third, the rhodopsin cry-
stal structure highlighted important differences in
the packing of its helices relative to that seen in
bacteriorhodopsin, rendering many of the early
homology models virtually worthless. In light of the
obvious similarities and differences between them,
it therefore remains unclear whether the 7TM
architecture was recruited by the GPCRs from the
bacterial opsins and adapted to fulfil many different
functional roles, or whether nature invented the
7TM framework more than once to confer transport
and sensory functions on its host cells — without
significant sequence similarity, we can neither con-
firm homology nor rule out analogy. Consequently,
the optimistic researchers who modeled rhodopsin
by homology with bacteriorhodopsin learned some
painful lessons about the dangers of overinterpret-
ing data and about the importance of understanding

the evolutionary origins of the molecules we are
investigating.

9.5.3 GPCR orthologs and paralogs

If the ancient origins of GPCRs are unclear, their
more recent history is somewhat better understood
(partly because many GPCRs share a high degree of
sequence similarity and partly because, today, we
have an abundance of sequence information on
which to perform comparative or phylogenetic ana-
lyses). GPCRs have successfully propagated through-
out the course of evolution both by speciation events
(orthology) and via gene-duplication events within
the same organism (paralogy). It is beyond the scope
of this chapter to provide a detailed discussion of all
GPCRs, but we will focus for a moment on one of the
families in order to highlight the challenges that
biology presents to the bioinformatician. We will do
this by taking a closer look at rhodopsin, because it
was one of the first GPCRs to be studied in detail and
the largest GPCR superfamily is named after it — the
rhodopsin-like GPCRs.

As already mentioned, rhodopsin is a light recep-
tor. It resides in the disk membranes of retinal rod
cells and functions optimally in dim light. Animals
that depend on good night vision (cats, for example,
which hunt by night) have large numbers of
rhodopsin-harboring rods in their retinas. By con-
trast, the visual machinery of some animals is optim-
ized for bright light; the retinas of these animals
are packed with greater numbers of cone cells —
these contain the blue-, red-, and green-pigment
proteins termed opsins. Opsins and rhodopsins share
~40% sequence identity and are believed to have
evolved from an ancestral visual pigment via a series
of gene-duplication events. The duplication that
gave rise to the distinct red- and green-sensitive pig-
ment genes is considered to be relatively recent
because the DNA sequences of the red and green
genes share ~98% sequence identity, suggesting
that there has been little time for change. This obser-
vation finds support in comparisons of the distribu-
tion of visual genes in new- and old-world monkeys:
new-world monkeys have only a single visual-
pigment gene on the X chromosome; by contrast,

Patterns in protein families ® 209

old-world monkeys have two X-chromosome visual
pigment genes (similarly, in humans, the red- and
green-sensitive genes lie on the X chromosome).
Thus, the addition of the second X-chromosome
gene must have occurred some time after the separa-
tion of the new and old world monkeys, around 40
million years ago (Nathans 1989).

The location of the red- and green-pigment genes
on the X chromosome has long been known to
underpin red—green color blindness. Males will have
variant red—green discrimination if their single X
chromosome carries the trait; females will be
affected only if they receive a variant X chromosome
from both parents. In fact, males normally have
a single copy of the red-pigment gene but one, two,
or three copies of the green-pigment gene. Different
types of abnormal red—green color discrimination
then arise from genetic exchanges that result in
the loss of a pigment gene or the creation of part-
red/part-green hybrid genes (Nathans 1989).

So, torecap, an ancestral visual pigment has given
rise to the rhodopsin family. In vertebrates, the
family includes an achromatic receptor (rhodopsin)
and four chromatic paralogs (the purple, blue, red,
and green opsins). In humans, the gene for the green
receptor may occur in different copy numbers —
distorted color perception occurs when the numbers
and types of these genes present in an individual are
aberrant. The opsins and rhodopsin share a high
degree of sequence similarity, with greatest similar-
ity between the red and green pigment proteins; and
the proteins are also highly similar to orthologs in
different species. If we are interested in sequence
analysis, this seems like a fairly straightforward scen-
ario. However, the family holds further layers of
complexity and its analysis requires careful thought.
Although, as we might expect, most rhodopsins
have a typical “rhodopsin-like” sequence and most
opsins have typical “pigment-like” sequences, there
are exceptions — thus, for example, green opsins of
the goldfish, chicken, and blind cave fish more
closely resemble the canonical rhodopsin sequence
than they do other green sequences. Likewise, blue
opsins of the gecko and green chameleon are more
similar to rhodopsin sequences than to other blue
sequences. These unusual sequence relationships

210 @ Chapter9

are illustrated in Plate 9.1(b) and (c). Unraveling
this kind of relationship, where a protein with
particular biological attributes has the “wrong”
sequence, using naive search tools can therefore
lead to erroneous conclusions. Nevertheless, it is
precisely this kind of anomaly that helps to shed
light on the evolutionary ancestry of protein fam-
ilies: in this example, the results suggest, perhaps
surprisingly, that the gene for achromatic (scotopic)
vision (rhodopsin) evolved out of those for color
(photopic) vision (opsins) (Okano etal. 1992).

9.5.4 Why GPCRs are interesting and how
bioinformatics can help to study them

As we have seen, the long evolutionary history of
GPCRs has generated considerable complexity for
just one of its gene families. Now consider that there
are over 800 GPCR genes in the human genome.
These fall into three major superfamilies (termed
rhodopsin-, secretin-, and metabotropic glutamate
receptor-like), which are populated by more than
50 families and 350 receptor subtypes (Takeda et al.
2002, Foord 2002, Attwood 2001); members of the
different superfamilies share almost no recognizable
sequence similarity, but are united by the familiar
7TM architecture. The receptors are activated by
different ligands, some of which are bound in the
external loop regions, others being bound within the
TM scaffold — the opsins are unusual in being
covalently attached to their retinal chromophore.
The activated receptors then interact with different
G proteins or other intracellular molecules to effect
their diverse biological responses. The extent of the
family, the richness of their evolutionary relation-
ships, and the complexity of their interactions with
other molecules are not only challenging to under-
stand, but are also very difficult to analyze computa-
tionally. If we wish to derive deeper insights into the
ways in which genomes encode biological functions,
our traditional pairwise similarity search tools are
likely to be limited. These tools have been the main-
stays of genome annotation endeavors because they
reduce a complex problem to a more tractable one —
that of identifying and quantifying relationships
between sequences. But identifying relationships

between sequences is clearly not the same as identi-
fying their functions, and failure to appreciate this
fundamental point has generated numerous anno-
tation errors in our databases.

Interest in GPCRs reaches beyond mere academic
intrigue and the desire to place them into func-
tionally related families. The receptors are also of
profound medical importance, being involved in
several major pathophysiological conditions, includ-
ing cardiovascular disease, cancer, and pathological
irregularities in body weight homeostasis. The
pivotal role of GPCRs in regulating crucial cellular
processes, and the diseases that arise when these
processes go wrong, has placed them firmly in the
pharmaceutical spotlight, to such an extent that,
today, they are the targets of the majority of pre-
scription drugs: more than 50% of marketed drugs
act at GPCRs (including a quarter of the 100 top-
selling drugs), yielding sales in excess of US$16
billion per annum (Flower 1999). GPCRs are there-
fore “big business”.

Nevertheless, there is still only one crystal struc-
ture available to date (their membranous location
renders GPCRs largely intractable to conventional
crystallographic techniques). Moreover, the huge
numbers of receptors have defied our ability to
characterize them all experimentally. Consequently,
many remain “orphans”, with unknown ligand spe-
cificity. In the absence of experimental data, bioin-
formatics approaches are therefore often used to help
identify, characterize, and model novel receptors
(Gaulton and Attwood 2003, Attwood and Flower
2002): e.g., if a receptor is found to share significant
sequence similarity with one of known function, it
may be possible to extrapolate certain functional and
structural characteristics to the uncharacterized
protein. Bioinformatics approaches are therefore
important in the ongoing analysis of GPCRs, offering
complementary tools with which to shed light on the
structures and functions of novel receptors, and the
hope of discovering new drug targets.

9.5.5 Detecting sequence similarity

We have already seen in Chapter 7 that the fastest
and most frequently used method for identifying sets

of sequences related to a query is to search sequence
databases using pairwise alignment tools such as
BLAST and FASTA (Altschul, Gish, and Miller 1990,
Altschul et al. 1997, Pearson and Lipman 1988,
Pearson 2000). Several novel GPCRs have been
identified in this way as a result of their similarity to
known receptors (Takeda et al. 2002, Lee et al. 2001,
Radford, Davies, and Dow 2002, Hewes and Taghert
2001, Zozulya, Echeverri, and Nguyen 2001).

However, pairwise alignment/search tools have
various inherent problems, not least that different
programs often return different results (to be rigor-
ous, BLAST and FASTA should be used together, as
they give different perspectives on the same query,
often yielding different top hits). These programs are
consequently limited when it comes to the more
exacting tasks of identifying the precise families to
which receptors belong and the ligands they bind.
The problem is, it is difficult to determine at what
level of sequence identity ligand specificity will be
conserved: some GPCRs, with as little as 25% ident-
ity, share a common ligand (e.g., the histamine
receptors); others, with greater levels of identity, do
not (e.g., receptors for melanocortin, lysophosphat-
idic acid, and sphingosine 1-phosphate). Thus, it is
often impossible to tell from a BLAST result whether
an orphan receptor is likely to be a member of a
known family, to which it is a top hit, or whether it
will bind a novel ligand. Consider, for example, the
recently de-orphaned urotensin II receptor: BLAST
indicates that it is most similar to the type 4 somato-
statin receptors, yet it is now known to bind a dif-
ferent (though related) ligand (Fig. 9.5). Thus, it
is clearly a dangerous (though all too common)
assumption that the top most statistically significant
hit is also the most biologically relevant.

9.5.6 Diagnosing family membership

Earlier in this chapter, we discussed how search
methods based on alignments of protein families
have evolved to address some of the problems of
pairwise approaches, and these have given rise to a
range of family databases, as outlined in Chapter 5.
The principle underlying such methods is that
by aligning representative family members, it is

Patterns in protein families ® 211

Query length: 385 AA

Date run: 2002-10-18 ¢5:08:29 UTC+0100 on sib-blast.unil.ch

Taxon: Homo sapiens
Database: XXswissprot

120,412 seguences; 45,523,583 total letters
SWISS-PROT Release 40.29% of 10-0ct-2002

Db AC Descripticn Score E-value
sp Q9UKPE UR2R_HUMAN Urotensin II receptor (UR-II-R) [GPRl4] [Ho... 782 0.0
sp P31391 S5R4_HUMAN Somatostatin receptor type 4 (§54R) [SSTR4l... 157 3e-41
sp 043603 GALS_HUMAN Galanin receptor type 2 (GAL2-R) (GALR2} [G... 147 4e-35
sp B30872 SSR1_HUMAN Scmatostatin receptor type 1 {SS1R) (SRIF-2... 144 3e-34
sp P32745 SSR3_HUMAN Scmatostatin receptor type 3 (SS3R) (SSR-28... 140 3e-33
sp P35346 S5R5_HUMAN Somatostatin receptor type 3 (SS5R) (SSTRS}... 140 ge-33
sp_vs P20874-01 SPLICE ISOFORM B of P30874 [SSTR2] [(Homo saplens... 134 3e-31
sp P30874 SSR2_HUMAN Somatostatin receptor type 2 (SS2R) (SRIF-1... 134 3e-31
sSp P48145 GPR7 HUMAN Neuropeptides B/W receptor type 1 (G protei... 133 7e-31
sp 060755 GALT_HUMAN Galanin receptor type 3 (GAL3-R) (GALR3} [G... 132 2e-30
sp P41143 OPRD HUMAN Delta-type opioid receptor (DOR-1) [(OPRDl] ... 128 2e-29
sp_vs P35372-01 SPLICE ISOFORM 1A of P35372 [OPRM1] [Howmo sapien. .. 125 1le-28
sp P35372 OPRM_HUMAN Mu-type opioid receptor (MOR-1) [OPRM1} (Ho... 125 le-28

Fig. 9.5 BLAST output from a search of Swiss-Prot (release 40.29) with the human urotensin II receptor sequence
(UR2R_HUMAN, Q9UKP6). Note, there is no clear cut-off between the urotensin, somatostatin, and galanin receptor matches.

possible to identify conserved regions (whether short
“motifs” or complete domains) that are likely to have
critical structural or functional roles. These regions
may then be used to build diagnostic signatures,
with enhanced selectivity and sensitivity, allowing
new family members to be detected more reliably.

As we have seen, the family-based approaches
differ both in terms of the extent of the alignment
they use and in the methods used to encode con-
served regions (recall Fig. 5.6). The main techniques
use: (i) single conserved regions encoded as regexs
(as in PROSITE (Falquet et al. 2002) and eMOTIF
(Huang and Brutlag 2001)); (ii) multiple motifs
encoded as fingerprints (as in PRINTS (Attwood et al.
2003)) or sets of blocks (in Blocks (Henikoff et al.
2000)); or (iii) complete domains encoded as profiles
(Gribskov et al. 1987, Bucher and Bairoch 1994)
(as in PROSITE (Falquet et al. 2002)) or HMMs
(Krogh et al. 1994, Eddy 1998) (as in Pfam
(Bateman et al. 2002)).

These different approaches have different diag-
nostic strengths and weaknesses, which must be
understood when applying them. For example,
regexs have to be matched exactly, which often

212 @ Chapter9

leads to high error rates: many true relationships are
missed because sequences deviate slightly from the
expression, and many false matches are made
because the patterns are short and non-selective.
With fingerprints, although individual motifs may
be relatively short, greater selectivity is achieved by
exploiting the mutual context of motif neighbors
— false-positive matches can then be more easily dis-
tinguished from true family members, as they usu-
ally fail to match most of the motifs within a given
fingerprint. However, as no weighting scheme is
used to derive fingerprints, those that encode super-
families may be too selective and consequently may
miss true family members. By contrast, the scoring
methods used in the derivation of Blocks exploit
weighted PSSMs, rather than the frequency mat-
rices typical of fingerprinting — this may have the
effect not only of boosting weak biological signals,
but also of upweighting spurious matches. More-
over, blocks are automatically derived and their
numbers and diagnostic potential often differ from
equivalent fingerprints, often causing confusion
among users. On the other hand, both profiles and
HMMs perform well in the diagnosis of distant family

members of large divergent superfamilies but, unlike
fingerprints, rarely offer the means to diagnose sequ-
ences at the level of families or subfamilies (they may
also be prone to profile dilution if they have been
derived by purely automatic means).

To simplify sequence analysis, many of these data-
bases have been integrated into InterPro (Mulder
et al. 2003), which amalgamates their family
documentation into a coherent whole, and allows
multiple repositories to be searched simultaneously.
In the following section, we will consider how
InterPro and its constituent databases can be used to
shed light on features of GPCR sequences. In particu-
lar, we draw attention to the different perspectives
offered by their search tools, and discuss the import-
ance this is likely to have when diagnosing novel
sequences and attempting to make predictions
about likely ligand specificity or G protein coupling.

9.5.7 Analysis of GPCRs

The databases described above all provide signat-
ures for GPCRs. PROSITE contains regexs for the
three major superfamilies. The expressions are relat-
ively short, and cover N-terminal regions or parts of
the TM domains. The database also contains a single
family-level expression, for the opsins. The error rate
associated with these signatures is high. The expres-
sion-encoding TM domain 3 of the rhodopsin-like
superfamily, for example, fails to detect more than
100 known superfamily members, including the
human P2Y6, UDP-glucose, NPY5, and PAR2
receptors. These sequences are annotated as false-
negatives, but many additional sequences, such as
the KiSS-1 receptor and the orphan SALPR (somato-
statin and angiotensin-like peptide receptor), fail to
match and are not recorded in the documentation.
The actual error rate is therefore considerably higher
than it first appears (Gaulton and Attwood 2003).
PROSITE also contains profiles encoding the 7TM
regions of each of the GPCR superfamilies; these
perform better, with few or no false-positives and
false-negatives recorded. Similarly, Pfam contains
7TM-encoding HMMs for each of the superfamilies,
which perform well and detect distant family mem-
bers missed by regexs. Both databases also provide

discriminators for the N-terminal domain of the
secretin receptor-like superfamily.

These signatures are useful diagnostic tools that
can help to identify putative GPCRs, and many have
been used to search recently sequenced genomes
(Brody and Cravchik 2000, Remm and Sonnhammer
2000). However, as there is only a single signature
at the family level (the PROSITE expression for
opsin), searches with this sort of signature offer vir-
tually no opportunity to identify the family to which
an orphan receptor might belong, to predict the
type of ligand it might bind, or to predict the type of G
protein to which it might couple. In trying to charac-
terize a putative GPCR, it is not enough to say that
the sequence might be a rhodopsin-like receptor,
because this does not tell us of which of the possible
~50 families it is a member (and hence its ligand-
binding specificity), and which of the family sub-
types it most closely resembles (and hence its likely G
protein-coupling preference).

PRINTS contains the most extensive collection of
GPCR signatures of any family database, with more
than 270 fingerprints (Attwood, Croning, and
Gaulton 2002). The nature of the analysis method it
uses means that highly selective fingerprints can be
created in a hierarchical manner for receptor super-
families, families, and subtypes. Therefore, searches of
this resource may not only identify the superfamily
to which a receptor belongs, but may also elucidate
its family and subtype relationships (see Fig. 9.6).

The ability of fingerprints to distinguish between
closely related receptor families and subtypes is illus-
trated in Fig. 9.7. Here, the sequence of the human
urotensin IT receptor was searched against (a) its
own fingerprint and (b) the somatostatin receptor
family fingerprint (Gaulton and Attwood 2003).
Recall Fig. 9.5, in which the BLAST search could not
clearly distinguish the urotensin II receptor from
the somatostatin receptors. Here, by contrast, the
PRINTS result clearly highlights the differences
between them — the receptor perfectly matches its
own fingerprint (each motif matched is indicated by
a block on the graph), but fails to match any of the
motifs that characterize the somatostatin receptors.
This is important. The result reflects the fact that al-
though the urotensin IT and somatostatin receptors

Patterns in protein families ® 213

Rhodopsin-like GPCR superfamily

PF00001 \ | 7tm_1
PS50262 v 7 G_PROTEIN_RECEP_F1_2
PS00237 £ G_PROTEIN_RECEP_F1_1
PR00237 - . . .- - - GPCRRHODOPSN

Vasopressin receptor

PRO0896 - - - - - - . — VASOPRESSINR

Vasopressin V1A receptor

PR0O0752 —— -— - - -—— VASOPRSNVTAR

Fig. 9.6 Output from a search of InterPro with the human vasopressin 1A receptor sequence (V1AR_HUMAN). The receptor
matches the Pfam HMM (PFO0001 — white bar), PRINTS fingerprint (PRO023 7 —black bars), and PROSITE regular expression
(PS00237 —spotted bar) and profile (PS50262 —striped bar) for the rhodopsin-like superfamily of GPCRs. However, only PRINTS
gives family- and subtype-level diagnoses, with matches to the vasopressin receptor family (PRO0896) and vasopressin V1A
receptor subtype (PRO0752) fingerprints.

(a) UR2R_HUMAN vs. UROTENSIN2R (b) UR2R_HUMAN vs. SOMATOSTANR

% ID ——
-

<)}
W

|_| 2
] 1 |

1 380 1 380
Residue number Residue number

Fig. 9.7 Output from a search of the human urotensin I receptor sequence against (a) its own fingerprint and (b) the
somatostatin receptor family fingerprint using PRINTS’ GRAPHScan tool (Scordis, Flower, and Attwood 1999). Within each
graph, the horizontal axis represents the sequence, and the vertical axis the percentage score (identity) of each fingerprint element
(0-100 per motif). Filled blocks mark the positions of motif matches above a 20% threshold. Here, we see that the receptor matches
all nine motifs of its own fingerprint but fails to make any significant matches to the somatostatin receptor fingerprint.

share a high degree of overall similarity (this is what
BLAST “sees”), they differ in key regions that are
likely to determine their functional specificity (i.e.,
what fingerprints “see”). Thus, BLAST, FASTA, and
superfamily-level discriminators operate at a gen-
eric similarity level, while fingerprints provide much
more fine-grained insights based on both the similar-
ities and the differences between closely related
sequences.

Several other methods have also been developed
for classifying GPCRs, including those that use sup-
port vector machines, phylogenetic analysis, and
analysis of receptor chemical properties. These will
not be discussed further here, but interested readers
are referred to Joost and Methner (2002), Karchin,
Karplus, and Haussler (2002), and Lapinsh et al.
(2002).

9.5.8 The functional significance of signatures

Although most protein family signatures are derived
solely on the basis of amino acid conservation, with-
out explicit consideration of function, it is evident
that the conserved regions they exploit do cor-
respond to structural and functional motifs. For
example, at the superfamily level, all GPCRs share
the same architecture; consequently, the superfam-
ily signatures primarily encode the 7TM domains
(which makes sense, because this is what they all
have in common). If we think about individual fam-
ilies within a particular GPCR superfamily, however,
what are the defining characteristics? The 7TM
architecture is the same, isn’t it, so what makes an
opsin sequence different from an olfactory receptor
sequence, and different again from a muscarinic
receptor sequence, and so on? If the structure is the
same, we can reasonably suppose that the difference
between them must lie in the way the different
receptors function — i.e., in the ligands they bind.
Detailed analyses of the fingerprints that define the
different GPCR families suggest that this is the case:
motifs of family-level fingerprints are often found in
parts of the TM domains and extracellular portions
of the receptors, reflecting the regions in which they
bind a common ligand. But what of individual recep-
tor subtypes? These not only share the same struc-

ture, but also bind the same ligand as their sibling
subtypes, so what makes them different? In this case,
we conclude that the defining characteristics are in
their G protein-coupling preferences (whether Gi,
Go, Gq, etc.). Once again, examination of subtype
fingerprints indicates that the constituent motifs are
more prevalent in intracellular regions, particularly
the third intracellular loop and C-terminal regions,
most likely to be involved in G protein coupling.
Reassuringly, in the case of family-level finger-
prints, experimental evidence is beginning to confirm
their functional significance: residues shown by
mutational or molecular modeling studies to be in-
volved in ligand binding often fall within the motifs
that characterize the family. In addition, recent
modeling studies have predicted 3D structures for
the sphingosine 1-phosphate (S1P) receptors EDG1
and EDG6, and identified residues likely to be
involved in binding the ligand (Parrill et al. 2000,
Wang et al. 2001, Vaidehi et al. 2002). Figure 9.8

C

Fig. 9.8 Schematic diagram representing the endothelial
differentiation gene (EDG) family of sphingosine 1-phosphate
receptors. Positions of the fingerprint motifs for this family

are indicated by rectangles; circles mark the positions of
residues known to be important in ligand binding in the EDG1
receptor (black) (Remm and Sonnhammer 2000, Attwood et al.
2002) and in the EDG6 receptor (white) (Joost and Methner
2002). Models of these receptors predict that the ligand binds
within the TM regions, close to domains 2, 3, 5, and 7.

Patterns in protein families ® 215

shows a schematic diagram of an S1P receptor, with
the positions of these critical residues indicated by
asterisks, and motifs of the family fingerprint indic-
ated by shaded boxes; all of the ligand-binding
residues identified to date lie within two of the motifs
(Gaulton and Attwood 2003). Moreover, the re-
maining motifs lie in regions that appear to be close
to the ligand-binding site (TM domains 2, 3, 5, and

216 ® Chapter 9

7), or in regions that may be involved in G protein
coupling, reflecting the overlapping coupling specific-
ity of receptors in this family. These results highlight
the fact that, in addition to facilitating classification
of orphan receptors, fingerprints may also provide
vital information about residues and regions of
receptors that are likely to have crucial functional
roles.

REFERENCES

Altschul, S.F., Gish, W., and Miller, W. 1990. Basic local
alignment search tool. Journal of Molecular Biology, 215:
403-10.

Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J.,
Zhang, 7., Miller, W., and Lipman, D.J. 1997. Gapped
BLAST and PSI-BLAST: A new generation of protein
database search programs. Nucleic Acids Research, 25:
3389-402.

Attwood, T.K. 2000a. The quest to deduce protein func-
tion from sequence: The role of pattern databases.
International Journal of Biochemistry and Cell Biology,
32(2):139-55.

Attwood, T.K. 2000b. The role of pattern databases in
sequence analysis. Briefings in Bioinformatics, 1: 45-59.

Attwood, T.K. 2001. A compendium of specific motifs for
diagnosing GPCR subtypes. Trends in Pharmacological
Sciences, 22(4): 162-5.

Attwood, T.K., Blythe, M.]., Flower, D.R., Gaulton, A.,
Mabey, J.E., Maudling, N., McGregor, L., Mitchell, A.L.,
Moulton, G., Paine, K., and Scordis, P. 2003. PRINTS
and PRINTS-S shed light on protein ancestry. Nucleic
Acids Research, 30: 239-41.

Attwood, T.K., Croning, M.D., and Gaulton, A. 2002.
Deriving structural and functional insights from a

ligand-based hierarchical classification of G protein-
coupled receptors. Protein Engineering, 15: 7-12.

Attwood, T.K., Eliopoulos, E.E., and Findlay, J.B.C. 1991.
Multiple sequence alignment of protein families show-
ing low sequence homology: A methodological
approach using pattern-matching discriminators for G-
protein linked receptors. Gene, 98: 153-9.

Attwood, T.K. and Findlay, J.B.C. 1993. Design of a dis-
criminating fingerprint for G-protein-coupled receptors.
Protein Engineering, 6(2): 167-76.

Attwood, T.K. and Flower, D.R. 2002. Trawling the gen-
ome for G protein-coupled receptors: The importance
of integrating bioinformatic approaches. In Darren R.
Flower (ed.), Drug Design — Cutting Edge Approaches,
pp.60-71. London: Royal Society of Chemistry.

Bateman, A., Birney, E., Cerruti, L., Durbin, R., Etwiller, L.,
Eddy, S.R., Griffiths-Jones, S., Howe, K.L., Marshall, M.,
and Sonnhammer, E.L. 2002. The Pfam protein families
database. Nucleic Acids Research, 30: 276-80.

Benson, D.A., Karsch-Mizrachi, I., Lipman, D.]., Ostell, .,
and Wheeler, D.L. 2004. GenBank: Update. Nucleic
Acids Research, 32:D23-6.

Brody, T. and Cravchik, A. 2000. Drosophila melanogaster
G protein-coupled receptors. Journal of Cell Biology, 150:
F83-8.

Patterns in protein families ® 217

Bucher, P. and Bairoch, A. 1994. A generalized profile
syntax for biomolecular sequence motifs and its func-
tion in automatic sequence interpretation. Proceedings
of the International Conference on Intelligent Systems for
Molecular Biology, 2: 53—-61.

Dayhoff, M.O. 1965. Atlas of Protein Sequence and Struc-
ture. Silver Spring, MD: National Biomedical Research
Foundation.

Eck, R.V. and Dayhoff, M.O. 1966. Atlas of Protein Sequence
and Structure 1966. Silver Spring, MD: National Bio-
medical Research Foundation.

Eddy, S.R. 1998. Profile hidden Markov models. Bio-
informatics, 14: 755-63.

Falquet, L., Pagni, M., Bucher, P., Hulo, N., Sigrist, C.J.,
Hofmann, K., and Bairoch, A. 2002. The PROSITE
database, its status in 2002. Nucleic Acids Research, 30:
235-8.

Flower, D.R. 1999. Modelling G-Protein-Coupled Recep-
tors for Drug Design. Biochimica et Biophysica Acta,
1422:207-34.

Foord, S.M. 2002. Receptor classification: Post genome.
Current Opinion in Pharmacology, 2: 561—6.

Gaulton, A. and Attwood, T.K. 2003. Bioinformatics
approaches for the classification of G protein-coupled
receptors. Current Opinion in Pharmacology, 3: 114-20.

Gribskov, M., McLachlan, A.D., and Eisenberg, D. 1987.
Profile analysis: Detection of distantly related proteins.
Proceedings of the National Academy of Sciences USA, 84
4355-8.

Henderson, R., Baldwin, J.M., Ceska, T.A., Zemlin, F.,
Beckmann, E., and Downing, K.H. 1990. Model for the
structure of bacteriorhodopsin based on high-resolution
electron cryo-microscopy. Journal of Molecular Biology,
213:899-929.

Henikoff, S. and Henikoff, J.G. 1991. Automated assembly
of protein blocks for database searching. Nucleic Acids
Research, 19: 6565-72.

Henikoff, S. and Henikoff, J.G. 1992. Amino acid substitu-
tion matrix from protein blocks. Proceedings of the
National Academy of Sciences USA, 89: 10915-19.

Henikoff, S. and Henikoff, J.G. 1994a. Position-based
sequence weights. Journal of Molecular Biology, 243(4):
574-8.

Henikoff, S. and Henikoff, J.G. 1994b. Protein family
classification based on searching a database of blocks.
Genomics, 19(1): 97-107.

Henikoff, J.G., Greene, E.A., Pietrokovski, S., and Henikoff,
S. 2000. Increased coverage of protein families with the
blocks database servers. Nucleic Acids Research, 28:
228-30.

218 ® Chapter 9

Hewes, R.S. and Taghert, P.H. 2001. Neuropeptides and
neuropeptide receptors in the Drosophila melanogaster
genome. Genome Research, 11: 1126-42.

Hall, R.A., Premont, R.T., and Lefkowitz, R.J]. 1999.
Heptahelical receptor signaling: Beyond the G protein
paradigm. Journal of Cell Biology, 145:927-32.

Huang, J.Y. and Brutlag, D.L. 2001. The eMOTIF data-
base. Nucleic Acids Research, 29: 202—4.

Huynen, M.A. and Bork, P. 1998. Measuring genome evo-
lution. Proceedings of the National Academy of Sciences
USA, 95: 5849-56.

Joost, P. and Methner, A. 2002. Phylogenetic analysis of
277 human G-protein-coupled receptors as a tool for the
prediction of orphan receptor ligands. Genome Biology,
3:research0063.1-16.

Karchin, R., Karplus, K., and Haussler, D. 2002. Clas-
sifying G-protein-coupled receptors with support vector
machines. Bioinformatics, 18: 147-59.

Krogh, A., Brown, M., Mian, LS., Sjolander, K., and
Haussler, D. 1994. Hidden Markov models in computa-
tional biology. Applications to protein modeling. Journal
of Molecular Biology, 235: 1501-31.

Lapinsh, M., Gutcaits, A., Prusis, P., Post, C., Lundstedt, T.,
and Wikberg, J.E.S. 2002. Classification of G-protein
coupled receptors by alignment-independent extraction
of principal chemical properties of primary amino acid
sequences. Protein Science, 11: 795-805.

Lee, D.K., Nguyen, T., Lynch, K.R., Cheng, R., Vanti, W.B.,
Arkhitko, O., Lewis, T., Evans,]J.F., George, S.R., and
O’Dowd, B.F. 2001. Discovery and mapping of ten novel
G protein-coupled receptor genes. Gene, 275: 83-91.

Lefkowitz, R.J. 2000. The superfamily of heptahelical
receptors. Nature Cell Biology, 2: E133—6.

Mulder, N.J., Apweiler, R., Attwood, T.K., Bairoch, A.,
Bateman, A., Binns, D., Biswas, M., Bradley, P., Bork, P.,
Bucher, P., et al. 2002. InterPro: An integrated docu-
mentation resource for protein families, domains and
functional sites. Briefings in Bioinformatics, 3: 225-35.

Nathans, J. 1989. The genes for color vision. Scientific
American, 260(2): 28-35.

Okano, T., Kojima, D., Fukada, Y., Shichida, Y., and
Yoshizawa, T. 1992. Primary structures of chicken
cone visual pigments: Vertebrate rhodopsins have
evolved out of cone visual pigments. Proceedings of the
National Academy of Sciences USA, 89: 5932—6.

Palczewski, K., Kumasaka, T., Hori, T., Behnke, C.A.,
Motoshima, H., Fox, B.A., Le Trong, 1., Teller, D.C.,
Okada, T., Stenkamp, R.E., et al. 2000. Crystal structure
of rhodopsin: A G protein-coupled receptor. Science,
289:739-45.

Parrill, A.L., Wang, D., Bautista, D.L., Van Brocklyn, J.R.,
Lorincz, Z., Fischer, D.]., Baker, D.L., Liliom, K., Spiegel,
S., and Tigyi, G. 2000. Identification of EDG1 receptor
residues that recognize sphingosine 1-phosphate. Jour-
nal of Biological Chemistry, 275:39379-84.

Parry-Smith, D.J. and Attwood, T.K. 1992. ADSP — A new
package for computational sequence analysis. Computer
Applications in the Biosciences, 8(5): 451-9.

Pearson, W.R. 2000. Flexible sequence similarity search-
ing with the FASTA3 program package. Methods in
Molecular Biology, 132:185-219.

Pearson, W.R. and Lipman, D.J. 1988. Improved tools for
biological sequence comparison. Proceedings of the
National Academy of Sciences USA, 85: 2444-8.

Pebay-Peyroula, E., Rummel, G., Rosenbusch,].P., and
Landau, EM. 1997. X-ray structure of bacteri-
orhodopsin at 2.5-A from microcrystals grown in lipidic
cubic phases. Science, 277:1676—81.

Radford, J.C., Davies, S.A., and Dow, J.A. 2002. Systematic
G-protein-coupled receptor analysis in Drosophila
melanogaster identifies a leucokinin receptor with novel
roles. Journal of Biological Chemistry, 277:38810-17.

Remm, M. and Sonnhammer, E. 2000. Classification of
transmembrane protein families in the Caenorhabditis
elegans genome and identification of human orthologs.
Genome Research, 10: 1679-89.

Scordis, P., Flower, D.R., and Attwood, T.K. 1999.
FingerPRINTScan: Intelligent searching of the PRINTS
motif database. Bioinformatics, 15: 523—4.

Takeda, S., Kadowaki, S., Haga, S., Takaesu, H., and
Mitaku, S. 2002. Identification of G protein-coupled
receptor genes from the human genome sequence.
FEBS Letters, 520:97-101.

Teller, D.C., Okada, T., Behnke, C.A., Palczewski, K.,
and Stenkamp, R.E. 2001. Advances in determination
of a high-resolution three-dimensional structure of
rhodopsin, a model of G protein-coupled receptors
(GPCRs). Biochemistry, 40: 7761-72.

Vaidehi, N., Floriano, W.B., Trabanino, R., Hall, S.E.,
Freddolino, P., Choi, E.J., Zamanakos, G., and Goddard,
W.A.TII. 2002. Prediction of structure and function of G
protein-coupled receptors. Proceedings of the National
Academy of Sciences USA, 99:12622-7.

Wang, D.A., Lorincz, Z., Bautista, D.L., Liliom, K., Tigyi, G.,
and Parrill, A.L. 2001. A single amino acid determines
lysophospholipid specificity of the S1P, (EDG1) and
LPA, (EDG2) phospholipid growth factor receptors.
Journal of Biological Chemistry, 276:49213-20.

Zozulya, S., Echeverri, F., and Nguyen, T. 2001. The
human olfactory receptor repertoire. Genome Biology, 2:
research0018.1-12.

e 219

Patterns in protein families

220 ® Chapter 9

Patterns in protein families ® 221

222 ® Chapter 9

Patterns in protein families ® 223

224 ® Chapter9

Patterns in protein families ® 225

Probabilistic
methods and

machine learning

CHAPTER PREVIEW

Here we introduce probabilistic models that can b
sequence data and to classify sequences into di
ant ideas from Bayesian statistics, includin:
tributions. We discuss the idea of machi
is used to choose parameter values th
We describe hidden Markov mod
to encode families of biologic
models, another machine-
sequences. We discuss sol

10.1 USING MACHINE LEARNING
FOR PATTERN RECOGNITION IN
BIOINFORMATICS

The previous chapter focused on pattern-recognition
methods based on protein sequence alignments, all
of which attempted to encode the conserved regions
(from motifs to complete domains), the assumption
being that these would provide diagnostic signatures
for the aligned families of sequences. People are
rather good at spotting patterns in data — our brains
seem to work that way. So if we look at a multiple
sequence alignment, it does not take us long to spot if
there is a conserved residue. However, some types of
pattern are much more difficult to spot. Suppose, for
example, that a particular region of a thousand DNA
bases has 55% GC content while the neighboring
region has only 45% GC. Looking at the complete
DNA sequence, we might not notice that the regions
were different, and if we did notice, we would have a

CHAPTER

hard job deciding where to
set the boundary between the
regions. A difference like this
could be biologically import-
ant. It might signify that one
region was a coding sequence
and the other was not, or that
one region had been inserted
into the genome from else-
where. This is an example of a
pattern that could be spotted
by a probabilistic method that works with statistical
properties of different sequences. The first part of this
chapter develops probabilistic models of sequences
that can be applied to problems such as this.

In the example in the previous paragraph, it
would be easy to write a program to calculate the
frequencies of the bases in a 1000-base window of
a DNA sequence that slides this window along a
genome looking for regions of unusual composition.
Before we could write such a program, however, we
would need to have had the idea that GC frequency
was an interesting thing to measure. What about
patterns that we didn’t even think of? How can we
write a program to spot something if we don’t know
what it is we are looking for?

This is where machine-learning algorithms come
in. The two methods discussed here that can be
classed under the machine-learning heading are
hidden Markov models (HMMSs) and neural networks
(NNs). Both these systems can be used to assign sequ-
ences, or parts of sequences, into different classes
(e.g., high versus low GC content in DNA, or o helix

Probabilistic methods and machine learning ® 227

versus P strand versus loops in proteins). These sys-
tems have many internal parameters — these are the
weights of connections in NNs and the emission
probabilities in HMMs, as will be described later.
Changing the values of these parameters allows
the system to recognize different types of pattern.
Usually, we do not know how to choose the para-
meters in order for the system to best recognize the
patterns of interest. The systems have to “learn” the
best parameter values themselves.

The simplest type of problem for a machine-learn-
ing algorithm is one where it has to learn to output
“yes” to sequences that are of a certain type and
“no” to others. We can begin with some randomly
chosen values of the internal parameters of the pro-
gram. We then choose a set of known examples of
true-positive and true-negative sequences, and we
see how well the program performs. As the parame-
ters are random, it will randomly output yes or no
for each input sequence, and will therefore make a
lot of mistakes. Methods are available for training
the algorithm to give progressively better answers.
The way this works will be described in more detail
in later sections of this chapter. In essence, however,
the training procedure consists of making small
changes to the internal parameters of the algorithm
in such a way that it gets more correct answers next
time round. Training proceeds step by step, until,
after many steps, the internal parameters are honed
so that the maximum possible number of correct
answers is obtained. If the internal details of the
algorithm are sufficiently well designed and flexible,
then it should be possible to train the algorithm to
get almost all correct answers; however, methods
like this rarely score 100% (once again, think about
sensitivity and selectivity — Section 7.1.4).

The set of known examples on which the algorithm
is trained is called the training set. The larger the
number of examples in the training set, the more
likely it is that the algorithm will be able to learn use-
ful diagnostic features of the class of sequences of
interest, and the more accurate we would expect
future predictions of the algorithm to be. We might
therefore be tempted to use all the known examples
we have available for training. The problem with
this is that we would then have no way of telling

228 ® Chapter 10

how good the algorithm is on examples that it has
not seen before. Usually, known examples are divided
up into two sets. The algorithm is trained to perform
as well as possible on one set, and it is then tested on
the other set. The performance on the test set gives
us an idea of how well it can be expected to do when
we try it out on unknown sequences in the future. If
the method is working well, then it should perform
almost equally well on the test set as on the training
set. If this is true, we say that the method is able to
generalize well. This means that the algorithm has
learned important general properties of the sequences
in the training set that also apply to the test set. If,
however, the algorithm performs well on the training
set but poorly on the test set, then it must have learned
very specific properties of the training set that do not
apply to the test set. In this case, the algorithm is not
very useful, and it will probably be necessary to
change the internal design of the algorithm (not just
the parameter values) in order to improve it.

At this point, it is worth emphasizing a couple of
general points about machine-learning algorithms
before proceeding to the methods themselves. When
we choose the training set, we are obviously relying
on knowing which examples are positive and which
negative (i.e., this is a knowledge-based method).
This information usually comes from experimental
studies. However, it may still be true that we don’t
know what the pattern is that we are looking for. For
example, if we wish to predict the position of o
helices in proteins, we may have many examples of
protein sequences with known structure on which
to train a pattern-recognition algorithm. Even so,
it may not be obvious to us what features of the
sequences determine the positions of the helices.
Therefore, we hope that the system can learn useful
features to diagnose the helices without us having to
tell it what it should look for.

10.2 PROBABILISTIC MODELS OF
SEQUENCES - BASIC INGREDIENTS

10.2.1 Likelihood ratios

Sections 10.2—-10.4 will cover HMMs, a powerful
method used to describe the statistical properties of

individual sequences and families of sequences.
Before we can define HMMs, however, we need to
consider several aspects of the theory separately. We
will build up from a very simple example.

Suppose we are interested in membrane proteins
and we wish to predict which parts of the sequences
are transmembrane (TM) helices and which parts are
loops either side of the membrane. One important
feature of the helices is that they have a high content
of hydrophobic amino acid residues. This should
provide some information with which to distinguish
potential helical regions in a sequence of unknown
structure. Let p, and g, be the frequencies of amino
acid ain the helices and the loops, respectively. These
frequencies can be measured in a set of proteins of
known structure. Now consider a section of N amino
acids taken from an unknown protein, and let x; be
the amino acid at position i in this sequence. The
likelihoods L, and L, that the sequence occurs in a
helical or a non-helical region are just the products
of the frequencies of the amino acids in the sequence:

(10.1)

N N
Ll:prI' L0=qui
i=1 i=1

These two likelihoods are both very small numbers:
if all amino acids had equal frequency, we would get
L=(1/20)N. The values of L, and L, do not mean
much on their own, but the likelihood ratio L,/ L is
more informative: it tells us whether the sequence is
more or lesslikely to be a helical or anon-helical region.

It is common to deal with logarithms of likelihood
ratios rather than the ratios themselves because
these are more manageable in computers (they do
not lead to overflow and underflow errors) and
because they give rise to additive scoring systems.
This point was also discussed in Section 4.3 on log-
odds amino acid scoring matrices. In the present
case, the log-odds score is

N
S=In h = Zln P,
Ly) 3 ay,

A positive S means the sequence is more likely to be a
helical region than a non-helical region. In order to
use this method for prediction, we could chop our

(10.2)

sequences of unknown structure into segments of a
given length (say N = 30) and calculate the log-odds
score for each segment. Segments with positive
scores would be predicted to be helical regions.

10.2.2 Prior and posterior probabilities

In Bayesian statistics, prior probabilities are probabil-
ities that we associate with alternative hypotheses,
based on our previous experience of similar problems.
They describe our expectations of the probabilities of
the different hypotheses being true for a new exam-
ple before we look at the data of the new example. The
case of the TM region prediction is an example where
we have alternative models of the data: models O and
1, defined by the two sets of amino acid frequencies,
q,and p,. When we examine a new sequence, we
thus have two alternative hypotheses: that the
sequence is described by model O or by model 1.

Let us be slightly more general. Suppose we have
two or more models to describe some type of data.
We will call these models M,, wherek=0,1,2 . . . etc.
We have a particular new example of data of this type
(call this D), and we want to know the probability that
this new example is described by each of our models.
From our previous experience, we assign prior prob-
abilities PP (M,) to each model. The sum of these
probabilities over all the models must add up to one.
There is no theory about how to choose the prior prob-
abilities. We have to use our common sense. If we
know nothing about the problem, then we can assign
equal prior probabilities to all the alternatives. If we
know that one of the alternatives is unlikely to be true
(e.g., this model might describe a rare type of sequ-
ence that we are not expecting to find in our new
data), then we can assign it a low prior probability.

The next step is to calculate the likelihood of the
data according to each of the models. This is written
L(D| M,) and is read as “the likelihood of the data,
given model k”. These likelihoods are defined as the
probability distributions over all possible sets of data
that could be described by the model. If we sum the
likelihoods over all possible data for any given model,
we must get one (i.e., the likelihood is normalized).
For example, in Eq. (10.1), L, is really L(D | M,),
where D is the sequence x, ...xy and M, is the

Probabilistic methods and machine learning ©® 229

model defined by the frequencies q,. You may like to
check that the sum of L, over all possible sequences
oflength Nisequal to one. In general, when we think
of a model, we also know how to calculate the like-
lihood of any given data according to the model.
This might involve some complicated equations and
we may need to write a program to calculate it for
us. Nevertheless, we know how to calculate it. The
problem is that what we really want to know is the
probability that the new data are described by model k,
not the probability that the data would arise if model
k were true. What we want to calculate is called the
posterior probability of model k, given the data,
which is written PP*{(M,, | D). This is proportional to
the prior probability of model k times the likelihood
of generating the data according to the model, i.e.,

Ppust(Mk | D) o L(D | Mk) Pprior(Mk).

Written in this way, the posterior probability is
not properly normalized. We are interested in the
relative probabilities of the models for one set of
data, so we need to normalize by summing over all
the models (in contrast to the likelihood, which is
normalized by summing over all the possible data for
one model). Thus, we may write:

L M Pprior M
Ppost(Mk |D) —_ (D| k) (k)

= . 10.3
Y L(D | M)PPrior(M,,) (10.3)
k

The basic principle of Bayesian statistical methods
is that we should make our inferences using pos-
terior probabilities. If the posterior probability of
one model is very much higher than the rest, then
we can be confident that this is the best model
to describe the data. If the posterior probabilities of
different models are similar to one another, then we
cannot rule out the alternatives.

In the simple case, where there are just two mod-
els, M, and M,, we can simplify the notation by writ-
ing the two prior probabilities as P} and P}"".
Hence, from Eq. (10.3), we may write the posterior
probability of model 1 as

prior
LIP 1

Ppost _
1 - L Pprior +L Pprior
0" 0 11

(10.4)

230 ® Chapter 10

It is useful to define a log-odds score in a similar
way to Eq. (10.2):

prior prior
§=n [%J _s+ 1[§]
() 0

The difference between S” and S is simply the addi-
tion of a constant term, which is the log of the ratio of
the priors. Thus, if we considered a set of potential
sequences under our model for TM helices, the rank-
ing of these sequences would be the same using S as
S’; however, the conclusions as to which sequences
to predict as helices would be different. If we
expected TM helices to be rare in the set of sequences
to be examined, we would set P! to be less than
pprier, This would mean that $” would be shifted down
with respect to S, so that the likelihood ratio term in
Eq. (10.2) would have to be correspondingly higher
in order for S’ to be positive and for us to predict the
sequence to be a helix. If the two prior probabilities
are equal, the second term in Eq. (10.5) is zero, and
S’ = 8. Thus, if we use the original score, S, in Eq. (10.2)
for the prediction of a helix, we are implicitly making
the assumption that any sequence we look at has an
equal prior probability of being a helix or a non-helix.

The posterior probability can be written in terms
of the log-odds score, as follows:

(10.5)

11
14 LyP2™ 1+exp(=S)

prior
LIP 1

prot = (10.6)

IS’ =0, Pt =15 I §" is large and positive, P¥** tends
to one. If §”is large and negative, P¥* tends to zero.

10.2.3 Choosing model parameters

So far, we have talked about distinguishing between
a discrete set of alternative models. Often, however,
the models themselves have continuous parameters
and we want to estimate these parameters from the
data. For example, our model of the helical regions was
defined by the set of frequencies of the amino acids q,,.
How should we choose the values of the frequencies?

In our set of known TM helices, let the observed
number of amino acids of type a be n,, and let the

total number of amino acids be n, .. The likelihood of

this occurring is

tot*

20

L= H (g,)"
a=1

(10.7)

The simplest way to choose the frequencies is via
the principle of maximum likelihood (ML). We choose
parameter values so that the likelihood of observing
the data is greatest. It can be shown that the above
function, L, is maximized when the frequency para-
meter for each amino acid is equal to the observed
frequency of that amino acid in the data:

q,=n,/n (10.8)

a " tot
This result seems like common sense. The proof is
Problem 10.2 at the end of this chapter.

We can immediately generalize this to give a prob-
abilistic model for a profile (i.e., a set of aligned pro-
teins). Suppose we have an ungapped alignment
of a protein motif of length N sites containing K
sequences. We want to develop a position-specific
score system that reflects the fact that the frequen-
cies of the amino acids are different at each site. The
ML values of the frequencies at site i are p,, = n, /K,
where n,, is the observed number of times amino acid
aoccurs at site i. As before, let x; be the amino acid at
site i in a new sequence. The likelihood of this
sequence, according to the profile model, is

N
Ly = Hpix‘_ (10.9)
i=1

As usual, this likelihood is only meaningful if we
compare it to something. We can define a model 0,
with likelihood L, given by Eq. (10.1), where the
frequencies, q,, in the model are to be interpreted as
average amino acid frequencies in general proteins
other than the particular sites in the profile we are
interested in. By analogy with Eq. (10.2), the log-
odds score for the profile model is

L N o
S= ln[—pmf]:zln P,
L, i=1 d,

(10.10)

We could also treat this model in a Bayesian way,
by introducing a prior probability term, as we did in
Eq. (10.5). However, there is another, more import-
ant, way in which a Bayesian approach is useful in
this model - this relates to the way the p,, parameters
are estimated. When building a profile model, we may
only have a few tens of sequences in the alignment.
There will thus be considerable fluctuation in the
observed frequencies at each site, because we have
only sampled a small number of sequences. In part-
icular, it is quite likely that some amino acid, a, will not
occur at all at a given site in our alignment. Ifn,, = O,
the ML frequency of a is p,, = 0. This means that the
likelihood mef will be set to zero for any future sequ-
ence found to have a at site i. Clearly, the model is too
strictifit completely forbids the future occurrence of an
amino acid at a site simply because we have not yet
observed it in the limited amount of data we have so far.

The Bayesian method of dealing with this problem
is to use pseudocounts. Instead of basing the fre-
quencies solely on the observed number of occur-
rences of each amino acid, we add a pseudocount to
each total, based on our prior expectations. Before
looking at the alignment, our best guess is that the
amino acid frequencies are the same as the average
frequencies in other proteins: g,. If we included A
additional sequences in our alignment with these
prior frequencies, then the expected number of addi-
tional occurrences of amino acid a in each site would
be Ag,. Our estimate of the frequencies at the site,
including the pseudocounts, is then

n.+A

pnFH (10.11)

When K is small compared to A, the estimated
frequencies are strongly influenced by the prior fre-
quencies q,. However, as the amount of real data
accumulates, K becomes much larger than A, and
the estimated frequencies are governed only by the
observed data at the site. This is what always happens
in Bayesian methods: when there are few data, the
prior is important, but when we have a lot of data,
the result becomes independent of the prior. The
value of the parameter A thus controls the amount
of weight we put on the prior, and the number of

Probabilistic methods and machine learning ® 231

observations of real data that we need in order to
“over-rule” the effect of the prior. More information
on pseudocounts is given by Durbin et al. (1998).

The posterior probability Eq. (10.3) can also be
written down for continuous models. We will use 6
torepresent the continuous parameters of the model
(it could be a single variable or more than one, but
for simplicity we will just write one). The posterior
probability of 6 then becomes

L(D | 0)Prrior(@)

Prosi(@| D) = (10.12)

J L(D | 0)Pror(6)d0

The sum has now become an integral because we
are dealing with continuous parameters. The best
estimate of the parameters of the model, according to
Bayesian analysis, is to take the average of the para-
meter over the posterior distribution. In Box 10.1, we
consider the derivation of Eq. (10.11) more carefully
in terms of explicit prior and posterior distributions.
We show that the frequencies given by the pseudo-
count argument above correspond to mean values
obtained from the posterior probability distribution.
In general, there will be many parameters to
integrate over, and so it may not be possible to do
the integral exactly. However, it may be possible
to determine model parameters without doing this
integration. One approximation is to use the value of

BOX 10.1

232 @ Chapter10

0 that maximizes L(D |)P”""(8). This is called the
maximum posterior probability solution. This may
be compared to the maximum likelihood solution,
which simply chooses the 6 that maximizes L(D | 6),
ignoring the prior. Another approach is to use the
Markov Chain Monte Carlo (MCMC) method, which
allows us to sample possible values from the pos-
terior distribution of continuous parameter models
when the integral in Eq. (10.12) is too hard to do
exactly. MCMC was discussed in the context of
molecular phylogenetics in Chapter 8. The reader
may wish to review Section 8.8 after reading this
section. In phylogenetics, we have both continuous
parameters to determine (branch lengths and rate
matrix parameters) and a discrete set of topologies
that we are trying to distinguish. MCMC can be used
for any type of problem where we have a likelihood
function. Usually, we are interested in the value of
the model parameters, or some function of these
parameters. As MCMC generates samples with the
correct posterior probability distribution, we simply
need to take the average of the quantity of interest
from the samples generated. When there are large
quantities of data available, the likelihood functions
become sharply peaked about the optimum para-
meter values. This means that the mean value of a
parameter from the posterior distribution, the value
that maximizes the posterior probability, and the
maximum likelihood value should all be very similar.

— A =20 (Prior)
--A=20,K=180

Probabilistic methods and machine learning ® 233

10.3 INTRODUCING HIDDEN
MARKOV MODELS

10.3.1 Markov models— Correlations in sequences

So far, we have considered the frequencies of amino
acids in sequences but we have not considered the
possibility of correlations between the residues at
neighboring sites. Consider a very long sequence
containing n, amino acids of type a. Let there be n,,
occasions where an amino acid of type b immedi-
ately follows an a. We can define r to be the con-
ditional probability that the amino acid at site i is b,
given that the one at site i — 1 is a. The ML value of
r,, from the data is

ro=Px;=b|x_,=a)=n,/n, (10.18)

A first-order Markov model of a sequence is de-
fined by an alphabet (e.g., the 20-letter amino acid
alphabet, or the four-letter DNA alphabet), a matrix of
conditional probabilities, r;, and a set of frequencies
for the initial state, g,. The likelihood of a sequence,
X, ... Xy, occurring according to a first-order model is

N
L=q,[]r . (10.19)
i=2

The first state is chosen independently from the
amino acid frequency distribution, and each subse-
quent state is chosen conditionally on the previous
one. If there were no correlation between one state
and the next, we would find that r, =q,, i.e., the
probability of state b occurring is just equal to the
average frequency of state b, independent of which
state went before it. In that case, Eq. (10.19) reduces
to a simple product of amino acid frequencies, as in
Eq. (10.1). A model with independent frequencies at
eachsite s called a zero-order Markov model. We can
also model longer range correlations in sequences.
In general, a model is called k™-order if the probabil-
ity of a state occurring at a site depends on the states
at the k previous sites. So for a second-order model,
we would need to define conditional probabilities
Fae=Pl;=c|x,_; =bx,_,=a)=ny,/n,, in asimilar
way to Eq. (10.18).

Let us return to the problem of distinguishing TM

ab’

234 @ Chapter 10

helix positions in proteins. Rather than use zero-
order models for the helix and non-helix regions, we
could define two first-order models, asin Eq. (10.19),
and define alog-odds score based on these — this would
probably provide a better means of prediction than the
zero-order models, because the first-order models
contain more information about real sequences. Real
protein sequences certainly do not have independent
residues at neighboring sites. Nevertheless, even if we
include first-order correlations (or higher order ones
as well), we are still missing some important features
of the problem. So far, we have envisaged chopping
our test protein into segments, and testing each
segment separately. But how long should the seg-
ments be? All the helical regions might not be the
same length. How do we know where to chop the
sequence? The boundary between helix and loop
regions might fall in the middle of the segment we
are testing. Instead of having two separate models
for the two parts of the sequence, it would be nice if
we had a model to describe the whole of a sequence,
which would tell us where the beginning and end of
a helix were. It is time to introduce our first HMM.

10.3.2 A simple HMM with two hidden states

In a Markov model, the probability of any given letter
appearing in the sequence may depend on the letter(s)
that went before. In an HMM, the probability of a letter
may depend on the letter(s) that went before, but it
also depends on which hidden state the model is in.
Hidden states are so called because they are not visible
when looking only at the sequence. For our model,
we need two hidden states: state O (the loops) and
state 1 (the helices). It is also useful to define begin
(B) and end (E) states. An allowed path through the
HMM starts from the begin state, passes any number
of times through states O and 1, and ends at the end
state. Each time we enter a O or 1 state, the model
emits one letter chosen from the allowed alphabet of
the model. In our case, this means one amino acid is
added to the sequence. The begin and end states do
not emit letters to the sequence. We can define the
emission probabilities of the amino acids in states O
and 1 to be the same amino acid frequencies that we
used at the beginning of Section 10.2:

Begin

Fig. 10.2 A simple HMM with two
hidden states for distinguishing helical
and loop regions of proteins.

eola)=q, e,(a)=p, (10.20)
This means that we are supposing the amino acids
occur independently (zero-order model), as long as
we remain in either state O or 1. However, we will
use a first-order model to describe the transitions
between the hidden states. The transition probabil-
ities are shown in Fig. 10.2. The probabilities rj; and
rgo are the probabilities that the first residue in the
sequence will be in either a helix or aloop. If we enter
the helix state, then there is a probability r;, of
remaining in the helix, a probability r;, of moving
into a loop, and a probability r,; of reaching the end
of the sequence. Similar probabilities control the
transitions from the loop state. The values of these
probabilities control the relative frequency and
relative lengths of the regions of types O and 1. For
example, if), is very small, it will be very difficult to
initiate a new helical region; hence the model will
predict very few helices. Also, we expect that both
helical and loop regions in a protein will be fairly
long (tens of amino acids, not just two or three). This
means that the probabilities of remaining in a state
(r;; and r,,) will be larger than the probabilities of
switching between states (r;,and).

This model is able to describe a sequence of any
length containing any number of helical and loop
regions. A path through the model for a given
sequence might look like this:

State 1 — Helix
e1(A)=ps €(Q) =pc e(D)=ppetc.

%
o1 |’7o End

4

State 0 — Loop
eo(A) = pa eo(C) = pc eo(D) = ppetc.

GHMESSAGEQLLKQCYTINSIDEWHLNT
BO011111110000000011111100000E

Sequence x;
Pathm,

The path variables, m, describe the hidden states
at each point in the sequence. The likelihood of the
path given above can be written down in terms of
the product of the emission probabilities and the
transition probabilities for each site:

L= (rBoeo(G)) X (rooeo(H)) X (r0161(M))

(rooeo(T) X rop (10.21)

The model can be used to determine the most
likely positions of helices and loops within the
sequence. This is known as decoding. The first way
of doing this is to find the most probable path
through the model, i.e., we find the sequence of hid-
den states for which the likelihood, calculated as in
Eq. (10.21), is the highest. This gives a straightfor-
ward prediction that each site is either helix or loop.
The second way is to consider all possible paths
through the model, weighted according to their like-
lihood, and to calculate the probability that each site
is in each of the hidden states. We would expect
some sites where P(m; = 1) is very close to one, and
some where P(r, = 1) is very close to zero; these will
be confidently predicted to be either helical or loop

Probabilistic methods and machine learning ® 235

regions. There will probably be other sites for which
the probability is intermediate; for these, the model
is unable to predict the state of the site with
confidence. Such ambiguous sites might well occur
at the boundaries between regions that are strongly
predicted to be helix and loop; they might also occur
if a short section of the sequence in a loop region had
amino acid frequencies that were more typical of
helices, for example. The algorithms for these two
decoding methods are known as the Viterbi and the
forward/backward algorithms. These are described
inBoxes 10.2 and 10.3.

10.3.3 Choosing HMM parameters

The most probable paths through the model for a
given sequence depend on the emission and transition
probabilities. These parameters can be determined
from the information in sequences with known struc-
ture. We can write down the paths (Os and 1s) below
each known example. From these, we can calculate
the ML values of the probabilities. As in Eq. (10.8)
above, the ML values of the emission frequencies will
be given by the observed frequencies in the data. If
amino acid a occurs n, times in regions of state k, and
the total number of residues in state kis n”, then

ey(a) =m, /ni* (10.22)

Similarly, if we observe my; occasions where hid-
den state j follows hidden state k, then the ML transi-
tion probabilities are
rkamk]./n,t("t (10.23)
This is equivalent to Eq. (10.18) for the first-order
Markov model. If some of the transitions occur very
rarely, or not at all, in the known examples, then we
are best to use prior information in choosing the fre-
quencies. The simplest way to do this would be to
add pseudocounts to the number of observed trans-
itions, just as we added pseudocounts to the number
of observed amino acids of each type in Eq. (10.11).

At the beginning of this chapter, we introduced
the idea of machine learning. A machine-learning
method is one where the algorithm learns to recog-

236 ® Chapter 10

nize patterns in the data as well as possible by tuning
the free parameters in the model. What we described
in the previous paragraph does not seem much like
learning at first sight. This is because the model that
we have is simple enough for us to be able to write
down the ML parameter values. So the algorithm
can be set immediately to the optimal choice of
parameters. In a more complicated case, we might
not be able to calculate the optimal parameters ana-
lytically. We could then use a step-by-step numer-
ical method to optimize the parameters. One such
method is called gradient ascent or gradient descent,
depending on whether we are trying to maximize or
minimize a function. Here, we want to maximize the
likelihood. We can imagine the likelihood function
as a mountain surface that we are trying to climb.
If we are able to calculate the derivative of the likeli-
hood with respect to each of the parameters, then we
know which is the quickest way up. The gradient-
ascent method begins at some initial guess of para-
meter values, calculates the derivatives, and moves
a small distance in the direction of the steepest
increase. It then recalculates the gradients from the
new point, and repeats the process until it reaches
the ML point where the derivatives are zero. This
step-by-step process seems a bit more like a gradual
learning process. In any case, in this context, “learn-
ing” isjust another word for optimization. In Section
10.5, we will discuss neural networks, where the
analogy between optimization and learning may
seem more intuitive.

If the model parameters are chosen based on a set
of known examples, as when we used a set of protein
sequences with known helix positions for optimizing
the likelihood above, this is referred to as super-
vised learning. In other words, we are telling the
algorithm what it should learn. However, it is also
possible to use unsupervised learning, where the
algorithm can maximize the likelihood within the
framework of the model, but without being told what
the patterns are to learn. For example, we could define
a model with two hidden states, defined by two sets
of frequencies, without specifying the meaning of
the two states. The learning process would then
determine the best way of partitioning the sequence
into two different types of subsequence. It would

highlight the fact that the properties of the sequence
were not uniform along its length, and it would
show in what way they were non-uniform.

The simplest way by which an unsupervised-
learning process can be implemented in HMMs
is called Viterbi training. This begins with an initial
guess as to the model parameters. The Viterbi
algorithm (Box 10.2) is used to calculate the values
of the hidden states on the most probable path
for each sequence in the training set. From this, we
can calculate n,,, the number of times that amino
acid a occurs where the most probable path is in
state k, and my; the number of times that there is
a transition in the most probable path from state
k to state j. We can then use Egs. (10.22) and
(10.23) to calculate new values of the emission
and transition probabilities for the HMM, and the
whole process can be repeated with the new model
parameters. After repeating this several times, we
will reach a self-consistent state, where the observed
values on the most probable paths are consistent
with the input model parameters, and so the new
parameter values are the same as the old ones. This
model is then trained as well as possible on the data.

A slightly more complex training method is called
the Baum-Welch (or expectation-maximization)
algorithm. This relies on the forward and backward
algorithms (Box 10.3) instead of the Viterbi algo-
rithm. Beginning with some initial guess as to the
model parameters, we can calculate the probability
P(m, = k) that point i on the sequence is in state k (Eq.
(10.35)inBox 10.3). Hence, the expected number of
times that letter a appears in state k, averaged over
all possible paths, is

Ma= Y P(m, =k
sites
where
x;=a

(10.24)

Similarly, the probability that point i is in state k,
while i+ 1 is in state j, is given by Eq. (10.36).
Hence, the expected number of times that a transi-
tion from state k to state j occursis

m_kazp(nl =k'ni+1 :j) (10.25)

Calculating the expected values of these quant-
ities is the “expectation” part of the algorithm. The
“maximization” step consists of calculating new
model parameters by inserting i, and i into
Egs. (10.22) and (10.23). As we said above, the
values of the emission and transition probabilities
given by these equations are the ones that maximize
the likelihood of seeing the observed numbers of
amino acids and transitions.

The two steps of the algorithm can be repeated
several times until the change in parameters is negli-
gible and the algorithm converges. Both the Viterbi
and Baum-Welch training algorithms converge
towards local maxima, where the fit of the model to
the data cannot be improved. However, there is no
guarantee that the global maximum set of model
parameters has been found. It is therefore necessary
to run the algorithms from several different starting
points to check for trapping in suboptimal local
maxima. This is less of a problem with supervised-
learning methods, where the parameters are initial-
ized with values thought to be reasonable, based on
the patterns we expect to see in the data.

10.3.4 Examples

We have been using the example of membrane
proteins to motivate this section, as it is easy to
appreciate that the helical and loop regions in the
structure are likely to give rise to sequences with
regions of different amino acid compositions. How-
ever, the model discussed is a very general way
of distinguishing heterogeneous regions within
sequences. It is convenient to refer to this model as
the M1-MO model, meaning that the transitions
between the hidden states are determined by a first-
order Markov process, but that the symbols in the
sequence are independent (zero order). Recall that,
in the above discussion, the emission probabilities,
e,(a), have been assumed to be dependent on the
hidden state k, but not on the previous symbol in the
sequence. Durbin et al. (1998) present an example of
the M1-MO model under the heading “the occasion-
ally dishonest casino”. In this case, a sequence of die
rolls is observed that has been generated either by a
fair die, with equal probability of each number, or a

Probabilistic methods and machine learning ® 237

loaded die, with unequal probabilities. The casino
occasionally switches between the two dice, and the
object of the HMM is to distinguish the points at
which switches were made from observation of the
sequence of numbers rolled.

We have not tried the M1-MO model on TM
helices, so we do not know how well it would work in
practice. However, this model has been used for
real biological sequence analysis. In one of the first
applications of HMMs in bioinformatics, Churchill
(1989) used a model with only two symbols, O (rep-
resenting A or T) and 1 (representing G or C), to look
for heterogeneities in DNA sequences. The hidden
states in this model represent regions of high and
low probability of occurrence of G or C. This model
was sufficient to detect heterogeneities in mitochon-
drial genomes and in the bacteriophage A sequence.
Natural generalizations of the M1-MO model are the
M1-M1 and M1-M2 models, meaning that the tran-
sitions between the hidden states are still determined
by a first-order process, but the emission probabil-
ities are determined by first- or second-order pro-
cesses. Thus, for M1-M1, we would require emission
probabilities of the form ¢, (x;=a | x,_; = b). Nicolas

238 @ Chapter 10

etal. (2002) analyzed the genome of Bacillus subtilis.
They found that while the M1-MO model did not
reveal any interesting structure, the M1-M2 model
did. They used a four-letter alphabet (A, C, G, T) and
had three hidden states. The model was trained in
an unsupervised manner using the expectation—
maximization algorithm. After training, the first two
hidden states matched the coding regions on the
plus and minus strands of the genome (which have
different sequence statistics), and the third usually
matched non-coding regions between the genes.
However, some coding regions with unusual com-
position also matched the third state, suggesting that
these regions must have arisen by prophage insertion
or by some kind of horizontal transfer. Plate 10.1
shows the probabilities of sites being in each of the
states, as a function of position on the genome. The
illustrated region contains sections that match
strongly to each of the states, and the probabilities
switch fairly sharply at the boundaries between them.

It is possible to build up HMMs with much more
complex structures that can recognize more specific
types of pattern in sequence data. The architecture
of an HMM (i.e., the number of states and the way in

which they are connected) will be different for each
application. As an example of a very specific type of
HMM architecture, let us consider a model designed
to spot coiled-coil domains in proteins. Coiled coils
are associations of two or more o helices that wrap
around each another. They occur in many different
proteins, including tropomyosin, hemagglutinin
(from the influenza virus), and the DNA-binding
domains of transcription factors. There are approx-
imately 3.5 residues per turn of an o helix. This leads
to a repeating pattern of seven residues (a heptad)
corresponding to two turns. Figure 10.3(a) shows a
schematic diagram looking down such helices, with

residue sites labeled a to g. The two helices attract
one another owing to the presence of hydrophobic
residues at sites a and d. The frequencies of the amino
acids vary at the seven positions, and this provides a
strong signal for identification of coiled-coil domains
(in fact, there are slightly more than 3.5 residues per
turn, which is why the two helices spiral round each
other, rather than running in parallel).

A straightforward way to detect this signal was
given by Lupas, Vandyke, and Stock (1991). They
developed a profile score system dependent on the
relative amino acid frequencies at each site (cf. Egs.
(10.9) and (10.10) above), and calculated this score

Probabilistic methods and machine learning ® 239

(@)
e
c g b
d a
f f
b a d c
e g
(b)
/2—»3\

A ‘N
Cle O
N9 6 |«
Ng 7

My o
a b c d e f g Group2

Fig. 10.3 (a) The helical wheel representation of a two-
helix coiled-coil domain, showing sites a to g. (b) The model
contains nine groups of states, plus an initiation/end group 0.
(c) Each of the nine groups contains seven states representing
the seven possible positions in the helix. States in one group
are linked to the state at the following helix position in the
next group. Redrawn from Delorenzi and Speed (2002).

within a sliding window of 28 residues (four hep-
tads). A treatment of this problem using HMMs has
been developed by Delorenzi and Speed (2002). This
model is shown in Fig. 10.3(b). State O represents
residues outside the helical regions, and emits amino
acids with a background frequency distribution (ana-
logous to state O in our simple model in Fig. 10.2).
Boxes 1 to 9 in Fig. 10.3(b) are groups of seven states,
representing the seven positions in the coiled-coil
pattern. The emission probabilities of amino acids
from a to g are determined by seven different site-
specific frequency distributions. A path through the
model may remain in state O any number of times,
before beginning a helix by entering one of the group
1 states. As shown in Fig. 10.3(c), each state is con-

240 ® Chapter 10

nected with a high probability to the state at the next
helix position in the next group of states, i.e., la —
2b— 3c...or 1f— 2g — 3a. This means that once
a helix begins, the path usually follows the correct
set of positions in the helix. Transitions that disrupt
the helix are permitted with small probabilities (e.g.,
la — 2c¢). A path must pass through each of groups
1 to 9 before returning to state 0. However, group 5
states, which represent the middle region of the helix,
are linked to other group 5 states (5a — 5b, 5b — 5c¢,
etc.). This means that the helical region can be any
number of states long. A slightly simpler version of
this model would only include the group 5 states and
state 0. Addition of groups 1-4 and 6—9 allows the
model to account for properties of helices that might
be different at the ends from the middles. It also
means that every helix must be at least nine residues
long. The parameters in the model were obtained
using a version of the Baum—Welch training algo-
rithm, using known examples of coiled-coil proteins.

We will finish this section on HMMs with the same
problem that we started with: prediction of the posi-
tion of helices in TM proteins. Krogh et al. (2001)
constructed the complex HMM shown in Fig. 10.4.
This model contains 25 states representing the helix
core. The connections between these states are such
that the path must pass through at least five states.
This constrains the helix core to be between five and
25 residues long. The cap regions, at the end of the
helices, consist of five states that the path must pass
through. This allows amino acid frequencies at the
ends of helices to be different from those in the inter-
ior. Loops of up to 20 amino acids are treated by
specialized states in the model. Longer non-helical
regions are treated by a “globular” state that con-
nects to itself, thus allowing any length of protein.
The model distinguishes between the cytoplasmic
and non-cytoplasmic sides of the membrane, so that
it is also able to predict the orientation of proteins
within the membrane, as well as the helix position.
This is a good example of the way an HMM can be
designed to incorporate realistic features of particu-
lar biological problems. Although HMM designs can
reach a high degree of complexity, the basic algo-
rithms for decoding and training remain the same.
HMMs are thus extremely flexible. How well a model

(@

Cytoplasmic side

GlOb- | mmmp LoOp
ular = cyt.

()
Globular

Fig. 10.4 A detailed HMM for 1
prediction of the positions of TM helices 1
in membrane proteins. The model

contains specialized states, representing ©
the helix core, the cap regions at the end

of the helices, loop regions connecting

helices, and globular regions both

inside and outside the membrane. From

Krogh et al. (2001). Copyright (2001)

with permission from Elsevier.

works in practice will depend on whether there is
really a distinguishable signal present in the data,
and also on whether the structure of the model is
properly designed so that it is compatible with the
structure of the patterns that are present.

10.4 PROFILE HIDDEN MARKOV
MODELS

Chapter 9 described techniques based on profiles,
where position-specific scores were used to describe
aligned families of protein sequences. A drawback of
profile methods is their reliance on ad hoc scoring
schemes — a coherent statistical theory has been
developed to describe ungapped sequence alignments,
but scoring gapped alignments depends on empirical
estimates. To address this limitation, and replace the
fixed gap penalties implemented in profiles, probabil-
istic approaches using HMMs have been developed.

Membrane Non-cytoplasmic side
Cap |_ |Shortloop —— Glob-

Ca .
P ' Helix core == non-cyt. <=/ ular

cyt. non-cyt.

Cap Helix core \<— Cap <_Longloop—»GIob-
cyt. non-cyt. non-cyt. < ular

Loop Cap

J/J/J/J/J/JM/

4-O«O«O«O«O

9 10!

Helix core
22 23 24 25

........................ O_,O_,O_,O_,

A particular type of HMM known as a profile HMM is
used to capture the information in an aligned set of
proteins. The alignment below could be represented
by the profile HMM shown in Fig. 10.5.

= H n == = = -
T TN
H < 8 H < 8 W

jasias e
® O

Columns 1, 2, and 3 of the alignment are “well-
aligned” sites that contain an amino acid in almost
all sequences. These columns are represented by the
match states M1, M2, and M3. In addition, there are
insert states, labeled I, between each of the match
states, and delete states, labeled D, below each
match state. The match and insert states emit amino

Probabilistic methods and machine learning ©® 241

QO O

/YN YN NN

Begin —> M1 — M2 — M3 |— End

\ D1YD2><1D3 /

Fig. 10.5 A profile HMM representation of a protein
sequence alignment, showing match (M), insert (I), and
delete (D) states.

acid symbols to the sequence. The emission prob-
abilities will be position specific, and will reflect the
frequencies of the residues observed in the align-
ment used to train the model. The delete states
do not emit symbols. The “-” character in the
alignment signifies that the path of the sequence we
passes through the state D2 instead of M2. Residues
emitted by insert sequences have been shown in
lower case in the above alignment: e.g., the “n” in
WHEn is emitted by the I3 state. The insertion states
have connections back to themselves. Hence, any
number of residues can be inserted between two
match states: e.g., both the “e” and “r” in wHerE are
emitted by the 12 state. A “.” has been used in the
alignment to fill in the space above and below
inserted characters; it thus indicates that the path
of that sequence does not pass through an insert
state. This is distinct from “-”, which indicates that
the path does pass through a delete state.

To specify the model completely, we need to define
emission probabilities for all the match and insert
states, and transition probabilities between all
states. These can be calculated from the observed
number of amino acids in each column, and from
the observed number of transitions of each type, as
with Egs. (10.22) and (10.23) above. As we have
a large number of parameters to estimate, and as
we may not have many sequences in the alignment,
it is useful to include prior information for the para-

242 @ Chapter 10

meters. This can be done by introducing pseudocounts
or Dirichlet priors, as explained in Section 10.2.3.

Once we have all the model parameters, we can
use the model to align new sequences to it. The most
probable alignment of a sequence to the model can
be calculated using the Viterbi algorithm (Box 10.2).
This provides a convenient way to build up large
alignments starting from a relatively small set of
sequences in a seed alignment. We can also use the
Viterbi algorithm to train the model. We can estim-
ate an initial model from an initial alignment, then
calculate the most probable paths for each sequence
in the original alignment. This gives us a new ver-
sion of the alignment, which gives us a new model,
and so on, until the alignment no longer changes.
As described in Section 10.3.3, the Baum—Welch
method can also be used for training, where the
expectation values of the parameters are calculated
over all paths, rather than just the most probable
paths. In principle, it is possible to use completely
unsupervised learning with profile models, i.e., to
start with unaligned sequences. However, this is not
often done, because it can lead to trapping of the
learning algorithm in suboptimal alignments. It is
more usual to begin with a fairly good first estimate
of the alignment, and allow the training method to
refine the alignment by making small changes to the
model parameters. There are now several software
packages designed to build profile HMMs and train
them based on user-supplied alignments, in par-
ticular HMMER (Eddy 2001) and SAM (Hughey,
Karplus, and Krogh 2001).

In general, the probabilities of transitions to insert
and delete states will be smaller than the probabil-
ities of transitions to match states. This means that
there is a cost associated with putting gaps in align-
ments. Profile scoring systems, discussed in Section
9.4, use a rather ad hoc choice of gap penalties. An
advantage of profile HMMs is that the transition
probabilities are derived from the alignment itself,
thereby providing more relevant scores for the inser-
tions and deletions. Insertions will not be equally
likely at all positions, and this information will be
captured in the HMM training process.

During training, it may be necessary to change
the number of match states in the model. For

example, if more than half the sequences in the
alignment turn out to have an inserted residue at a
given position, it makes more sense to add an extra
match state to represent this position. Similarly, if
many sequences have a delete state in a given
position, it is more sensible to remove the match
state from this position and treat the few residues in
this position as insertions. Training routines can be
designed that make such changes, where necessary,
at each iteration. Another refinement of the training
process is the possibility of giving different weights
to different sequences. This is important when the
alignment used contains groups of closely related
sequences and a few outliers. If sequences are
weighted equally, the model may specialize to
describe the majority very well but the outliers very
poorly. A more general model, describing all the
sequences in the alignment reason-ably well, would
be preferable. This can be achieved by downweight-
ing closely related sequence groups (see Durbin et al.
1998 for more details).

There are several points about the architecture of
the profile model worth noting. The model shown in
Fig. 10.4(a) has no connections between insert and
delete states, which means that it is not possible to
have an inserted residue in the alignment immedi-
ately followed by a deletion. Connections of this type
can be added if desired (e.g., 10 - D1, D1 —I1 etc.),
and they were in fact included in the original pro-
file model used by Krogh et al. (1994). However,
the probabilities associated with these transitions
should be small, because if an insertion occurred
next to a gap, it would usually be more natural to
move the inserted residue into the match state, thus
eliminating both insertion and gap.

The layout shown has insertion states at the
beginning and end; thus, when a sequence is aligned
to a model, any number of unaligned residues can
be included before and after the aligned part. Essent-
ially, the alignments created will be local with respect
to the sequence (because unaligned sections can
occur before and after the match states), but global
with respect to the model (because once the match
states are entered, the path must proceed through
the whole model). The Plan7 architecture used in
HMMER (Eddy 2001) makes this more explicit, by

including states representing non-aligned residues
before and after the main profile model. A loop from
the end to the beginning is also added containing a
state for unaligned residues. This means that the
model can represent multiple occurrences of the same
domain in a protein sequence, or multiple occurrences
of the same gene on a genome. Another feature that
can be included in the Plan7 model is a transition from
the begin state of the main model to each of the inter-
nal match states, and transitions from the internal
match states to the end of the main model. This
means that paths can pass through only part of the
aligned region, making the model a local alignment
with respect to both the model and the sequence.

If we have an HMM based on a given alignment, it
is possible to search databases for other sequences
that match the model. The principle is to calculate a
log-odds score that tells us which sequences in the
database are more likely to be described by the HMM
model parameters than by a general null model of
random sequences. High-scoring sequences can be
aligned with the model, and a new model can then
be built, based on the extended sequence alignment.
The whole process can then be iterated. The Pfam
database (Bateman et al. 2002) is a library of profile
HMMs built up in this way. The library can be used
to assign new proteins to families according to which
HMM gives the highest score for the new sequence.

In general, HMMs are extremely powerful for dis-
criminating between protein families but, as with all
methods, they have certain limitations. Perhaps the
biggest concern is that an HMM will do exactly what
it is trained to do. In Pfam, models are trained by
means of largely handcrafted seed alignments,
which generally provide reliable sources of data.
However, if dissimilar sequences are fed into the
modeling process, the model parameters will adapt
to give higher likelihoods to these new sequences.
This makes it more likely that the model will match
additional incorrect sequences in the future. The
addition of new sequences to the model therefore
needs to be done with care in order to avoid progress-
ive corruption and loss of information that was in
the original seed alignment (a process known as
profile dilution). The same point was also made with
regard to PSI-BLAST in Section 7.1.3.

Probabilistic methods and machine learning ©® 243

10.5 NEURAL NETWORKS
10.5.1 The basic idea

Neuroscientists have been impressed by the complex
system of interconnected nerve cells in the brain. It is
clear that the information processing and storage
capabilities of the brain are distributed throughout a
network of cells, and that each single neuron has a
relatively simple behavior. Computer scientists have
been inspired by this idea to create artificial neural
networks (ANNSs) that can be trained to solve particu-
lar problems, many of which fall into the category
of pattern recognition. ANNs have been used very
widely and successfully in many different research
disciplines and have generated a huge literature. In
fact, most scientists in the field omit the word
“artificial”. They are motivated to use NNs as a prac-
tical means of solving their own specific problems
and are not too worried whether the network model
has any relationship to real neural systems. The
purpose of this section is to discuss how NNs can
be used to solve pattern-recognition problems in
bioinformatics.

A typical NN might look like Fig. 10.6. Circles rep-
resent individual neurons, each of which has several
inputs and one output. The output signal of each
neuron is a real number between 0 and 1. It is con-
venient to think of the neuron as being “on” when
its output is close to 1, and “off” when its output is
close to 0. The output of each neuron is a function

o

3\8\0—»
5 Z=0—
o

Output
layer

\

Hidden
Input layer

Fig. 10.6 Architecture of a typical feed-forward NN with an
input layer, a hidden layer, and an output layer.

244 @ Chapter 10

of its inputs. The network in Fig. 10.6 is termed
feed-forward, because the outputs from one layer of
neurons feed forward as inputs to the next layer
(indicated by the arrows). The signals at the input
layer (shown in black) are determined directly from
the data shown to the network.

In bioinformatics applications, the data are
usually short segments of protein or DNA sequence
(say, 10 or 20 residues or nucleotides). A sequence
can be encoded into inputs in several ways. The
input signals determine the signals produced by the
hidden layer, which in turn determine the signals of
the output layer. The output signal represents the
answer to the problem for the particular set of input
data. The simplest type of problem is a “yes” or “no”
classification. For this, we only need one output
neuron, which outputs either 1 or 0. For example,
we may want to know whether the sequence shown
to the network is a member of a class of sequences of
interest or not. If we have n output neurons, the out-
put of the network can be in 2" states, each of which
could be associated with a different meaning. The
output is often a predicted property of a single point
in the sequence, such as the central residue in an
input window, rather than a property of the whole
window (e.g., it could represent whether the central
residue is predicted to lie in an o helix). By sliding an
input window along the sequence, the network can
be used to make predictions for each residue.

The behavior of the network is determined by a set
of internal parameters that control the output of
each neuron. NNs are usually used in a supervised-
learning framework. We have a training set of
known examples of data, each with a known answer
that we want the network to give. Training a net-
work consists of choosing the internal parameters
so that the network gives the correct output for each
of the training examples (or for as many of the
examples as possible). If the network is sufficiently
complicated, it will usually be possible to train it to
give almost all correct answers on the training set.
We can then evaluate the performance of the net-
work by using a test set, also of known examples. If
the network gets a high fraction of correct answers
in the test set, then we can say that it has learned
useful general features of the training data, and that

it is able to generalize to give reliable predictions on
other sequences.

A useful review of early bioinformatics applica-
tions of NNs has been given by Hirst and Sternberg
(1992). Problems tackled include the prediction of
promoter regions in DNA and of mRNA splicing
sites, and the location of signal peptide cleavage sites
and of protein secondary structural elements, like
o helices and B turns. NNs can be used for many
different problems of this kind, provided we have
sufficient data on which to train the model.

10.5.2 Datainput

Usually in bioinformatics, the input to an NN will be
a sequence. We wish to present a window of a DNA
or protein sequence to the network and have it clas-
sify the input sequence in some way. To convert a
DNA sequence to input values, it is usual to have
four inputs, one for each base in the sequence (A, C,
G, and T). To represent a specific input sequence, a
binary code is used, where one of each group of four
inputs will be set to 1, while the other three are 0. So
a window of six DNA bases with sequence TTCGAA
could be represented by 24 inputs with values

000100010100001010001000

Protein sequences can also be encoded in this way,
using 20 inputs per residue. This results in large
networks, with large numbers of parameters to opti-
mize. The number of inputs can be reduced by using
quantitative properties of the amino acids, rather
than a binary code: e.g., Schneider and Wrede
(1993) used physicochemical properties of amino
acids, like hydrophobicity, polarity, and surface area.

Q

When real values are used as inputs, they are usu-
ally scaled into therange—1to 1, orOto 1. Aswell as
making the network simpler, using real amino acid
properties gives the network a helping hand in pat-
tern recognition: amino acids with similar proper-
ties will have similar inputs, whereas, when binary
coding is used, all the amino acids appear equally
different and the network itself has to learn any relev-
ant similarities from the training data.

In these examples, each residue in the sequence
is represented by one or more specific neurons.
However, it is also possible to use global properties
of the sequence as inputs, such as the frequencies
of the residues within the input window, or the fre-
quencies of codons in DNA sequences. For some
problems in bioinformatics, the input is not a pro-
perty of the sequence data at all: e.g., Murvai et al.
(2001) used a network for classifying proteins into
different families, where the inputs were BLAST
scores and associated statistical parameters for
matching the query sequence with the families. For
further information, the book by Wu and McLarty
(2000) contains a useful section on encoding data
for input to NNs.

10.5.3 The single neuron

The model used for a single neuron is shown in
Fig. 10.7. The inputs to the neuron are denoted y,
(wherei=1...n).Ifthe neuron is on the first layer
of a network, then the inputs represent the data.
If the neuron is in the interior of a network, then
the inputs to this neuron are the outputs of other
neurons. Each connection from an input to the
neuron j has a weight w;; associated with it. These
weights may be positive or negative in sign. The

Output
Yi=9(x)

Fig. 10.7 A single artificial neuron, 0
with several inputs and one output. The

outputis a function of the total input, 0 / g(xj)
and can either be a step function

(solid line) or a sigmoidal function o
(dotted line), asin Eq. (10.38).

j Y

Total input x;

Probabilistic methods and machine learning ©® 245

total input, x;, to neuron j is a weighted sum of the
individual inputs:

n
X, =Y w,y, (10.37)
i=1

Neuron j has an output y; that is a function of its
total input: y; = g(x;). The simplest possible output
function is a step function, where the output is O if
the input is negative, and the output is 1 if the input
is positive. It is more usual, however, to use a sig-
moidal function for g(x)), as shown in Fig. 10.7, the
most common one being

1

= - (10.38)
1+ exp(—x].)

g(x;)
This function changes smoothly from O to 1, when
the input changes from negative to positive. The
advantage of this is that the derivative dg/dx; is well
defined for the sigmoidal function, and we will need
the derivative later in the NN learning algorithm. At
the moment, the neuron “switches on” when the
input is above zero. However, we may want to intro-
duce a non-zero threshold to the neuron, so that it
only switches on when the input is above some
value, 6,. This can be done by subtracting 6, from the
total input, and using the same function g(x;) for the
output. It is convenient to write

n n
X = 2wy = 0= X wy (10.39)
i=1

i=0
This shows that the threshold can be included in the
sum as an extra input, y,,, that is set permanently to
1, with a weight Wo,; = —Gj. This extra input is known
as a bias.

10.5.4 The perceptron

A network consisting of a single output neuron with
multiple inputs, as shown in Fig. 10.7, isknown as a
perceptron. A perceptron can be trained to solve cer-
tain problems of the yes or no type: it outputs either
1 or O for any given set of input data (when we use
the sigmoidal output function, we will interpret
everything withy; > />asa 1 and withy; < '/2asa0).

246 © Chapter 10

Consider a perceptron with only two inputs. To train
the perceptron, we need a training set with examples
of input data that we know belong to class 1 and to
class 0. Data are in the form of pairs of numbers
(Y}, y%), where nlabels the n? example in the training
set. We will denote the correct output (or “target”)
for the training examples as t", which is either O or 1.

From Eq. (10.39), the total input, including the
bias, is x"=w,+ w;y} + w,y5. We have dropped
the subscript j for the output neuron because there
is only one. The output for each of the training
examples is y" = g(x™). Training consists of choosing
the weights so that y"=t" for every n, if possible.
Consider the following training set:

(yhLyy) — t"
(0,1/2)
(1,1)
(1,1/2)
(0,0)

(10.40)

W=
O

To begin, suppose we are using a step function out-
put, where the output depends only on the sign of the
input. In order for the output to be correct, we require
x" > 0 forthe examples wheret" = 1, and x" < O for the
examples where t" = 0. This gives us four inequalities:

1
w,+ —w, >0
CREEe:
wy+ wy +w, >0 (1041)

1
wy+w; + —w, <0
2
w,<0

We need to choose some values of w so that all
these inequalities are true. The diagram in Fig. 10.8
allows us to spot a solution immediately. The dotted
line has the equation

1 1
=—+= 10.42
Y,) Y ()
All points (y,.y,) above the line have

—l—ly1+y2>0 (10.43)

4 2

V1 m— 1

Fig. 10.8 Illustration of the perceptron problem defined by
Eq. (10.40). The two black points must be mapped to output
1, and the two white points must be mapped to output O.
Finding a solution consists of choosing a line that separates
the black and white points.

while the same function is less than O for all points
below the line. In other words, a solution to the prob-
lem is to set

(10.44)

Finding the network weights is equivalent to
finding a line that separates points 1 and 2 from 3
and 4. We now know how the network will behave
in future: if a new example of data (y,.y,) is put into
the network, it will output 1 if the point is above the
dotted line, and O if it is below.

From Figure 10.8, we see that there is some free-
dom to move the line up and down and to change its
slope. Any line that separates the black and white
points will give the same correct outputs on the
training data, but the outputs given to future inputs
will depend on where we put the line. If we had more
examples in the training set, this would give more
constraints on the choice of the weights, and the reli-
ability of future predictions would be better. This
example shows why we need the bias term w,.
Without this, the dotted line would have to pass

through the origin in the figure, which would not be
a correct solution.

In a general perceptron problem with N inputs,
we can consider the training examples as points in
N-dimensional space. Choosing the weights consists
of finding a surface in N — 1 dimensions that separ-
ates the two sets of points. Not all problems of the
yes—no type can be correctly solved by perceptrons.
For example, if we change the targets in Eq. (10.40)
so that points 1 and 3 should give output 1, and
points 2 and 4 should give output O, then there is no
line that will correctly separate the points, and
hence there is no choice of weights such that the net-
work will get the correct output for every example
in the training set. If a line (or hyperplane in N — 1
dimensions) does exist, then the problem in known
as linearly separable. Most interesting problems,
however, are not linearly separable. This means that
a perceptron cannot solve the problem, and we need
more complex networks with multiple layers.

Before leaving the perceptron, let us consider
what happens if we use the sigmoidal output func-
tion y" = g(x™) in Eq. (10.38), instead of the step func-
tion. In this case, the targets, t", are still O or 1, but
the outputs, y", are continuous numbers between O
and 1 that we would like to be as close as possible to O
or 1. We can define an error function, E, that meas-
ures how close the outputs are to the targets:

E=Y (y' —t") (10.45)

The logical way to choose the weights is to fix
them so that E is as small as possible. To minimize E,

we need to find weights such that aa—E =0,fori=0,
1, and 2. The choice of weights given in Eq. (10.44)
is actually the one that minimizes E in this example.
This is intuitively obvious from the symmetry of the
problem: the line shown in Fig. 10.8 goes “midway”
between the black and white points. The key point
here is that when we have a sigmoidal output func-
tion, we have an unambiguous way to define the
best choice of weights that gives a particular solu-
tion. We are not free to move the line about, as we
were with the step function.

Probabilistic methods and machine learning ©® 247

10.5.5 Multi-layer networks

A feed-forward NN of the type shown in Fig. 10.6 can
be used to solve many types of problem that are not
linearly separable and cannot be solved by percep-
trons. There can be more than one hidden layer
between the input and output layers in some cases,
although a single layer is often sufficient for many real-
istic problems. Let us suppose that there are several
output neurons, and that y} is the output of the kth
output neuron, when the n example from the train-
ing set is put into the network. We now define the
target value of the k™ neuron as ty. We are free to
choose the target patterns in any way that seems
sensible. As an example, a network with three outputs
can be used for protein structure prediction with three
categories: o helix, B strand, and loop. The target
patterns (0,0,1), (0,1,0), and (1,0,0) can be used to
represent the three categories. The same problem could
also be tackled using two output neurons, with (0,1)
and (1,0) representing o helix and B strand, and (0,0)
representing loop. The first way is probably easier to
interpret, because when the outputs have continuous
values, we can check which of the three neurons has
the highest output value in order to predict the state.

Using sigmoidal output functions for the neurons,
the error made by the network when shown the nt
input is a sum over the output neurons

=Y (g} —t))?
k

(10.46)

and the total error for the whole training set is

E=Y B
n

(10.47)

We wish to find a set of weights, w;, that minimizes
E. There is one weight for every connection in the
network. This means that E is a complex function of
many variables, and we need a numerical method
to find the minimum. A general way of minimizing
a function is called gradient descent. Beginning
with some initial guess at the set of weights, w;, we

JE
calculate E and also the partial derivatives ——

w;
with respect to each of the weights; these are the

248 ® Chapter 10

slopes of the function we are trying to minimize. The
best way to find the minimum is to go down hill. We
therefore set the new estimates of the weights, Wi; ,tobe

(10.48)

Here, 1 is a constant whose value determines the size
of the step we are making in the parameter space: its
value is not too important, but if it is too large, the
algorithm will not converge, and if it is too small,
it will be unnecessarily slow. Having updated the
weights, we can recalculate the derivatives and
repeat the process. Eventually, we will reach a set of
weights where all the derivatives are zero. This is a
minimum in E. We cannot guarantee that this is a
global minimum, however, so it is necessary to run
the minimization procedure from several starting
points and to make sure that we end up in the same
place. If so, we can be reasonably confident that we
have found the global minimum.

The gradient-descent method is a general way of
minimizing a function. The trick to applying it with
NNs is to calculate the partial derivatives. The algo-
rithm for doing this is called back-propagation, and
is explained in Box 10.4. This algorithm is due to
Rumelhart, Hinton, and Williams (1986). Although
some algebra is required to derive the result, the
final formula for the derivatives is simple, and the
method is easy to implement on a computer. Back-
propagation algorithms and related methods are
often used in practice. More information is given by
Baldi (1995) and Baldi and Brunak (2002).

10.5.6 How many neurons are necessary?

The number of neurons necessary on each layer will
depend on the complexity of the problem. Increasing
the number gives the system greater flexibility and
makes it more likely to be able to give correct answers
to each example in the test set. However, this increases
the number of free parameters to be estimated from
the training data (i.e., the weights, w;). When there
are too many neurons, the problem of overfitting may
arise. For a network to be useful, it must be able to
generalize. In other words, it must be able to learn

patternsin the training data, and then be able to spot
these patterns when they occur in other examples. If
a network is overfitting the data, it may very pre-
cisely distinguish all the examples in the training set,
but give very poor predictions on other examples. It

is very important that neural networks should be
evaluated using a test set that is distinct from the data
used for training. Good performance on the training
set isnot necessarily a predictor of good performance
on the test set. There is no good theory to tell us how

Probabilistic methods and machine learning ® 249

to design a network for a particular problem, and it is
often not known how large a network will need to be
until tests are made with real data.

The work of Schneider and Wrede (1993) pro-
vides an instructive example. Signal peptides are
short sections at the N-terminal end of certain pro-
teins that are responsible for targeting these proteins
to the secretory pathway. The signal peptides are
later cut from the protein by a signal peptidase. The
problem of Schneider and Wrede (199 3) was to pre-
dict the position of signal-peptidase cleavage sites.
The amino acid sequences in the known examples
were not very well conserved, but it was hoped that
an NN would be able to spot conserved patterns in
the amino acid properties. They used a window of 13
residues from positions —10 to +3 in the sequence
relative to the cleavage site. There was a single
output neuron that signaled 1 if a cleavage site was
predicted to be between residues —1 and 1. Inputs
were real numbers representing physico-chemical
properties of the amino acids. Four different network
designs were compared: a perceptron with one input
per residue, representing any single amino acid
property; a network with one hidden layer and one
input property per residue; a network with one hid-
den layer and several input properties per residue;
and a network with two hidden layers and several
input properties per residue.

In this study, even the simplest perceptron model
was able to make a reasonable attempt at the prob-
lem. The single, most useful amino acid property
used as input was found to be hydrophobicity, for
which the network scored 91% correct predictions
on the test set. This increased to 9 7% for the network
with a single hidden layer and one input property.
The networks with two hidden layers performed
well on the training set, but poorly on the test set,
i.e., they were overfitting the training data and could
not generalize to the test set. The number of neurons
in the hidden layers was also varied, and sometimes
overfitting occurred if this number was too large.

Signal-peptide recognition is a well-studied prob-
lem in bioinformatics. The SignalP Web server is
now available for predicting signal-peptide cleavage
sites (Nielsen et al. 1997). Two networks are used,
one to distinguish between signal peptides and non-

250 ® Chapter 10

signal peptides, and another to predict the position of
the cleavage site. The server also offers an HMM
method for the same problem. Another NN method
for signal peptides (Jagla and Schuchhardt 2000)
is worth noting because of the way the sequence
is encoded. Each amino acid is represented by two
real numbers in the same way as when physi-
cochemical properties are used. However, these
numbers are not assigned in advance. Instead, they
are treated as parameters of the model that can be
learned by the network. As well as learning to
recognize the cleavage sites, the network determines
some “pseudo properties” of the amino acids that are
most useful for predicting the cleavage sites. It was
found that two pseudo properties generated by the
network had some correlation with real properties
(hydrophobicity and chromotographic retention coef-
ficient), although this correlation was not particu-
larly strong.

A general point about NN design is that the larger
the set of training examples used, the more complex
the network can be without suffering from overfitting.
This is because the training examples put con-
straints on the model parameters, and provide extra
information with which to estimate the parameters.
When there are large numbers of training examples,
the model cannot specialize to exactly match any
particular sequence, without reducing its ability to
match other sequences. It is therefore forced to do its
best to match average consensus patterns in the whole
data set, which is what we want. With smaller train-
ing sets, it is better to stick to simpler models.

10.6 NEURAL NETWORKS AND
PROTEIN SECONDARY STRUCTURE
PREDICTION

Protein secondary structure is usually represented
by three states, o helix, strand, and loop. Note that
a B strand is a segment of a chain that may be hydro-
gen-bonded with other strands to form a § sheet, and
a loop is (by default) anything that is not an o helix
or a [strand (see Section 2.2 for some examples of
protein structures). It has been known for a long
time that different residues have different frequen-

cies in the three structural states. Scoring systems
that measure the propensity of each amino acid for
each of the states have been devised, and used as the
basis of secondary structure prediction methods
(Chou and Fasman 1978, Garnier, Osguthorpe, and
Robson 1978). These methods have had only mod-
erate success (largely because 25 years ago the data
sets available for training were too small — only 15
proteins were used to train Chou and Fasman'’s
first method, and 64 proteins were used in a later
update!). The predicted output state for each residue
is better than a random guess, but is not sufficiently
reliable to draw useful conclusions about the struc-
ture of an unknown protein. Protein structure pre-
diction is a notoriously difficult problem. We expect
the secondary structure of any given residue to be
strongly influenced by the sequence in which it finds
itself. One reason to hope that NNs will be useful
here is that they can combine information from the
whole of the input sequence window (typically each
hidden layer neuron is connected to every input
neuron). NNs should, in principle, be able to spot
patterns involving correlations in residues at differ-
ent points in the input window. Although NN train-
ing is supervised (we tell the program what the
answer is for each training example), the learning
algorithm is free to assign the weights any way it
likes; so it may be able to spot patterns that were not
obvious features visible to the human eye.

The most straightforward approach to secondary
structure prediction is to represent each input amino
acid by 20 binary inputs, and to use three output
neurons, with target patterns (0,0,1), (0,1,0), and
(1,0,0) to represent the three structural states pos-
sible for the central residue in the window, as dis-
cussed previously. There have been many variants
of this idea; Wu and McLarty (2000) have given a
good review of these. One of the earliest and most
informative papers using this method is that of Qian
and Sejnowski (1988). An important additional fea-
ture introduced by these authors is the use of a sec-
ond network to filter the output of the first. The
second network uses the set of three output numbers
for each residue from the first network as its inputs.
Once again, there are three outputs for the second
stage that predict the structural state of the central

residue. The second stage is able to correct some of
the mistakes made by the first stage; in particular, it
is able to learn that when the first stage predicts
small numbers of residues of one type in the middle
of a sequence of a second type (e.g., a couple of hel-
ical residues in the middle of a B strand) this should
really be an unbroken sequence of the second type.
An accuracy of 64% correctly predicted residues in
the training set was obtained in this study.

Qian and Sejnowski (1988) show how the aver-
age magnitude of the weights in their network
changes during the training process. Large weight
magnitudes (of either positive or negative sign) indic-
ate that the feature on the corresponding input has
an important role in predicting the target output.
The magnitude of the important weights therefore
grows during training. Input features that are essen-
tially independent of the target output merely put
noise into the network. We expect training to reduce
the magnitudes of the corresponding weights. In this
study, it was found that weights corresponding to
the few residues in the center of the input window
grew more rapidly during training than those corres-
ponding to the outer residues in the window. This is
intuitive, because we would expect the state of the
central residue to be more sensitive to its immediate
neighbors than to residues further away along the
sequence.

In a binary encoding, one input of each group of
20 corresponds to each amino acid. Qian and
Sejnowski (1988) also show how the weights for
each amino acid vary with the position in the win-
dow. Some amino acids are stronger predictors of
secondary structure than others: e.g., for proline,
the weights corresponding to the o-helix output are
strongly negative, and those corresponding to the
loop output are positive, indicating that proline
rarely occurs in helices and usually occurs in loops
(proline has an unusual chemical structure that
does not usually fit into helical geometry (Fig. 2.6),
although TM domains in membrane proteins are an
exception to this); other amino acids, like alanine,
leucine, and methionine, have positive weights for
the a-helix output; and some of the weights show
patterns that are not symmetric about the central
residue, meaning that the influences of upstream and

Probabilistic methods and machine learning ® 251

downstream residues on the central residue are not
necessarily equivalent. Examination of the trained
values of the weights reveals the information the
network is able to learn about the statistics of protein
sequences. This study is also illustrative of the prob-
lem of overfitting. A network with 40 neurons in the
hidden layer can be trained to predict the structures
in the training set much more accurately than a net-
work without a hidden layer. Unfortunately, the
more complex network performs no better than the
simpler one on the test set.

A considerable improvement in prediction accur-
acy was achieved by Rost and Sander (1993). Their
network, known as PHDsec, uses profiles as input
rather than single sequences. The network is trained
using alignments of proteins with known consensus
secondary structures. Twenty inputs per residue are
used for the 20 amino acid frequencies at each posi-
tion in the alignment. Additional inputs detail the
fraction of insertions and deletions. When a new
sequence is submitted to the network, an automatic
multiple alignment is made by searching Swiss-Prot,
and a profile is made from this alignment for input to
the network. For each position in the window, there
is an extra spacer input whose value is set to 1, if this
position is beyond the end of the protein. This will
occur if the central residue for which the prediction
is made is near the end of the sequence. Global infor-
mation about the whole of the protein is also used as
input: this includes the total length of the protein,
the distance of the central residue of the window
from each end of the protein, and the frequencies
of the 20 amino acids in the whole protein. Rost
and Sander (1993) also use the idea of a jury of net-
works. Networks trained in slightly different ways
may give different predictions. It is therefore poss-
ible to combine the outputs of several different net-
works by some sort of a voting procedure to give a
single final output. This hopefully reduces problems
of noise and overfitting in the outputs of any one of
the networks used.

For a long time, PHDsec has been one of the best
available methods for protein secondary struc-
ture prediction, with a claim of over 70% accuracy
in assignment of residues to structural states. Sequ-
ences can be automatically submitted to PHDsec via

252 @ Chapter 10

the PredictProtein server (Rost 2000). Two other
groups have recently produced NN methods that
claim small but noticeable improvements in accur-
acy. Jones (1999) obtained 76—8% correctly pre-
dicted residues, and Petersen et al. (2000) reached
77-80%; both methods use profiles as input that are
constructed automatically by PSI-BLAST.

Percentage accuracies of different methods are
directly influenced by the choice of sequences used
to test them. In principle, there should be no similar-
ity between sequences in the training and test sets.
If the test sequences are homologous to the training
sequences, then we expect the performance on the
test set to be falsely high, and to overestimate the
performance to be expected in future. Most resear-
chers recognize this point and go to lengths to be fair
in assessing their results. However, it is far from
clear what criterion should be used to consider
sequences as being independent of one another. Real
sequences will be found with a continuous range of
similarities. At what level do we make the cut-off?
Should we use a cut-off based on sequence similarity
or structural similarity? There is no single, easy
answer to this.

The protein structure community has become
very organized in assessing methods of structure
prediction, both at the secondary and tertiary levels.
In view of the general difficulty of the problem, the
large number of alternative approaches, and the dis-
appointingly poor performance of many methods,
a series of large-scale experiments, called CASP
(Critical Assessment of Structure Prediction), has
been run allowing different research groups to test
their methods on the same sequences. The CASP
organizers release the sequences of proteins whose
structures are about to be determined experiment-
ally. Structure prediction groups submit their pre-
dictions to the organizers prior to publication of the
experimental structure. Results of different groups
can then be compared when the true structures are
published. The latest two experiments are CASP4
(Moult etal. 2001) and CASP5 (Moult et al. 2003).

Although we touch on structure prediction at
several points in this book, a thorough review of all
possible methods is beyond our current scope. In the
context of this chapter on pattern recognition, a

general point about prediction methods is that the
most successful are knowledge based —i.e., they look
for similarities to sequences of known structure, or
they use training sets of known examples (as with
machine-learning approaches). Ab initio methods,
beginning only with a single sequence and funda-
mentals, such as interatomic forces, tend to be less
successful. Thus, pattern-recognition techniques
are providing an answer to the practical question of
structure prediction (what is the structure of this

protein?) and gradual improvements are being made.
However, Nature does not have access to sets of
training data or profiles of PSI-BLAST hits. Even if
a method, such as an NN, can be developed with
100% accuracy, we will still not really understand
the fundamental question of how a protein folds,
unless we also understand the problem from an ab
initio point of view. A somewhat dissatisfying aspect
of NNs is that it is not always possible to say exactly
why they work, even when they do.

Probabilistic methods and machine learning ® 253

REFERENCES

Baldi, P. 1995. Gradient-descent learning algorithm over-
view: A general dynamical systems perspective. IEEE
Transactions on Neural Networks, 6: 182-95.

Baldi, P. and Brunak, S. 2002. Bioinformatics: The Machine
Learning Approach (2nd Edition). Cambridge, MA: MIT
Press.

Bateman, A., Birney, E., Cerruti, L., Durbin, R., Etwiller, L.,
Eddy, S.R., Griffiths-Jones, S., Howe, K.L., Marshall, M.,
and Sonnhammer, E.L.L. 2002. The Pfam protein fam-
ilies database. Nucleic Acids Research, 30: 276-80.

Chou, P.Y. and Fasman, G.D. 1978. Prediction of the sec-
ondary structure of proteins from their amino acid
sequence. Advances in Enzymology, 47: 45-148.

Churchill, G.A. 1989. Stochastic models for heterogene-
ous DNA sequences. Bulletin of Mathematical Biology,
51:79-94.

Delorenzi, M. and Speed, T. 2002. An HMM model for
coiled-coil domains and a comparison with PSSM-based
predictions. Bioinformatics, 18(4): 195-202.

Durbin, R., Eddy, S.R., Krogh, A., and Mitchison, G. 1998.
Biological Sequence Analysis: Probabilistic Models of
Proteins and Nucleic Acids. Cambridge, UK: Cambridge
University Press.

Eddy, S. 2001. HMMER: Profile hidden Markov models for
biological sequence analysis. http://hmmer.wustl.edu/.

Garnier, J., Osguthorpe, D.]J., and Robson, B. 1978. Ana-
lysis of the accuracy and implications of simple methods
for predicting the secondary structure of globular pro-
teins. Journal of Molecular Biology, 120: 97-120.

Hirst,].D. and Sternberg, M.].E. 1992. Prediction of struc-
tural and functional features of protein and nucleic acid
sequences by artificial neural networks. Biochemistry,
31:7211-18.

Hughey, R., Karplus, K., and Krogh, A. 2001. SAM:
Sequence alignment and modelling software system.
http://www.cse.ucsc.edu/research/compbio/sam.html.

Krogh, A., Larsson, B., von Heijne, G., and Sonnhammer,
E.L.L. 2001. Predicting transmembrane protein topology
with a hidden Markov model: Application to complete
genomes. Journal of Molecular Biology, 305: 567—-80.

Jagla, B. and Schuchhardt, J. 2000. Adaptive encoding
neural networks for the recognition of human signal
peptide cleavage sites. Bioinformatics, 16: 245-50.

254 @ Chapter 10

Jones, D.T. 1999. Protein secondary structure prediction
based on position-specific scoring matrices. Journal of
Molecular Biology, 292:195-202.

Lupas, A., Vandyke, M., and Stock, J. 1991. Predicting coiled
coils from protein sequences. Science, 252:1162-4.

Moult, J., Fidelis, K., Zemla, A., and Hubbard, T. 2001.
Critical assessment of methods of protein structure pre-
diction (CASP): Round IV. Proteins, Suppl. 5, 2-7.

Moult, J., Fidelis, K., Zemla, A., and Hubbard, T. 2003.
Critical assessment of methods of protein structure pre-
diction (CASP): Round V. Proteins, Suppl. 6, 334-9.

Murvai, J., Vlahovicek, K., Szepesvari, C., and Pongor, S.
2001. Prediction of protein functional domains from
sequences using artificial neural networks. Genome
Research,11:1410-17.

Nicolas, P., Bize, L., Muri, F., Hoebeke, M., Rodolphe, F.,
Ehrlich, S.D., Prum, B., and Bessieres, P. 2002. Min-
ing Bacillus subtilis chromosome heterogeneities using
hidden Markov models. Nucleic Acids Research, 30:
1418-26.

Nielsen, H., Engelbrecht, J., Brunak, S., and von Heijne, G.
1997. Identification of prokaryotic and eukaryotic sig-
nal peptides and prediction of their cleavage sites.
Protein Engineering, 10: 1-6. http://www.cbs.dtu.dk/
services/SignalP-2.0/

Qian, N. and Sejnowski, T.J. 1988. Predicting the sec-
ondary structure of globular proteins using neural
network models. Journal of Molecular Biology, 202:
865-84.

Rost, B. 2000. The predict protein server. http://www.embl-
heidelberg.de/predictprotein/predictprotein.html.

Rost, B. and Sander, C.J. 199 3. Improved prediction of pro-
tein secondary structure by use of sequence profiles and
neural networks. Proceedings of the National Academy of
Sciences USA, 90: 7558—-62.

Rumelhart, D.E., Hinton, G.E., and Williams, R.J. 1986.
Learning representations by back-propagating errors.
Nature,323: 533-6.

Schneider, G. and Wrede, P. 1993. Development of
artificial neural filters for pattern recognition in protein
sequences. Journal of Molecular Evolution, 36: 586-95.

Whu, C.H. and McLarty, J.W. 2000. Neural Networks and
Genome Informatics. Amsterdam: Elsevier.

Probabilistic methods and machine learning ® 255

256 ® Chapter 10

Further topics in
molecular evolution
and phylogenetics

CHAPTER

CHAPTER PREVIEW

This chapter is a mixed bag of topics tl
els and phylogenetic methods disc
RNA sequence evolution, as rRN
studies. We discuss the com
structure, and also consid
mization programs. W
evolution in RNA. C
parameters in evi

11.1 RNA STRUCTURE AND
EVOLUTION

11.1.1 Conservation of RNA secondary structures
during evolution

Some of the most important genes for evolutionary
studies are the small and large subunit rRNAs.
These genes occur in all organisms, including both
prokaryotic and eukaryotic genomes, and also in
mitochondrial and chloroplast genomes. A typical
example of a small subunit rRNA structure is shown
in Plate 11.1. Each dot represents one nucleotide,
and the paired, ladder-like, regions are actually dou-
ble helices in the 3D configuration (as discussed in
Chapter 2). The secondary-structure diagram shows
which bases are paired, but does not clearly show
the relative positions of the different parts of the
molecule in 3D. The color scheme indicates the

Further topics in molecular evolution and phylogenetics

degree of variability of the
base at this position in a large
set of bacterial sequences.
Although some sites are com-
pletely conserved, other parts
are quite variable in sequence.
What is striking, however, is
that the secondary structure
changes very little between
species. For almost all the
helices shown in the E. coli
structure, it is possible to find
helices at the same molecular
position in other species, even
if their base sequences differ.
The typical length of this gene in bacteria is 1,500.
In eukaryotes, it is significantly longer (up to 2,000),
and in mitochondria it is significantly shorter
(~950). With respect to the structure shown in Plate
11.1, there are significant numbers of insertions
in the eukaryotic structure and deletions in the
mitochondria. Nevertheless, the core part of the
structure contains many helices that are clearly
homologous between all three types of sequence.
It is instructive to compare the structure diagrams
from different organisms and organelles. These can
be downloaded from either the Comparative RNA
Web site (http://www.rna.icmb.utexas.edu/) or the
European rRNA database (http://oberon.fvms.
ugent.be:8080/rRNA/index.html). Owing to the
length variation, rRNA genes have several different
names. Small subunit rRNA is called 16S in bac-
teria, 18S in eukaryotes, and 128 in mitochondria.

® 257

Large subunit rRNA is called 23S in bacteria, 28S in
eukaryotes, and (unfortunately!) 16S in mitochon-
dria. The S numbers are sedimentation coefficients,
and are essentially measurements of the size of the
molecule. Despite the different numbers, there are
only two types of gene, which we will call the small
subunit and large subunit rRNAs — henceforward,
SSU and LSU, respectively.

SSU rRNA has been sequenced in a very wide
range of organisms, because it is extremely informat-
ive in phylogenetic studies. It is an essential gene
under strong stabilizing selection, and therefore it
evolves rather slowly (at least, the core parts of the
molecule evolve slowly). This means that sequences
from quite divergent organisms can be aligned with
reasonable confidence. As we have seen in previous
chapters, it is often necessary to refine automatically
produced sequence alignments manually. The con-
served secondary structure in rRNA is an important
source of biological information that can be used
when constructing RNA alignments.

SSU rRNA became very popular in phylogenetics
owing to the remarkable discovery, made very early
on, of archaea, the third domain of life. Woese and
Fox (1977) compared SSU rRNA from a range of
species using electrophoresis, before full sequences
of these genes were available. They used a ribonucle-
ase enzyme to break the gene into oligonucleotide
fragments, and separated the fragments by elec-
trophoresis to produce a characteristic fingerprint
for each species. They defined a similarity score for
two species that was a measure of the fraction of
oligonucleotide fragments shared by the two species.
This study showed that, rather than there being two
fundamental types of organism, prokaryotes and
eukaryotes, as had previously been supposed, there
were in fact three. The prokaryotes were divided into
two domains, now called bacteria and archaea,
which were as different from each other as they were
from eukaryotes. This division stood the test of time,
and is clearly shown in phylogenetic trees using full
SSU rRNA sequences (Woese, Kandler, and Wheelis
1990). The phylogenetic tree of SSU rRNA is fre-
quently used for studying the relationship between
the major groups of bacteria and archaea, and also
for the early branching groups of eukaryotes. Infor-

258 ® Chapter11

mation is now also available from some protein-
coding genes for these ancient parts of the tree of life,
but few protein-coding genes are as reliable and in-
formative as rRNA for these questions. Thus, rRNA
gets to the parts of the tree that other genes cannot
reach, and the rRNA phylogeny is often treated as
a standard to which the phylogenies of other genes
are compared (see also Section 12.1).

11.1.2 Compensatory substitutions and the
comparative method

The structures of SSU and LSU rRNA are obtained
using what is referred to as “the comparative
method”. This involves examining sequence align-
ments of RNA genes to find pairs of sites that covary
in a non-random fashion. To see how this works,
we will consider tRNA. The cloverleaf structure of
a typical tRNA molecule was shown in Fig. 2.4.
Figure 11.1(a) shows an alignment of a set of tRNA
genes (these happen to be mitochondrial tRNA-Leu
genes). The gray shading illustrates conservation of
sequence between species. The three bases marked X
denote the position of the anticodon. The secondary-
structure pattern is denoted with bracket notation.
The left and right sides of brackets should be paired
up in a “nested” fashion, in the same way as a math-
ematical expression or a computer program. The
secondary structure is virtually identical in all these
species. The structure is essential to the function of
the molecule, and is thus conserved during evolu-
tion. Nevertheless the sequence is able to evolve
while the secondary structure remains fixed, as we
described above for rRNA.

Figure 11.1(b) shows the part of the alignment
from the two ends of the sequence that form the
seven base-pair acceptor stem of the tRNA. The Ts
from the DNA gene alignment have been changed to
Us, to illustrate the pairing in the RNA molecule.
The rabbit sequence has matching Watson—Crick
pairs in all seven positions (AU or CG pairs). Pairs in
the other sequences that differ from the rabbit
sequence have been shaded. For example, in Pair 1,
most of the species have a GC pair, but the loach has
an AU pair, and the shark a GU. Note that GU pairs
are less stable than Watson—Crick pairs, but they

(a)

*

Structure (
Shark E
Loach : A
Cod :
Frog H
Alligator :
Rhinoceros :
Hedgehog
Human
Rabbit A
g ta tggcagagcc gg
(b)
CCCeeee)))))))
1234567 7654321
Shark GuUBAGE Ucu@arU
Loach BGuarcH EcuurBE
Cod GUUAGEG Clcuaac
Frog CEUAGEG CGCUARC
Alligator cBuaGcly EBccuafic
Rhinoceros GUUAGGH [cCuaac
Hedgehog cuuaacH [cuuaac
Human cuuaAaCGH [cuuaac
Rabbit GUUAAGG CCUUAAC

40 *

75
74
74
: 75
: 75
: 75
: 75
: 75
: 75

Fig. 11.1 (a) Alignment of tRNA-Leu genes from mitochondrial genomes, with conserved secondary structure illustrated
using bracket notation. Gray-scale shading illustrates sequence conservation. (b) Alignment of the two halves of the aminoacyl
acceptor stem of the tRNA, with shading added to illustrate compensatory substitutions.

occur with fairly high frequency (a few percent) in
helical regions of RNA structures, and they are usu-
ally treated as matching pairs. At Pair 2, most
species have a UA pair, but there are two species
with a CG pair, and the frog has a mismatch CA.
Mismatches like this are rare in regions where the
secondary structure is strongly conserved. When
comparing RNA sequences from different species,
we often find that substitutions have occurred at
both sides of a pair in such a way that the pair can
still form. These are referred to as compensatory sub-
stitutions. There are many examples of this in Fig.
11.1(b). We know that mutation rates are extremely
small, so it is unlikely that both mutations occurred
at the same time in the same copy of the gene. More
likely, a mutation in one side of the pair occurred
some time prior to the second. The first mutation
would have disrupted the structure and would prob-
ably have been slightly deleterious. The second
mutation would then have compensated for the
error made by the first. When we see compensatory
mutations in an alignment, this is fairly strong

Further topics in molecular evolution and phylogenetics

evidence that the two sites are paired in the sec-
ondary structure.

In passing, we note two interesting things about
tRNA-Leu genes. Mutations in human mitochon-
drial tRNAs result in a large number of pathological
conditions. The mitomap database catalogs human
mitochondrial mutations, and includes a diagram
of tRNA-Leu (http://www.mitomap.org/mitomap/
tRNAleu.pdf) showing the cloverleaf secondary
structure, together with many point mutations that
are known to give rise to disease. The story here is
very similar to the example of the BRCA1 gene dis-
cussed in Section 3.3. Mutations occur essentially
randomly all over a gene, and most of these will
be deleterious. We see evidence for this when we
sequence lots of rare variants of the gene within the
human population. When we look at an alignment
of genes from different species, as in Fig. 11.1(a), we
only see those changes that have survived the action
of natural selection; hence, we see conservative
changes that do not disrupt the structure and func-
tion of the molecule. These principles apply to RNA

® 259

genes and protein-coding genes in much the same
way. The second interesting thing about tRNA-Leu
is that there are two distinct versions of these genes
in almost all animal mitochondrial genomes: one,
with anticodon UAG, translates the four-codon fam-
ily CUN; the other, with anticodon UAA, translates
the two-codon family UUR. These two genes usually
differ at several points in the sequence, indicating
that they have been independent for a long time.
However, in some species, the two genes are almost
identical, except for the anticodon itself. Thus, it is
possible for one type of tRNA to evolve into the other
by an anticodon mutation. Using a combination of
phylogenetics and analysis of mitochondrial gene
order, we have shown that this has occurred at least
five times within the known set of complete mito-
chondrial genomes (Higgs et al. 2003).

When sequences are available for an RNA gene
from a number of different species, the comparative
method provides an excellent way of deducing the
secondary structure (Woese and Pace 1993, Gutell
et al. 1992, Gutell 1996). Programs are available
that compare pairs of sites in an alignment to see
if changes in one site are accompanied by changes
in another more often than would be expected by
chance. If so, we say that these sites covary. If the
covariation is such that the base-pairing ability is
maintained, we consider these sites to form part of
a helix.

The first comparative models of rRNA structure
were made in the early 1980s, when only a few
sequences were available. These have been gradu-
ally modified and improved, and the current ones
use information from around 7,000 species for SSU
and 1,000 species for LSU. Gutell, Lee, and Cannone
(2002) have compared the models from 1980 with
those from 1999. For SSU rRNA, the current model
contains 478 pairs, while the original contained
only 353. This is because the method only makes
predictions where there is significant covariation
of sites. Trends of covariation are less significant
and more difficult to spot when there are fewer
sequences. Hence, there were areas left as unstruc-
tured in the original model, in which paired regions
can now be identified with the larger data set. Of the
353 pairs originally predicted, 284 (80%) are still

260 ® Chapter1l1

present in the current model. This shows that a large
number of helical regions can be identified with only
a small number of sequences.

For a long time, the secondary-structure models
were known but tertiary structures were not. This
has changed recently with the crystallization of the
small and large ribosomal subunits (Wimberly et al.
2000, Ban et al. 2000). Gutell et al. (2002) com-
pared the current secondary structures deduced by
the comparative method with the positions of the
base pairs in the crystal structures. They found that
97% of the base pairs predicted in the model were
present in the crystal structures. This is a remark-
able vindication of the method, and demonstrates
how powerful sequence analysis techniques can be.
The other 3% are false positives, i.e., they are pre-
dicted to be present but are not actually present.
Although this number is small, the false-negative
rate is somewhat larger. Approximately 25% of the
base pairs in the crystal structures are not present in
the model. The false-negative pairs show no covaria-
tion (e.g., some are completely conserved) and often
consist of non-canonical base pairs, or of single pairs
that are not part of standard helices. Thus, the
comparative method does just about as well as it is
possible to do in identifying the standard helices. In
some ways, this comes as no surprise, because the
comparative structures have long been taken as
the reference by which to judge other structure-
prediction techniques (such as the minimum free
energy folding programs discussed below), because
it was assumed they were good approximations to
the true structure.

11.1.3 Secondary structure basics

In the next few sections, we will turn to the pre-
diction of RNA secondary structure from sequences,
using thermodynamic methods that look for the
minimum free energy structure. Thermodynamic
structure-prediction methods cannot really be
classed as a “topic in molecular evolution”; how-
ever, they find their way into this chapter because
we wish to keep the whole discussion of RNA struc-
ture in one place. The main algorithm in this categ-
ory uses the dynamic programming (or recursion

Multi-branched Internal Hairpin
loop loop loop
AGU, cUCc cCUC
FYSTTTT eReevY marever
GACCGUC CGCCGC GUG GACU GC
A A ApATTTA Can
C-G
Fig. 11.2 Secondary structure of a G-C Bulge
short RNA molecule illustrating the AG_ CG

different types of loop structure.

relation) method that we already saw for sequence
alignment in Chapter 6. Thus, this topic certainly
merits inclusion somewhere in a bioinformatics
textbook. We also wish to highlight how thermody-
namic factors influence the way a sequence evolves,
so it will be useful to consider thermodynamic and
evolutionary aspects of RNA together.

Figure 11.2 shows an example of a secondary
structure illustrating the nomenclature for the
different types of loop that can occur: hairpins
(connecting the two sides of a single helix); bulges
(where unpaired bases are inserted into one strand
of a double helix); internal loops (connecting two
helices); and multi-branched loops (connecting
three or more helices).

A secondary structure can be thought of as a list of
the base pairs present in the structure. To form a
valid secondary structure, base pairs must satisfy

(@ (b)

several constraints. Let the bases in a sequence be
numbered 1 to N. Suppose that bases i and j in the
sequence are complementary, and that j > i. There
must usually be at least three unpaired bases in a
hairpin loop, so the i — j pair can form ifj — i > 4. Let
bases k and I form another allowed pair. We want to
know whether the two pairs are compatible with
each other, i.e., whether the two pairs can form at
the same time. A base cannot pair with more than
one other base at a time, hence for the pairs to be
compatible, i, j, k, and I must all be different bases.
Pairs are compatible if they are in a side-by-side
arrangement, as in Fig. 11.3(a), wherei<j<k<],
or if one pair is nested within the other, as in
Fig. 11.3(b), where i<k<I<j. The third case,
Fig. 11.3(c), where the pairs are interlocking so that
i<k<j<l, is known as a pseudoknot. Such pairs
are usually assumed to be incompatible, because

©

Fig. 11.3 Three possible relative positions of two RNA base pairs i —j and k— . Diagrams (a) and (b) show compatible pairs.
Diagram (c) is a type of pseudoknot, and is usually excluded in secondary-structure prediction programs.

Further topics in molecular evolution and phylogenetics

® 261

pseudoknot pairs are observed to be relatively infre-
quent in real structures and the most commonly
used dynamic programming routines cannot deal
with them. Thus, for our purposes, an allowed sec-
ondary structure is a set of base pairs that are com-
patible with each other according to case (a) or (b).

Although secondary-structure diagrams give us
no information about the positions of parts of the
molecule in 3D, they are quite informative about
the accessibility of different parts of a molecule and
the positioning of sites of interaction with other
molecules. It is usually argued that the secondary
structure forms first during RNA folding, that the
helices and loops are well established before they are
arranged into a tertiary structure (for more details
see Tinoco and Bustamente 1999, and Higgs 2000).
Therefore, the computational algorithms that try to
find secondary structures can (hopefully) ignore ter-
tiary structure. Tertiary structure will not be consid-
ered further in this book.

11.1.4 Maximizing base pairing

As a general rule, we expect macromolecules to fold
into low-energy, thermodynamically stable struc-
tures. For RNAs, the energy is lowered when base
pairs are formed. Therefore, the simplest rule for sec-
ondary-structure prediction in RNAs is to determine
the structure with the maximum possible number of
base pairs. The algorithm for doing this (Nussinov
and Jacobson 1980) will be described here in detail,
because it is the basis on which more accurate fold-
ing routines are built. For this algorithm, it is useful
to think of each base pair as contributing an energy
of —1 unit to the total energy of the structure. This
means that finding the minimum energy structure is
the same as finding the structure with the most base
pairs.

Let g; be the energy of the bond between bases i
and j, which is set to —1 if the bases are complement-

262 ® Chapter1l

ary, and to +eo if they are not complementary, to
prevent the formation of disallowed base pairs. Let
E(i,j) be the minimum energy of the part of the
sequence from bases i to j inclusive. We wish to cal-
culate the minimum energy of the whole sequence,
E(1,N). It can be shown that the number of possible
secondary structures for a given RNA sequence
increases exponentially with the length of the mole-
cule. However, calculation of the minimum energy
structure can be done in polynomial time using
dynamic programming. As with sequence align-
ment, the method works by writing a recursion rela-
tion that breaks down a large problem into a set of
smaller problems. In Fig. 11.4, the dotted line from i
to j represents the minimum energy structure of this
part of the molecule, which has energy E(i,j). To
break this down, we consider the two possibilities
illustrated on the right of Fig. 11.4. Either the final
base j is unpaired (first diagram on the right), or it is
paired to some other base k (second diagram on the
right). In the first case, the energy is E(i,j — 1), because
base j contributes nothing to the energy. In the second
case, the pair k — j divides the molecule into a section
fromitok — 1, and a section in the loop from k + 1 to
j— 1. As pseudoknots are forbidden, it is not possible
for pairs to form between these two sections of the
molecule. The minimum possible energy, given that
k and j are paired, is therefore the sum of the mini-
mum energies of the two sections, plus the energy €y
of the new pair. The recursion is therefore:

o E(i,j—1)
E(i,j) = min mkm E(ik—1)+ E(k+1j-1) +g

(11.1)

where the first min means that we are to take the
minimum of the structures, where j is either
unpaired or paired, and the min over k means that
we are to calculate the minimum possible structure,

Fig. 11.4 Tllustration of the
dynamic programming algorithm
for maximizing the number of base
pairs in an RNA secondary structure
(seeEq.(11.1)).

with j paired, by considering all possible bases, k,
with which it could pair. The allowed rangeisi < k <
j — 4. This means that the minimum energy of any
chain segment can always be expressed in terms of
the minimum energies of smaller segments. Before
we can start using the recursion, we need to define
the initial conditions. We can set E(i,j) = O for all
pairs, where j — i < 4, because no pairs are possible
in these very short sequences. Also, to make the
formula work in the case where k=1, we need to
define E(i,i — 1) = O for convenience, for each value
of i. This is now sufficient to build up recursively to
the minimum energy of the whole sequence.

Of course, we also want to know the minimum
energy structure, not just the value of the minimum
energy. This is analogous to the alignment problem,
where we are more interested in the alignment itself
than the score of the optimal alignment. To work out
the structure, we need to use a pointer array, B(i,j),
that can be filled in at the same time E(i,j) is cal-
culated. If the best option is to pair j with some
particular base h, then B(i,j) is set to h, while if the
best option is to leave j unpaired, then B(i,j) is set
to 0. After completing the recursion, we can work
back through the B array to reconstruct the optimal
structure.

11.1.5 More realistic folding routines

The structure with the maximum number of base
pairs is usually quite different from the structure of a
real RNA. To obtain more realistic structure predic-
tions, we need to know more about the energies
involved in RNA structure formation. When an
RNA helix forms, the energy of the molecule is low-
ered, owing to the attractive interactions between
the two strands. The entropy of the molecule is also
reduced, because the single strands lose their free-
dom of motion and flexibility when they are bound
to each other in a double helix. The free energy
change, AG, of helix formation is the combination of
the energy and entropy changes. At low temper-
atures, AG is negative, i.e., the helix is stable. At
higher temperatures, AG is positive, i.e., the helix is
unstable. Most RNA helices of three or more base
pairs are stable at body temperature, but if an RNA

Further topics in molecular evolution and phylogenetics

molecule is heated by a few tens of degrees, then the
secondary structure will melt, i.e., the helical ele-
ments will turn back into single strands.

The free energy of helix formation can be measured
in experiments with short nucleotide sequences
(Freier et al. 1986, SantaLucia and Turner 1998),
using either calorimetry or optical absorption meth-
ods. There are hydrogen bonds between the two
bases in each pair, bonding the helix together.
However, helix formation is cooperative: the base
pairs are not independent of one another. Much of
the stability of the helix comes from attractive stack-
ing interactions between successive base pairs,
which are in roughly parallel planes. When calcu-
lating the free energy of the helix, there is a free
energy term for each two successive base pairs. In
the example below, we have an AU stacked with a
CG, a CG with a CG, and a CG with a GC.

5" -A-C-C-G- 3’
3’ -U-G-G-C- %’

Generally, GC pairs are more stable (i.e., AG is more
negative) than AU pairs, but it should be remem-
bered that, because of stacking interactions, the free
energy of a helix is dependent on the sequence of
base pairs in the helix and not just on the numbers
of base pairs of each type. GU pairs are usually less
stable than either AU or GC pairs. Other types of pair
occurring in the middle of helices are usually un-
stable (i.e., they give a positive contribution to AG).

There are also free energy penalties associated
with loops, owing to the loss in entropy of the chain
when the loop ends are constrained. Some loop free
energies have been measured experimentally. In
general, loop parameters are known with lower
accuracy than helix parameters (SantaLucia and
Turner 1998), and there are some aspects, such as
multi-branched loops, about which there are no
thermodynamic data. It is usually assumed that the
loop free energies depend on the number of unpaired
bases in the loop, but not on the base sequence.
Tetraloops are exceptions to this. These are par-
ticular sequences of four single-stranded bases (e.g.,
GNRA, where N is any base, and R is a purine) that
occur frequently in length-four hairpin loops, and

® 263

tRNA (mitochondria)

tRNA (bacteria and euka
tRNA (archaea)
rRNA (bacteria)

that have increased thermodynamic stability be-
cause of interactions between the unpaired bases.

By adding the contributions from all the helices and
loops, we can assign a free energy to any given second-
ary structure. If the molecule is in equilibrium, we
expect it to be in its most stable state most of the time,
i.e., the minimum free energy structure. Dynamic pro-
gramming methods have been developed to deter-
mine the minimum free energy structure using the
measured free energy parameters (Waterman and
Smith 1986, Zuker 1989) and have been imple-
mented in a number of freely available software pack-
ages, such as mfold (Zuker 1998) and the Vienna
RNA package (Hofacker et al. 1994). The recursion
relations used in these programs are considerably
more complicated, because they have to account for
penalties for the formation of loops of different types,
and there are many special cases to be considered.
Nevertheless, the algorithms remain efficient, and
still scale as N3 for the full energy parameters.

11.1.6 The influence of thermodynamics on RNA
sequence evolution

Formolecules like tRNA or rRNA to function correctly,
they must adopt structures that are thermodynamic-
ally stable, rather than continually fluctuating be-
tween many, very different structures. We would
expect different RN A sequences to differ with respect
to the stabilities of their folded states. If thermo-
dynamic stability is important, sequences with high
stability should be selected during evolution. This
means that the sequences of real and random mole-
cules may differ in their thermodynamic properties,
and should show evidence of the action of selection.
One of the most important factors influencing the
stability of RNA secondary structure is the fraction

264 © Chapterll

Table 11.1 Comparison of
frequencies of G and C bases averaged
over the whole RNA sequence with
frequencies averaged only over helical
regions. Data from Higgs (2000).

of G and C bases in the sequence, because helices
with larger numbers of GC base pairs usually have
more negative free energies. The percentage of G+C
in different sequences, and in different organisms,
varies considerably, owing to the different muta-
tional biases in different organisms. If there were no
selection acting, the G+C content would tend to an
equilibrium value determined only by the rates of
mutation to and from the different bases. One piece
of evidence that suggests selection is acting on G+C
content, as well as mutation, is shown in Table 11.1.
Here, we compare the mean frequencies of G and C
bases in large sets of RNA genes. The frequency of
G+C, averaged over the whole sequences, varies
considerably between the different sequence sets.
However, in each case, the frequency of G+C in the
helical regions is substantially larger than the aver-
age over the whole molecule, suggesting that selec-
tion prefers G and C bases in helices, and that this
trend is consistent, despite the different mutational
biases in the different groups.

In Section 11.1.2, we discussed the compensatory
substitutions that occur in the helical regions of RNA
sequences with conserved secondary structure, like
tRNAs and rRNAs. A substitution in one side of a
helix is often accompanied by a compensatory sub-
stitution in the other. This means that the two sites
evolved in a correlated way. Several evolutionary
models have been proposed to describe the evolution
of such paired sites. Savill, Hoyle, and Higgs (2001)
carried out a systematic comparison of these models,
using likelihood ratio tests to distinguish the ability
of the models to describe sequence data (see Section
11.2.1 for a description of likelihood ratio tests). One
of the most useful models was found to be the gen-
eral reversible seven-state model. The seven states
allowed are the six common pairs in RNA helices

'i”QFai 0o
0q AL Sy 0
O
80.0 S
[+ :
X AN
%ﬁ
60.0 - x + %
+ f*
b L *i
= X
=z
S - xX
Fig. 11.5 The probability, P(p), that o 40.0
abase pair in state i in one sequence e xx
is also in state i in a related sequence,
shown as a f}ll’lCthH of the perCf.:ntage, 200L [@cc +cu
p, of base-pair changes. Data points are ACG % UG
measured in a large set of SSUrRNA | | UA XMM
genes from bacteria (more details in 0 AU
Higgs 2000). Curves are the best-fit I I
lines for the general reversible seven- 0.0 10.0

state model.

(AU, GU, GC, UA, UG, and CG), plus a mismatch
state, MM, that lumps the 10 possible non-matching
states together. The model is specified in a way that
is directly analogous to the general reversible four-
state model in Section 4.1.3, except that there are
now seven frequency parameters and 21 rate para-
meters. Phylogenetic programs that include models
of paired sites in RNA have been implemented in the
PHASE package by Jow et al. (2002).

Figure 11.5 shows an example of fitting sequence
data with this model. An alignment of 455 SSU
rRNA sequences was used, spanning the full range
of bacterial species (Higgs 2000). For each pair of
sequences in the alignment, the fraction of paired
sites, p, that differ from each other was calculated.
Sequence pairs were assigned to bins representing
small intervals of p. The number of times a base
pair in state i aligns with a base pair in state j was
calculated, and summed over all pairs of sequences
in each interval of p. From this, the probability, Py,
that a base pair in one sequence is in state j, given
that the other sequence is in state i, was obtained as
a function of p. This gives 49 different sets of data
points. The data points for the diagonal elements, P,
are shown in Fig. 11.5. For any given parameter val-
ues in the seven-state model, the corresponding 49

Further topics in molecular evolution and phylogenetics

functions can be calculated. The model parameters
were optimized by using a simple least-squares
fitting criterion between the theoretical curves and
the data points for all 49 curves simultaneously. As
we are fitting all the data points at the same time, we
are choosing the model that best represents evolu-
tion over the full range of distances. Figure 11.5
shows that GC and CG pairs change the most slowly
(low mutability), whereas GU, UG, and MM pairs
change the most rapidly (high mutability). The
mutability of a base pair is defined as the rate of sub-
stitution of a given pair to any other pair, measured
relative to the average rate of substitution of the
whole sequence. Table 11.2 shows the frequencies
and mutabilities of the different base pairs. The first
thing to note is that base pairs with higher ther-
modynamic stability have higher frequencies, again
suggesting that natural selection prefers strong base
pairs in helical regions. The second point is that high
frequency base pairs have low mutability. Mutations
from a high stability pair, like GC, to a low stabil-
ity pair, like GU, tend to be deleterious. Selection
therefore acts against them, and reduces the rate at
which these changes are fixed in the population. The
mutability of GC is therefore low. By a similar argu-
ment, the mutability of GU is high, because changes

® 265

Table 11.2 Comparison of base-pair frequencies and mutabilities illustrating the effects of thermodynamics on sequence
evolution. Figures are given for bacterial rRNAs (set rRNA-1 in Higgs 2000).

Base pair

GC
CG
AU
UA
GU
uG
M

away from GU tend to be advantageous mutations
that are more likely to be fixed.

In the above discussion, it should be remembered
that the base pairs we are talking about are present
in the structure of the RNA molecule and not the
DNA gene from which it is transcribed. The G and C
in an RNA pair are at two separate sites in the gene,
and these are each paired with a complementary C
and G on the opposite strand of the DNA. GU pairs
and mismatches are not present in the DNA!

We already discussed how compensatory muta-
tions occur in pairs of sites that are separate in the
gene but paired in the RNA. This means that sub-
stitutions at different sites in the gene are correlated
with one another. This has important consequences
for molecular phylogenetics. Most phylogeny pro-
grams assume that each column of a sequence align-
ment evolves independently. In a likelihood method,
the total likelihood is taken to be the product of the
likelihoods of the sites. However, in RNA sequences,
the sites on opposite sides of pairs are not independent.
For this reason, we have developed phylogenetic
methods that use models of evolution of paired sites,
such as the seven-state model described above. If
these correlations are ignored, the calculations for
the relative likelihoods of different phylogenetic trees
can be seriously wrong (Jow et al. 2002).

Before leaving RNA, let us consider one further
illustration of the influence of thermodynamics on
evolution. As real sequences have been through the
process of natural selection, they may differ from
random sequences in a systematic way. One case
where this can be observed is with tRNA molecules.

266 ® Chapterll

It is found that the minimum free energy state of real
tRNAs (i.e., the cloverleaf structure) is significantly
less than the minimum free energy of random
sequences of the same length and the same base
composition (Higgs 1993, 1995), again suggesting
selection for stable secondary structures. It is also
found that there are fewer alternative structures for
the tRNAs within a small energy interval above the
minimum free energy state than there are for ran-
dom sequences. This means that the equilibrium
probability of being in the minimum free energy
state is larger for real than for random sequences,
and that the melting of the secondary structure
occurs at a higher temperature for real sequences.

This concludes our discussion of RNA structure
and thermodynamics. We will examine some ex-
amples where RNA sequences have been useful in
phylogenetics in Section 11.3.

11.2 FITTING EVOLUTIONARY
MODELS TO SEQUENCE DATA

11.2.1 Model selection: How many parameters do
we need?

In Section 4.1.3, we discussed a series of models for
substitution-rate matrices in DNA sequences. These
ranged from the simplest, Jukes—Cantor, in which all
the substitution rates are equal, to the most general
reversible model, which has four parameters for
base frequencies and six parameters to control the
substitution rates. These parameters can differ con-
siderably between different sequences; therefore, it

does not make sense to assign particular values to
these parameters and try to apply them in every
case. Itis usual to estimate the values of the parame-
ters that best describe each individual data set. We
discussed maximum likelihood (ML) methods for
phylogenetics in Chapter 8. If we already know the
topology of the phylogenetic tree for a set of species,
we can use an ML program to optimize the branch
lengths and the model parameters. If we do not
know the tree topology, then the phylogeny pro-
gram can be set to search for the optimal topology at
the same time as the branch lengths and model
parameters. In either case, we will end up with the
set of model parameters for which the likelihood of
the observed sequences evolving is greatest. Usually,
the ML values of base frequencies will come out to be
very close to the average frequencies of the bases in
the sequence set. The values of the rate parameters
(like oc and B in the K2P and HKY models) are not
immediately obvious from the sequences without
doing an ML calculation.

Thus, the ML principle provides a clear way of
selecting the values of the parameters for a given
model, but how do we choose which model to use?
Models with a larger number of variable parameters
can fit data more precisely than those with fewer
parameters, but does this make them better models?
How many parameters do we actually need? Thisis a
general problem in fitting data. As a simple example,
suppose we have a set of measurements that we plot
as points on a graph. Our first thought is to fit a
straight line, y = a + bx, through the points. This has
just two parameters, a and b, and their values could
be obtained by linear regression. We now observe
that the best-fit line does not go exactly through the
points and we suspect the data may lie on a curve
rather than a straight line. We therefore add a
parameter to the model, giving y = a + bx + ¢x2, and
we fit this parabolic curve through the data. It turns
out that this looks much better and we believe that
this function describes a real trend in the data that
is not described by the straight line. However, the
curve still doesn’t go exactly through the points. So,
should we add more parameters? If we add as many
parameters as there are points on the graph, we can
make the curve go exactly through all the points.

Further topics in molecular evolution and phylogenetics

However, this curve will have a lot of wiggles in it
that are probably meaningless. If we have too many
parameters, we end up just fitting the noise in the
data and losing sight of the important trends. There-
fore, there must be a happy medium somewhere.

One statistical test that is useful for model selec-
tion is known as the likelihood ratio test. Suppose
we have two models to describe a given data set:
Model 1 is the simpler (with few parameters), and
Model 2 is the more complex model (with more
parameters). The test applies when the models are
nested, i.e., when Model 1 is a special case of Model
2. For example, we might obtain Model 1 by fixing
some of the parameters in Model 2 to be equal, or by
setting some of the parameters to zero. The models
of DNA evolution in Section 4.1.3 form a series of
nested models: JC is a special case of K2P, obtained
by setting o.=[; K2P is a special case of HKY,
obtained by setting all the base frequencies to Va4
and HKY is a special case of GR. When two models
are nested, we know that Model 2 must fit the data
at least as well as Model 1. This means that the like-
lihood, L,, of the data according to the more com-
plex model must be higher than the likelihood, L,
according to the simpler model. The likelihood ratio
L,/L, is therefore always greater than one. If the like-
lihood ratio is sufficiently large, it can be concluded
that Model 2 fits the data significantly better than
Model 1, while if the ratio is only slightly larger than
1, then Model 2 is not significantly better, and Model
1 cannot be rejected.

To carry out the test, we calculate the quantity 9,
which is equal to twice the log of the likelihood ratio.
8=21In(L,/L;)=2(In L,~In L,) (11.2)
It can be shown that if Model 1 is true, the expected
distribution of 8 is a chi-squared distribution, with a
number of degrees of freedom equal to the difference
in the number of free parameters between the two
models. We can calculate the value of & for the real
data and compare it to the distribution. If the prob-
ability of obtaining a value greater than or equal to
the real value is small, we can say that Model 2 is a
significantly better fit than Model 1, and we can
reject Model 1.

® 267

Let us consider a simple example, where the likeli-
hoods can easily be calculated without using a com-
puter program. Suppose we have a single DNA
sequence of total length N, where the numbers of
bases of each type are N,, N;, N, and N, We will
consider a series of three nested models whose
parameters are the frequencies of the four bases.

Model 1 assumes that all four bases have frequ-
ency !/a. The log-likelihood of generating a sequence
according to this model is
InL, =NIn(1/4) (11.3)
The number of free parameters in this model is
k, = 0, because there are no parameters to optimize.

Model 2 assumes that the frequencies of A and T

are equal and that the frequencies of C and G are
equal. The likelihood therefore depends on the two
frequencies T, and 7 :
InL,=(N,+Ny) Inn,+(N,+Ng) Inm, (11.4)
The values of the frequencies that maximize Eq. (11.4)
are w, = (N, + N;)/2N and = (N, + N;)/2N. The
method discussed in Problem 10.2 in the previous
chapter can be used for proof of this. Hence, the max-
imum of the log-likelihood according to Model 2 is

N, +N,

InL,=(N, +N;)In| 4—L

nL,=(N, T)n(ON j
(11.5)

N.+N
+(N.+N;)In| —C
(Ne +Ne) (2N]

Although there are two frequencies, these are
related by the constraint ©,=12-m,, so there is
only one free parameter (i.e., k, = 1).

Model 3 allows all bases to have different frequen-
cies. Hence, the log likelihood is

InL;=N,Inm, +N;Inn,+N.Inn,+N;In=,
(11.6)
The optimal values of the frequencies are equal to

their observed frequencies m, = (N,/N, etc.), hence
the maximum of the log likelihood is

268 ® Chapter1l

InL,=N, ln(—AJ +N; h{NTJ

N N
(11.7)
+N;In & +N;In &
N N

There are four frequencies, but there is a constraint
that they sum to 1; therefore, the number of free
parametersis k; = 3.

Now we consider one particular sequence with
N=1,000, N,=240, N,=220, N,=275, and
N, = 265. The numbers of the different bases are not
exactly equal, but this could be by chance. Even if we
generate a sequence with all frequencies equal to /4
(Model 1), we will not get exactly 250 of each base.
We will now use the likelihood ratio test to ask whe-
ther Model 2 is a significantly better fit to the data
than Model 1. From Eq. (11.3), In L; =-1386.294;
from Eq. (11.5), InL,=-1383.091; and hence
0=6.407. Remember that the likelihood of any
particular data set is always much less than 1, and
hence the log likelihood is always a negative num-
ber. Model 2 has a higher likelihood than Model 1,
becauseIn L, is less negative thanIn L.

The probability distribution P(8), if Model 1 were
true, would be a chi-squared distribution, with
number of degrees of freedom k,,, = k, — k; = 1. The
formulae for the chi-squared distributions are given
in the Appendix (Section M.12). Figure 11.6(a)
shows the chi-squared distribution as a smooth
curve, and the real value of § as a dashed line. The
real value is right out in the tail of the distribution.
The probability of getting a value greater than or
equal to this (i.e., the p value of the statistical test) is
approximately 1%. Thus, 8 is significantly larger
than we would expect by chance. Model 2 fits the
data significantly better than Model 1, and we can
reject the hypothesis that all four bases have equal
frequency.

There is another detail about the likelihood ratio
test that we need to point out at this stage. Strictly
speaking, the expected distribution of & is a chi-
squared distribution only in the asymptotic limit,
i.e., only when N tends to infinity. For finite values
of N, the distribution is slightly different, and this

141
1.2
1.0
0.8
0.6

~
Q
=

P (3)

0.4F :
02F

(b) 0.51
0.4F

5

B 03F
a
0.2F

0.1F
Fig. 11.6 Distributions, P(9), for the

likelihood ratio tests described in 0
Section 11.2.1.

may alter the significance of the test if N is too small.
If we are worried that we may not be close enough
to the asymptotic limit, it is possible to perform an
exact statistical test for finite N, without using
the chi-squared distribution. In the example above,
our initial hypothesis is that Model 1 is correct.
Therefore, we can generate many sequences of
length N = 1,000 by choosing each base randomly
with equal frequency. For each random sequence,
we can calculate 8. The distribution, P(8), obtained
in this way is shown as a histogram in Fig. 11.6(a).
The p value for this test is simply the fraction of the &
values for the random sequences that are greater
than or equal to the real 8. It can be seen from the
figure that the histogram is very close to the curve
for the chi-squared distribution. The conclusion we
draw is therefore the same, whether we use the
chi-squared distribution or the histogram.

So far, we showed that Model 2 is significantly
better than Model 1 for fitting our data. Now let us
ask whether Model 3 is significantly better than
Model 2. Using the same sequence as before, In L,
=-1382.563, from Eq. (11.7), and 8=2(In L, -
In L,) = 1.055. The number of degrees of freedom
for the likelihood ratio test is k,,, = k; — k, = 2. Fig-
ure 11.6(b) shows the chi-squared distribution with
two degrees of freedom as a smooth curve. The real
value of § is in the middle of this distribution — dashed

Further topics in molecular evolution and phylogenetics

line — and the p value is 59%. Thus, it is quite likely
that & values of this size would arise by chance if
Model 2 were correct. Hence, Model 3 does not pro-
vide a significantly better fit than Model 2 and we
cannot reject Model 2. Figure 11.6(b) also shows the
histogram generated by the exact method for finite
N. Todo this, we note that the ML fit of Model 2 to the
dataisw, =0.23 and n, = 0.27. We therefore need
to generate a set of random sequences with these
base frequencies, and calculate & for each sequence
by fitting both Model 2 and Model 3. As in the pre-
vious example, the histogram comes out very close
to the chi-squared curve and the conclusion we draw
is the same.

The likelihood ratio test can be used to select evo-
lutionary models in phylogenetics in essentially the
same way as in the cases discussed above. For exam-
ples, see Whelan and Goldman (1999), Whelan, Lio,
and Goldman (2001), and Savill, Hoyle, and Higgs
(2002). The ML phylogeny is obtained for the same
set of sequences using two different nested models,
and the corresponding & value is compared to the
chi-squared distribution. Exact tests for finite N
are also often performed, but for the lengths of
sequences typically used in molecular phylogenet-
ics, we are usually close enough to the asymptotic
limit for the conclusions drawn from the chi-squared
test to be valid.

® 269

For the series of four DNA evolution models we
considered above, it is worth considering carefully
how many free parameters there are in each model.
For the JC model, we showed explicitly in Box 4.1
that all the substitution probabilities, Py(t), are func-
tions of a rate o times a time t. When we obtain the
ML solution, we are optimizing the times and the
rates simultaneously. However, the solution is not
unique, as only the product ot determines the likeli-
hood. It is usual to normalize the rate matrix so that
the average rate of substitution is one. This amounts
to choosing the time scale so that one time unit rep-
resents an average of one substitution per site. This
average rate constraint is applied to all the models.
In the JC model, there is a single rate parameter, but
the average rate constraint means that k = O for this
model. For the K2P model, there are two rates, but
the constraint means that it is only the ratio of these
rates that is important; hence, k= 1. For the HKY
model, there are two rates and four frequencies, and
there is a constraint on the average rate and a con-
straint that the frequencies sum to one; hence, k = 4.
For the GR model, there are six rates, four frequen-
cies, and two constraints; hence, k = 8.

11.2.2 Estimating parameters in amino acid
substitution models

The number of parameters to be optimized in DNA
models is relatively small. For protein models, the
number is much larger. For a general reversible 20 x
20 matrix, we have 20 amino acid frequencies and
190 rate parameters. This means that it is computa-
tionally much more difficult to estimate the para-
meters for protein models. First, the calculations
are much more time consuming, and second, large
amounts of sequence data are necessary to get accur-
ate estimates of so many parameters. In principle, it
is possible to estimate the rate matrix and phylogen-
etic tree simultaneously by ML in the same way as
for the DNA models. One important case where this
has been done is the mtREV model (Adachi and
Hasegawa 1996). These authors used an alignment
of mitochondrial protein sequences from 20 verteb-
rate species. The amino acid frequencies in mito-
chondrial proteins are significantly different from

270 @ Chapter1l

those in nuclear proteins, and there are also some
differences in the genetic code; the numerical values
of the substitution rates estimated from the mito-
chondrial sequences are therefore noticeably differ-
ent from those in nuclear protein substitution rate
matrices.

More usually, however, phylogeny programs for
protein sequences use matrices with specified
numerical values that have been pre-calculated on
large sequence databases. When these matrices are
used for phylogenetics, the rates are kept fixed and
are not optimized for the sequences being studied.
There are several ways of estimating these matrices.
We already discussed in Chapter 4 how the PAM
matrices were derived, by counting substitutions
between closely related sequences. This method has
been criticized because it assumes that it is possible
to extrapolate from closely related sequences to
sequences at much larger distances. Benner, Cohen,
and Gonnet (1994) estimated rate models using a
method that takes account of the distance between
the sequences used to derive it. They estimated a
series of substitution matrices from pairs of sequ-
ences within specified distance ranges. They then
extrapolated each of these to a common distance of
250 PAM units. If the same evolutionary model
were applicable at all distances, then the resulting
matrices should have been the same. However,
significant differences were found. They argued that
the genetic code has more of an influence on substi-
tutions between closely related proteins, and that
the chemical properties of the amino acids are the
dominant effect for more distantly related sequ-
ences. Variability of substitution rates between sites
could also lead to similar effects, particularly if the
frequencies of amino acids at rapidly evolving sites
are different from those at more slowly evolving sites.

If we wish to derive an evolutionary model that
best describes the behavior of sequences over the full
range of distances, then it seems sensible to use
sequences from a wide range of distances in its es-
timation procedure. In principle, the ML method
does this, because the likelihood calculation works
for any evolutionary distance. We could take a
database containing alignments of many families of
proteins and calculate the ML tree for each family,

using the same rate matrix for each family. The ML
rate matrix obtained in this way would be the one
that best describes the whole range of sequences in
the database. The only problem is the large computa-
tion time required. Nevertheless, there have been
several attempts to do this in an approximate way.
Miiller and Vingron (2000) calculated the variable
time (VT) evolutionary model from a database of
multiple alignments, using sequences over a wide
range of distances. They chose only two sequences
from each alignment. Hence, there is no tree to cal-
culate, just a single distance for each independent
pair of sequences. They also proposed a new method
of optimizing the rate-matrix parameters that
approximates to the ML solution, but is easier to cal-
culate (Miiller, Spang and Vingron 2002). Whelan
and Goldman (2001) also used an approximate ML
method. They calculated a tree for each family of
proteins using a rapid distance-matrix method, and
then optimized the rate-matrix parameters, while
keeping the tree topologies fixed.

11.2.3 Synonymous and non-synonymous
substitutions

As we mentioned in Section 3.2, synonymous sub-
stitutions in DNA sequences are likely to be neut-
ral (or very nearly so), because they do not change
the amino acid, and therefore selection acting on
the protein sequence cannot intervene. In con-
trast, non-synonymous substitutions do change the
amino acid, and stabilizing selection may prevent
many of these substitutions from occurring. Most
synonymous changes occur at third-codon posi-
tions, and most non-synonymous changes occur at
first- and second-codon positions. The result is that,
even though we assume that mutations are equally
likely at all three positions, the rate of substitutions
observed at first and second positions is less than
that at third positions, because selection is weaker at
the third position.

It is useful to define the quantity d, as the number
of synonymous substitutions per synonymous site,
and dy as the number of non-synonymous substitu-
tions per non-synonymous site. These quantities are
generalizations of the usual evolutionary distance d,

Further topics in molecular evolution and phylogenetics

which is simply the average number of substitutions
per site, irrespective of whether or not they are
synonymous. (Another notation that is often found
uses K for dg, and K, for d.) In most genes, the ratio
o =dy/d, is less than one, owing to the action of
stabilizing selection on the amino acid sequence.
This ratio is a property of a gene that indicates how
strongly selection is acting on it. A highly conserved
protein will have very low ®, and a more variable
protein will have high ®. In the large set of mam-
malian proteins analyzed by Yang and Nielsen
(1998), the lowest @ was 0.017, for the ATP syn-
thase B sequence, and the highest © was 0.838, for
interleukin 6.

One of the simplest ways of estimating dg and dy
for a pair of aligned sequences is due to Nei and
Gojobori (1986). This involves counting the num-
ber of synonymous sites, S, and the number of syn-
onymous differences between two sequences, S,
The ratio of these quantities is the fraction of syn-
onymous sites observed to differ. In order to correct
for the possibility of multiple substitutions occurring
at a site, the JC distance formula is used — Eq. (4.4):

dS:—iln _25
4 38

In a similar way, the number of non-synonymous
sites N, and non-synonymous differences N, are
calculated, and the distance formula is used to
obtain dy.

There are several complications associated with
this calculation. Most first- and second-position sites
are clearly non-synonymous, because changes
occurring here will change the amino acid. Third-
position sites that are four-fold degenerate (e.g., the
final site in a Val codon — see the genetic code in
Table 2.1) are also clearly synonymous. However,
the third positions of two-fold degenerate sites can
mutate either synonymously or non-synonymously
(e.g., the Uin the Asp codon GAU could mutate syn-
onymously to C, or non-synonymously to A or G).
Such sites need be counted as part synonymous and
part non-synonymous. Also, when a codon differs in
more than one position, there are several routes by
which the mutations from one to the other could

(11.8)

e 271

have occurred. This must also be accounted for when
summing the differences. A further complication is
that the method does not properly account for differ-
ences in transition and transversion rates.

As a result of problems such as these with meth-
ods of counting synonymous and non-synonymous
changes, Yang and Nielsen (1998) used a codon-
based evolutionary model in which the rates of non-
synonymous changes are multiplied by a factor
with respect to synonymous ones. As ® is now an
explicit parameter of the model, it is possible to use
ML methods to estimate the value of ® that best fits
the data, and also to account for other parameters,
like transition and transversion rates, and differ-
ences in frequencies of the four bases.

One of the reasons for using models like this is to
identify genes that seem to be under positive direc-
tional selection. This would imply that adaptation
was driving the divergence of these sequences. It
is actually rather difficult to find such genes — even
the highest value of m, 0.838 mentioned above, is
still less than one, which implies weak stabilizing
selection. Part of the problem lies with the fact
that we are averaging synonymous and non-
synonymous changes over the whole of the
sequence. If an adaptive change occurred, it might
only affect a few sites in the protein, while stabilizing
selection would be acting on the other sites. Recent
studies have used evolutionary models in which
a distribution of ® values is possible across sites.
This allows for the identification of a small number
of sites with @ > 1, when the majority of sites have
o< 1. Yang et al. (2000) give several examples of
genes where this seems to have occurred.

As a general conclusion from this section on
fitting models to data, we note that models are being
developed to describe a number of increasingly com-
plex and more realistic situations. This involves
increasing the number of parameters in the model,
and inevitably increases the complexity of the com-
putations. However, as long as this is done in a prin-
cipled way, we can make sure that the additional
parameters are justified and that they allow the
model to reflect real trends in the data. ML methods
provide a good way of estimating parameter values
that are applicable in many situations. Comparison

272 ® Chapter1l

of parameter values for different sets of sequences
can tell us important information about how muta-
tion and selection influence sequence evolution.

11.3 APPLICATIONS OF MOLECULAR
PHYLOGENETICS

11.3.1 The radiation of the mammals

This section presents some examples of recent results
using molecular phylogenetics, illustrating the range
of questions that can be addressed, and showing
some of the problems that arise. The most funda-
mental use of molecular phylogenetics is to determine
the evolutionary tree for the corresponding species.
In many cases, the species have already been
classified using morphological evidence. Sometimes,
molecular studies confirm what is already known
from morphologies, but surprises quite often arise,
leading to “molecules versus morphology” disputes.
Where recognizable shared derived characters are
available, morphological studies provide reliable
phylogenetic trees. However, where few informative
characters are available, morphological studies can
be inconclusive or misleading.

A good example is the evolution of the mam-
malian orders. Over the last decade, the use of
molecular phylogenetic techniques has led to import-
ant changes in our understanding of the evolution-
ary tree of mammals. The number of species for
which appropriate sequence information is avail-
able has been increasing rapidly, and the methods
used have become increasingly sophisticated. This
hasled to alarge interest in mammalian phylogenet-
ics and to an increasing degree of confidence in
many features of the mammalian tree that were not
appreciated only a few years ago.

“Orders” are medium-level taxonomic groups
that are divided up into families, genera, and species.
The orders of mammals were defined from morpho-
logical evidence a long time ago. Familiar examples
of mammalian orders include rodents, carnivores,
primates, and bats. Most orders have well-defined
morphological features that distinguish them. In
most cases, when molecular sequences were exam-
ined, it was found that the groupings defined from

morphology were supported (although we will high-
light a few cases where this was not so). However,
the relationship between the mammalian orders was
not clear from morphological studies. Molecular
data have allowed us to answer questions like: “Are
rodents more closely related to primates or car-
nivores?” It is thus the earliest branch points in the
mammalian tree that have been of most interest in
recent work.

One important feature that now appears to have
strong support is that the mammalian orders can be
divided into four principal supra-ordinal groups.
This has been shown convincingly using large data
sets, derived mainly from nuclear genes (Madsen
et al. 2001, Murphy et al. 2001a, 2001b). It has
also been found using the complete set of RNAs
from mitochondrial genomes (Hudelot et al. 2003);
the tree from this latter study is shown in Fig. 11.7.
The results of these studies are largely in agree-
ment. The data sets used are mostly independent
(although the mitochondrial SSU rRNA gene is
included in all of them), the alignments were done
independently, the sets of species used are different,
and the details of the phylogenetic methods used are
also different. The consensus reached is therefore
quite convincing. We will number these groups fol-
lowing Murphy et al. (2001a) as:

* Group I: Afrotheria, containing Proboscidea (ele-
phants), Sirenia (sea cows), Hyracoidea (hyraxes),
Tubulidentata (aardvarks), Macroscelidea (elephant
shrews), and Afrosoricida (African insectivores).

e Group II: Xenarthra (armadillos, sloths, and
anteaters).

e Group III: Supraprimates, containing Primates,
Dermoptera (flying lemurs), Scandentia (tree shrews),
Rodentia, and Lagomorpha (rabbits).

e Group IV: Laurasiatheria, containing Cetartiod-
actyla (even-toed ungulates and whales), Perisso-
dactyla (odd-toed ungulates), Carnivora, Pholidota
(pangolins), Chiroptera (bats), and Eulipotyphla
(Eurasian insectivores).

It has taken some time for this picture to em-
erge. The identification of the Afrotherian group
(Stanhope et al. 1998) was a surprise, as it contains
orders that are morphologically diverse, and sup-
erficially have little in common, apart from their

Further topics in molecular evolution and phylogenetics

presumed African origin. In Section 3.3, we already
mentioned the deletion in the BRCA1 gene that is a
piece of evidence supporting the Afrotherian group.
The Xenarthran group is South American and had
been recognized as an early diverging group on mor-
phological grounds. Owing to the general diffi-
culty of determining the root of the eutherian tree
using molecular phylogenetics, the positioning of
Xenarthra has been unstable, sometimes appearing
quite deep within the eutherian radiation (Waddell
et al. 1999, Cao et al. 2000). The present picture
(Delsuc et al. 2002) puts Xenarthra back as an early
branching group, but it is not possible to distinguish
whether it branches before or after Afrotheria or as
a sister group to Afrotheria. In Fig. 11.7, Xenarthra
and Afrotheria are sister groups, but this is only
supported at 52%, and hence cannot be relied on.

Supraprimates and Laurasiatheria are both
diverse groups for which a lot of sequence data have
been available for some time. These groups contain
several species that have presented particular prob-
lems to molecular phylogenetics. The mouse-like
rodents and the hedgehogs have been repeatedly
found to branch at the base of the eutherian tree
in analyses of mitochondrial proteins (Penny et al.
1999, Arnason et al. 2002). This would mean that
rodents would not be a monophyletic group,
because the mice would be separated from other
rodents, like squirrels and guinea pigs, and that
hedgehogs would be separated from other insec-
tivores, like moles and shrews. It is now generally
accepted that the positioning of these problem spe-
cies was an artifact arising because some lineages
contradict the assumption of a homogeneous and
stationary substitution model (Lin, Waddell, and
Penny 2002). Our own approach, using RNA sequ-
ences from mitochondrial genomes, appears to suffer
less from these problems than most other methods
(Jow etal. 2002, Hudelot et al. 2003).

If we accept, for the moment, that most parts of
the tree in Fig. 11.7 are probably correct, it tells us
that there has been a large amount of convergent
evolution in the morphology and ecological special-
izations of the mammals. For example, sea-living
groups have evolved independently from land-living
ancestors three times: whales (Cetartiodactyla,

e 273

Australian echidna

Platypus
|—| Northern American opossum |
| I { Northern Brown bandicoot

Wallaroo
Bushtail possum

- Common wombat
. Armadillo

52*

Southern tamandua

Aardvark
" Tenrec

. Short-Eared Elephant shrew |

. African Savannah elephant
Northern Tree shrew

99

_| European hare
- Collared pika

Chinese vole

96

House mouse

 Eurasian Red squirrel

Fat dormouse
96 Greater Cane rat

Malayan Flying lemur
Slow loris

Ring-Tailed lemur

- Western tarsier

| White-Fronted capuchin

96

94

96

Pygmy chimpanzee

Human

European mole
Taiwan Brown Toothed shrew |

' Western European hedgehog |
:Moon rat |

—— Little Red Flying fox |

|—| Ryukyu Flying fox |

:New Zealand Long-Tailed bat|
Fruit-Eating bat

65

86*

0.05

Loné-TaiIed Eanéolin

Polar bear

Brown bear
American Black bear

Atlantic walrus

— Steller Sea lion

New Zealand Fur seal

Horse
Ass
— Greater Indian rhinoceros

l——— White rhinoceros

Blue whale
Finback whale

MONOTREMATA

MARSUPALIA

| Xenarthra

Tubulidentata
Afrosoricida
Macroscelidea
Proboscidea
Sirenia
Scandentia

Lagomorpha

Rodentia

Dermoptera

Primates

Eulipotyphla

Chiroptera

Pholidota

Carnivora

Perissodactyla

Cetartiodactyla

Fig. 11.7 Phylogeny of the mammalian orders obtained using the complete set of rRNA and tRNA genes from mitochondrial

genomes (Hudelot et al. 2003). Two models of evolution were combined in this analysis: one for the paired regions of the

secondary structure, and one for the unpaired regions. Posterior probabilities given on the nodes are obtained using the MCMC
method. Where no percentage is given, the node has 100% support.

Group IV), seals (Carnivora, Group IV), and sea
cows (Sirenia, Group I). Specialized ant-eating ani-
mals have also evolved independently three times:
anteaters (Xenarthra, Group II), pangolins (Pholidota,
Group 1V), and aardvarks (Tubulidentata, Group I).
Another amusing example is the elephant shrew, a
small shrew-like African mammal, so-named because
of its rather long and flexible proboscis. However,
molecular evidence shows that elephant shrews are
more closely related to elephants than they are to
shrews, which would be hard to deduce simply by
looking at them!

Convergent morphological evolution has long
been recognized between marsupials (pouched mam-
mals) and placental mammals, i.e., there are marsu-
pial rats, marsupial wolves, etc. These groups have
been separated geographically for well over 100
million years because of the isolation of Australia.
Continental drift also seems to have played an
important part in the separation and independent
evolution of the four principal placental mammal
clades. In Fig. 11.7, marsupials and monotremes
(egg-laying mammals) have been included as out-
groups with which to determine the root of the pla-
cental mammals. The relationship of monotremes,
marsupials, and placentals has also been an issue
recently, with some studies placing monotremes as a
sister group to marsupials. The most recent evidence
places monotremes as branching slightly before the
split of marsupials and placentals (Phillips and
Penny 2003).

Several groupings proposed from morphological
evidence now seem unlikely to be true. From mor-
phological evidence, the anteaters and pangolins
are often placed as sister groups (e.g., Liu and
Miyamoto 1999); however, molecular evidence
places them far apart. Another traditional grouping
based on morphology, known as Archonta, places
the bats with primates, tree shrews, and flying
lemurs; however, the bats seem to be widely sep-
arated from the other three orders according to
molecular evidence. The tree also highlights prob-
lems with classification of insectivores. The “true”
insectivore group (shrews, hedgehogs, and moles)
now appear in group IV; however, other morpholo-
gically similar groups like tenrecs, golden moles,

Further topics in molecular evolution and phylogenetics

and elephant shrews that were traditionally classed
as insectivores now appear to be members of
Afrotheria.

A final group worth mentioning is Cetar-
tiodactyla, which is a combination of the traditional
orders Cetacea (whales) and Artiodactyla (cows,
pigs, camels, hippos, etc.). There is now general
agreement from molecular, morphological, and
palaeontological evidence that these two groups are
closely related. Molecular trees suggest that whales
are more closely related to hippos than hippos are to
other artiodactyls. This means that the group for-
merly defined as Artiodactyla is not monophyletic:
hence the introduction of the more broadly defined
group Cetartiodactyla, which is monophyletic. The
details of whale origins are beginning to become
clearer from the discovery of a number of fossil taxa
that represent intermediate steps, such as the “walk-
ing whale”, Ambulocetus (Gatesy and O'Leary 2001).

Another area of dispute between molecular phy-
logeneticists and palaeontologists is in the dating of
evolutionary events. There are few eutherian mam-
mal fossils before the end of the Cretaceous period,
65 million years ago. This led to the belief that the
radiation of mammalian orders occurred when eco-
logical niches became vacant after the extinction of
the dinosaurs. Molecular phylogenies also allow
estimates of divergence times, if a date is known from
fossil evidence for one branch point on the tree that
can be used as a calibration. If a molecular clock is
assumed, then the times of other branch points on
the tree can be estimated from the relative lengths
of the different branches. The molecular estimates
for the timing of the radiation of mammals usually
suggest that it was considerably before the end of
the Cretaceous. Dates for the primate—rodent split are
around 100 million years ago (Bromham, Phillips,
and Penny 1999). However, there are large con-
fidence intervals on these estimates, and different
phylogenetic methods give varying answers. Estim-
ating accurate times from phylogenies is a more
difficult problem than simply obtaining the tree
topology. Hedges and Kumar (2003) have reviewed
methods of dating from molecular sequences. They
argue that molecular dates can be accurate if
derived from combined data sets of many genes, and

e 275

if care is taken to exclude genes that are unusually
variable in rate between species.

11.3.2 The metazoan phyla

In the above discussion of mammals, we saw that: (i)
the species had already been separated into fairly
well-defined groups (in this case, orders) on the basis
of morphology; (ii) apart from a few surprises, the
molecular evidence confirmed the existence of these
groups; (iii) the groups had arisen in an apparent
radiation in a fairly short period, hence the relation-
ship between the groups was unclear from morpho-
logical evidence; (iv) molecular studies were able to
shed light on some of the branching patterns between
groups during the radiation; and (v) dating of events
from molecular studies is still controversial. All these
points are also true when we consider the evolution
of the major phyla of animals (metazoa).

Most animal phyla that were previously identi-
fied from morphological studies are confirmed to be
monophyletic groups using sequence comparisons.
However, the relationship between these groups
was poorly understood, and molecular evidence is
beginning to shed light on the earliest branches in
the animal tree (Valentine, Jablonski, and Erwin
1999, Adoutte et al. 2000). With the exception
of some early-branching phyla, like sponges (Pori-
ferans) and jellyfish (Cnidarians), animal phyla are
classed as bilateria, i.e., having a bilateral symmetry.
Figure 11.8 compares the phylogeny of the bilate-
rian phyla according to morphology and according
to molecular phylogeny using rRNA. There is now
fairly strong molecular evidence that the major split
in the bilateria is between the Deuterostomes and
the Protostomes, and that the latter group can be
divided into two groups, known as Ecdysozoans
and Lophotrochozoans. The Deuterostomes include
Vertebrates, Echinoderms (i.e., starfish and sea
urchins) and related taxa. The Ecdysozoans are a
group of animals that molt at some point during
their life cycle: these include Arthropods (insects,
spiders, etc.), Nematodes (roundworms) and several
other phyla not previously known to be related.
The Lophotrochozoans are another diverse group,
named after the lophophore (a type of feeding struc-

276 ® Chapter1l

ture) and the trochophore (a type of larval structure)
that some of them possess. The Lophotrochozoa
contain some relatively complex, or “advanced”,
invertebrate phyla, like Molluscs, as well as some
anatomically much simpler phyla, like Platyhel-
minths (flatworms), previously thought to have
arisen near the base of the bilaterian tree. Observa-
tions like this have forced a major rethink in our
understanding of developmental biology and the
evolution of animal body plans. An important con-
clusion that had been drawn from morphological
studies was the supposed relationship between
Annelids (segmented worms, like earthworms) and
Arthropods, both of which have a segmented body
plan. It is now clear that this was misleading, be-
cause Arthropods are within Ecdysozoa and Annelids
within Lophotrochozoa.

The relationships between the phyla within the
two Protostome groups is still unclear, and these
are left as multifurcations in Fig. 11.8. Mallatt
and Winchell (2002) have made some progress in
resolving the Protostome phyla using combined LSU
and SSUrRNA, but there are many remaining ques-
tions. This problem is more difficult than the mam-
mal one, because there are fewer suitable genes that
can be reliably aligned over the whole range of
Metazoa. However, more sequence data are con-
tinually becoming available, and we are therefore
relatively optimistic that molecular phylogenies
will be able to reach the parts of trees that morpho-
logical evidence has thus far been unable to reach.
The dating of events is still a major problem. Fossil
evidence dates the appearance of most modern
animal groups to the “Cambrian explosion”, around
530 million years ago. Some early metazoan fossils
can be traced as far back as ~600 million years ago.
Molecular dates for the divergences between these
phyla are usually more than 600, and sometimes
as much as 1,500, million years ago. One of the
most important unresolved dates is that of the
Protostome—Deuterostome divergence.

11.3.3 The evolution of eukaryotes

Moving still further backwards in evolution, another
major issue is the relationship between the different

(@ Vertebrates
Cephalochordates
Urochordates
Hemichordates
Echinoderms

$9W0)so4aINag

Brachiopods
Bryozoans
Phoronids

sajeloydoydo

$9]eWO[R0D)

Sipunculans
Molluscs
Echiurians
Pogonophorans
Annelids

$9WO0)S0104d
eusle|ig

Onychophorans
Tardigrades
Arthropods

Gnathostomulids
Rotifers
Gastrotrichs

Nematodes
Priapulids
Kinorhynchs

$9]eWO0[2020pNasd

T L

Platyhelminthes
Nemerteans
Entoprocts

Ctenophorans
Cnidarians

Poriferans

Q@ Plants

I |
$9)WO[R0dY
I I
ejeipey

Q Fungi

(b) Vertebrates
Cephalochordates
Urochordates
Hemichordates
Echinoderms

Sawl0)soJtaInag

Bryozoans
Entoprocts
Pogonophorans
Platyhelminthes
Brachiopods
Phoronids

|
[

Nemerteans
Annelids
= Echiurians

sueozoydonoydo
euae|g

Molluscs

— Sipunculans
Gnathostomulids
Rotifers

$9UWO0)S0104

Gastrotrichs

Nematodes
Priapulids
Kinorhynchs
Onychophorans
Tardigrades
Arthropods

sue0zosApo3

I
11 A

Ctenophorans

Cnidarians

Poriferans
—eeee———Q FuNgi
@) Plainits

Fig. 11.8 Phylogeny of the metazoan taxa. Reproduced from Adoutte et al. (2000). Copyright 2000 National Academy of
Sciences, USA. (a) Traditional phylogeny based on morphology and embryology. (b) Molecular phylogeny based on rRNA.

groups of eukaryotes. This is a tricky problem owing
to the large variability of evolutionary rates between
different taxa. Taxa with high rates appear on long
branches in the tree. Phylogenetic methods often
place long-branch taxa incorrectly — a problem
known as long-branch attraction (Philippe and
Laurent 1998). This can result in the rapidly evolv-
ing taxa being artificially placed at the base of a tree,
leaving a “crown” of slowly evolving taxa clustered
together. It can also result in the artificial cluster-
ing of a number of unrelated rapidly evolving taxa.

Further topics in molecular evolution and phylogenetics

The problem is known to be severe for parsimony
methods, which would give inconsistent results
in such cases (Felsenstein 1978), and for UPGMA,
which would force rapidly evolving taxa to the base
of the tree. However, long branches present a poten-
tial problem with other methods too. Longer branches
usually have larger errors in their estimated lengths,
especially if the variability of rates between different
sites in sequences is not accounted for.

The eukaryote tree derived from SSU rRNA sequ-
ences possesses a crown of “higher” taxa (including

® 277

animals, fungi, plants, and algae) and some early-
branching divergent groups (including slime-molds,
euglenozoa, microsporidia, and diplomonads). Van
de Peer et al. (2000) carried out a large-scale phy-
logeny of eukaryotes using over 2,500 SSU rRNA
sequences, calculating distances using a method
that corrects for the estimated variability of substi-
tution rates across sites. They argue that some of
the previously early-branching taxa should actually
be placed within the crown, and that the positioning
of these taxa near the base of the tree was an artifact
of long-branch attraction. Similar conclusions were
reached by Philippe and Adoutte (1998), who com-
pared the phylogeny of eukaryotes deduced from
rRNA, to that deduced from actin and tubulin pro-
tein sequences. They found that the three molecules
give trees that are inconsistent with each other, and
that different taxa appear to branch off at the base of
the tree in each case. They conclude that there are
serious problems with the positioning of these diver-
gent groups, and that the three molecules used are
beginning to reach saturation of mutations, and are
hence becoming unreliable for estimating distances.
Philippe and Adoutte (1998) also give an excellent
discussion of the problems and pitfalls that can arise
in molecular phylogenetics.

11.3.4 Miscellaneous examples

As well as tackling the deepest points in the tree of
life, phylogenetic methods are often applied to
groups of closely related species. Here, the studies
can reveal interesting details about the ecology and
biology of the species, as well as providing a taxo-
nomic classification. A good example is the study by
Losos et al. (1998) on the Anolis lizards of the
Caribbean. Related species live on the four islands,
Cuba, Hispaniola, Jamaica, and Puerto Rico. There
are recognizable “ecomorphs” (known as e.g.,
Crown Giant, Trunk Ground, Twig) that are special-
ized for living in different habitats. These differ in size
and color, presumably for camouflage. Most of the
ecomorphs are found on all the islands. When
species are clustered according to the degree of sim-
ilarity in measurements of their shape and size, those
in the same ecomorph cluster together, showing

278 ® Chapter11

that there are objectively measurable differences
between them. However, when molecular phylogen-
ies are constructed, it is found that none of the eco-
morphs consist of monophyletic groups of species.
There is a strong tendency for species of different
ecomorphs on the same island to be more closely
related to one another than to species of the same
ecomorph on other islands. This indicates that eco-
logical specialization has occurred in parallel several
times, producing species that are morphologically
similar as a result of the similarity of selection pres-
sures on the different islands.

Even for closely related species, we are still used
to the idea that molecular evolution occurs over
periods of millions of years. However, viruses such
as the Human Immunodeficiency Virus (HIV) can
evolve measurably in just decades. Phylogenetic
methods have established that HIV is related to
Simian Immunodeficiency Viruses (SIV) that infect
other primates (Hahn et al. 2000). HIV-1, the most
common form of the virus in humans, is thought to
have arisen via cross-species infections from chim-
panzees, the evidence suggesting that there have
been three separate cross-species transmissions.
HIV-2 is another form of the virus in humans that
has been shown to be related to SIV sequences from
the sooty mangabey, an African monkey. Hence,
this represents another independent cross-species
transmission. Molecular phylogenetics is yielding
important information about the likely dates of these
events. The latest common ancestor of the main
group of HIV-1 sequences is estimated to have
existed in the period 1915-41 (Korber et al. 2000).

Throughout this section, we have been assuming
that the sequences being studied have evolved on a
tree, in other words that genes have been inherited
vertically from parent to offspring in each lineage of
organisms. We have ignored the possibility of hori-
zontal transfer of genes between unrelated species.
For multicellular organisms, this is perfectly reason-
able, but for bacteria, many cases of horizontal gene
transfer are now known. The relevance of horizontal
transfer in bacterial evolution will be discussed in
Chapter 12.

As the number of sequences in biological data-
bases hasrocketed over the past few years, so has the

number of people wishing to construct molecular
phylogenies, and the number of different programs
for doing so. An excellent reference list of available
programs is maintained by J. Felsenstein at http://
evolution.genetics.washington.edu/phylip/software.
html. There are still many challenging phylogeny

problems, and still many groups of organisms for
which few sequence data are available. This is an
active research area, both in terms of the develop-
ment of new methods and the application of phylo-
genetic techniques to new sequences.

Further topics in molecular evolution and phylogenetics ® 279

REFERENCES

Adachi, J. and Hasegawa, M. 1996. A model of amino acid
substitution in proteins encoded by mitochondrial DNA.
Journal of Molecular Evolution, 42: 459—68.

Adoutte, A., Balavoine, G., Lartillot, N., Lespinet, O.,
Prud’homme, B., and de Rosa, R. 2000. The new animal
phylogeny: Reliability and implications. Proceedings of
the National Academy of Sciences USA, 97: 4453-6.

Arnason, U., Adegoke, J.A., Bodin, K., Born, E.W., Yuzine,
B.E., Gullberg, A., Nilsson, M., Short, V.S., Xu, X., and
Janke, A. 2002. Mammalian mitogenomic relationships
and the root of the eutherian tree. Proceedings of the
National Academy of Sciences USA, 99: 8151-6.

Ban, N., Nissen, P., Hansen, J., Moore, P.B., and Steitz, T.A.
2000. The complete atomic structure of the large
ribosomal subunit at 2.4 A resolution. Science, 289:
905-20.

Benner, S.A., Cohen, M.A., and Gonnet, G.H. 1994.
Amino acid substitution during functionally con-
strained divergent evolution of protein sequences.
Protein Engineering, 7: 1323-32.

Bromham, L., Phillips, M.J., and Penny, D. 1999. Growing
up with dinosaurs: Molecular dates and the mammalian
radiation. Trends in Ecology and Evolution, 14: 113-18.

Cao, Y., Fujiwara, M., Nikaido, M., Okada, N., and
Hasegawa, M. 2000. Interordinal relationships and
timescale of eutherian evolution as inferred from mito-
chondrial genome data. Gene, 259: 149-58.

Delsuc, F., Scally, M., Madsen, O., Stanhope, M.]., de Jong,
W.W., Catzeflis, M., Springer, M.S., and Douzery, J.P.
2002. Molecular phylogeny of living Xenarthrans and
the impact of character and taxon sampling on the
placental tree rooting. Molecular Biology and Evolution,
19:1656-71.

Felsenstein, J. 1978. Cases in which parsimony or compat-
ibility methods will be positively misleading. Systematic
Zoology, 27:401-10.

Freier, S.M., Kierzek, R., Jaeger, J.A., Sugimoto, N.,
Caruthers, M.H., Nielson, T., and Turner, D.H. 1986.
Improved free energy parameters for prediction of RNA
duplex stability. Proceedings of the National Academy of
Sciences USA, 83:9373-7.

Gatesy, J. and O'Leary, M.A. 2001. Deciphering whale ori-
gins with molecues and fossils. Trends in Ecology and
Evolution, 16: 562-70.

Gutell, R.R. 1996. Comparative sequence analysis and the
structure of 16S and 23S RNA. In R.A. Zimmermann
and A.E. Dahlberg (eds.), Ribosomal RNA: Structure, Evo-
lution, Processing, and Function in Protein Biosynthesis.
Boca Raton: CRC Press.

280 ® Chapter1l

Gutell, R.R., Power, A., Hertz, G.Z., Putz, E.]., and Stormo,
G.D. 1992. Identifying constraints on the higher order
structure of RNA: Continued development and applica-
tion of comparative sequence analysis methods. Nucleic
Acids Research, 20: 5785-95.

Gutell, R.R., Lee, J.C., and Cannone,].J. 2002. The
accuracy of ribosomal RNA comparative structure
models. Current Opinion in Structural Biology, 12(3):
301-10.

Hahn, B.H., Shaw, G.M., De Cock, K.M., and Sharp, P.M.
2000. AIDS as a zoonosis: Scientific and public health
implications. Science, 287: 607-14.

Hedges, S.B. and Kumar, S. 2003. Genomic clocks and
evolutionary timescales. Trends in Genetics, 19: 200—6.

Higgs, P.G. 1993. RNA secondary structure: A compar-
ison of real and random sequences. Journal of Physics I,
3:43-59.

Higgs, P.G. 1995. Thermodynamic properties of transfer
RNA: A computational study. Journal of the Chemical
Society Faraday Transactions, 91: 2531-40.

Higgs, P.G. 2000. RNA secondary structure: Physical and
computational aspects. Quarterly Review of Biophysics,
33:199-253.

Higgs, P.G., Jameson, D., Jow, H., and Rattray, M. 2003.
The evolution of tRNA-leucine genes in animal mito-
chondrial genomes. Journal of Molecular Evolution, 57:
435-45.

Hofacker, L.L., Fontana, W., Stadler, P.F., Bonhoeffer, L.S.,
Tacker, M., and Schuster, P. 1994. Monatshefte fiir
Chemie, 125:167. The Vienna RNA software package is
available at http://www.tbi.univie.ac.at/~ivo/RNA.

Hudelot, C., Gowri-Shankar, V., Jow, H., Rattray, M., and
Higgs, P.G. 2003. RNA-based phylogenetic methods:
Application to mammalian mitochondrial RNA sequ-
ences. Molecular Phylogeny and Evolution, 28: 241-
52.

Jow, H., Hudelot, C., Rattray, M., and Higgs, P.G. 2002.
Bayesian phylogenetics using an RNA substitution
model applied to early mammalian evolution. Molecular
Biology and Evolution, 19: 1591-601.

Korber, B., Muldoon, M., Theiler, J., Gao, F., Gupta,
R., Lapedes, A., Hahn, B.H., Wolinsky, S., and
Bhattacharya, T. 2000. Timing the ancestor of the HIV-
1 pandemic strains. Science, 288: 1789-96.

Lin, Y-H., Waddell, P.J., and Penny, D. 2002. Pika and vole
mitochondrial genomes increase support for both
rodent monophyly and glires. Gene, 294: 119-29.

Liu, F.R. and Miyamoto, M.M. 1999. Phylogenetic assess-
ment of molecular and morphological data for euthe-
rian mammals. Systematic Biology, 48: 54—64.

Losos,].B., Jackman, T.R., Larson, A., de Queiroz, K., and
Rodriguez-Schettino, L. 1998. Contingency and deter-
minism in replicated adaptive radiations of island
lizards. Science, 279:2115-18.

Madsen, O., Scally, M., Douady, C.J., Kao, D.J., DeBry,
R.W., Adkins, R., et al. 2001. Parallel adaptive radi-
ations in two major clades of placental mammals.
Nature, 409: 610-14.

Mallatt, J. and Winchell, C.]J. 2002. Testing the new ani-
mal phylogeny: First use of combined large subunit and
small subunit rRNA gene sequences to classify the pro-
tostomes. Molecular Biology and Evolution, 19: 289-301.

Miiller, T. and Vingron, M. 2000. Modeling amino acid
replacement. Journal of Computational Biology, 7: 761—
76.

Miiller, T., Spang. R., and Vingron, M. 2002. Estimating
amino acid substitution models: A comparison of Day-
hoff’s estimator, the resolvent approach, and a maxi-
mum likelihood method. Molecular Biology and Evolution,
19:8-13.

Murphy, W.]., Elzirik, E., Johnson, W.E., Zhang, Y.P.,
Ryder, O.A., and O'Brien, S.J. 2001a. Molecular phylo-
genetics and the origins of placental mammals. Nature,
409:614-18.

Murphy, W.]., Elzirik, E., O'Brien, S.J., Madsen, O., Scally,
M., Douady, C.J., Teeling, E., Ryder, O.A., Stanhope,
M.J., de Jong, W.W., and Springer, M.S. 2001b.
Resolution of the early placental mammal radiation
using Bayesian phylogenetics. Science, 294: 2348-51.

Nei, M. and Gojobori, T. 1986. Simple methods for estimat-
ing the number of synonymous and nonsynonymous
nucleotide substitutions. Molecular Biology and Evolu-
tion, 3: 418-26.

Nussinov, R. and Jacobson, A.B. 1980. Fast algorithm for
predicting the secondary structure of single-stranded
RNA. Proceedings of the National Academy of Sciences
USA,77:6309-13.

Penny, D., Hasegawa, M., Waddell, P.]., and Hendy, M.D.
1999. Mammalian evolution: Timing and implications
from using the LogDeterminant transform for proteins
of differing amino acid composition. Systematic Biology,
48:76-93.

Philippe, H. and Adoutte, A. 1998. The molecular phy-
logeny of Eukaryota: Solid facts and uncertainties. In
G.H Coombs, K. Vickerman, M. A. Sleigh, and A. Warren
(eds.), Evolutionary Relationships among Protozoa. Lon-
don: Chapman and Hall.

Philippe, H. and Laurent,]J. 1998. How good are deep
phylogenetic trees? Current Opinion in Genetics and Devel-
opment, 8: 616-23.

Further topics in molecular evolution and phylogenetics

Phillips, M.]. and Penny, D. 2003. The root of the mam-
malian tree inferred from whole mitochondrial genomes.
Molecular Phylogeny and Evolution, 28: 171-85.

SantaLucia, J. Jr. and Turner, D.H. 1997. Measuring the
thermodynamics of RNA secondary structure forma-
tion. Biopolymers, 44: 309-19.

Savill, N.J., Hoyle, D.C., and Higgs, P.G. 2001. RNA
sequence evolution with secondary structure con-
straints: Comparison of substitution rate models using
maximum likelihood methods. Genetics, 157: 399-
411.

Stanhope, M.]., Waddell, V.G., Madsen, O., de Jong, W.,
Hedges, S.B., Cleven, G.C., Kao, D., and Springer, M.S.
1998. Molecular evidence for multiple origins of Insecti-
vora and for a new order of endemic African insectivore
mammals. Proceedings of the National Academy of Sciences
USA,95:9967-72.

Tinoco, I. and Bustamente, C. 1999. How RNA folds.
Journal of Molecular Biology, 293(2): 271-81.

Valentine, J.W., Jablonski, D., and Erwin, D.H. 1999.
Fossils, molecules and embryos: New perspectives on
the Cambrian explosion. Development, 126: 851-9.

Van de Peer, Y., Baldauf, S.L., Doolittle, W.F., and Meyer,
A. 2000. An updated and comprehensive rRNA phylo-
geny of crown eukaryotes based on rate-calibrated evolu-
tionary distances. Journal of Molecular Evolution, 51:
565-76.

Waddell, P.]., Cao, Y., Hauf,]., and Hasegawa, M. 1999.
Using novel phylogenetic methods to evaluate mam-
malian mtDNA, including amino acid-invariant sites-
LogDet plus site stripping, to detect internal conflicts in
the data, with special reference to the positions of hedge-
hog, armadillo and elephant. Systematic Biology, 48:
31-53.

Waterman, M.S. and Smith, T.F. 1986. Rapid dynamic
programming algorithms for RNA secondary structure.
Advances in Applied Mathematics, 7, 455-64.

Whelan, S. and Goldman, N. 1999. Distributions of stat-
istics used for the comparison of models of sequence
evolution in phylogenetics. Molecular Biology and Evolu-
tion, 16: 1292-9.

Whelan, S., Lio, P., and Goldman, N. 2001. Molecular
phylogenetics: State of the art methods for looking into
the past. Trends in Genetics, 17: 262-72.

Wimberly, B.T., Brodersen, D.E., Clemons, W.M.]Jr.,
Morgan-Warren, R.J., Carter, A.P., Vonhein, C.,
Hartsch, T., and Ramakrishnan, V. 2000. Structure of
the 30S ribosomal subunit. Nature, 407: 327-39.

Woese, C.R. and Fox, G.E. 1977. Phylogenetic structure
of the prokaryote domain: The primary kingdoms.

e 281

Proceedings of the National Academy of Sciences USA, 74
5088-90.

Woese, C.R., Kandler, O., and Wheelis, M.L. 1990.
Towards a natural system of organisms: Proposal for the
domains archaea, bacteria and eucarya. Proceedings of
the National Academy of Sciences USA, 87:4576-9.

Woese, C.R. and Pace, N.R. 1993. Probing RNA structure,
function and history by comparative analysis. In R.F.
Gesteland and].F. Atkins (eds.), The RNA World,
pp. 91-117. Cold Spring Harbor Laboratory Press.

Yang, Z. and Nielsen, R. 1998. Synonymous and non-

282 ® Chapter11

synonymous rate variation in nuclear genes of mam-
mals. Journal of Molecular Evolution, 46: 409-18.

Yang, Z., Nielsen, R., Goldman, N., and Krabbe Pedersen,
A. 2000. Codon-substitution models for heterogeneous
selection pressure at amino acid sites. Genetics, 155:
431-49.

Zuker, M. 1989. Finding all sub-optimal foldings of an
RNA molecule. Science, 244: 48-52.

Zuker, M. 1998. RNA web page — including lecture notes
on RNA structure prediction and mfold software pack-
age. http://www.ibc.wustl.edu/~zuker/rna.

Genome evolution

CHAPTER PREVIEW

Now that many complete genom
pare whole sets of genes betw
the whole genome level. T
discussing how genes ar
sidering the evidence
for clustering ortl

12.1 PROKARYOTIC GENOMES
12.1.1 Comparing prokaryotic genomes

When we look at complete genomes, many ques-
tions spring to mind. Which genes are present? How
did they get there? Are the genes present in more
than one copy? Which genes are not present that we
would expect to be present? What order are the
genes in, and does this have any significance? How
similar is the genome of one organism to that of
another? These are questions that we could not ask
before complete genomes were available. The GOLD
database (see Box 12.1) lists 128 bacterial and 17
archaeal genomes complete by December 2003, and
there will no doubt be more by the time you read
this. The amount of information available for these
genomes varies, but in many cases we have reason-
ably good annotation that tells us the positions of

CHAPTER

all the open reading frames
(ORFs), predicts whether
these are likely to be real
genes, and, as far as possible,
gives names and functions
to them. We thus have a large
amount of data, ripe for study
using bioinformatics meth-
ods, and interesting trends are
now emerging regarding how
genomes evolve.

Before considering exam-
ples of prokaryotic genomes,
we will briefly discuss the
relationships between the major divisions of pro-
karyotes. Until a few decades ago, biologists had
classified organisms as either eukaryotes (cells pos-
sessing a nucleus surrounded by a nuclear mem-
brane, and usually possessing many other internal
structures, like the cytoskeleton, endoplasmic reticu-
lum, and mitochondria) or prokaryotes (cells not
possessing a nucleus, and having a much simpler
internal structure). At that time, the term “bacteria”
was more or less synonymous with “prokaryotes”.
Our current understanding is that life is split into
three domains: archaea, bacteria, and eukaryotes.
There are thus two domains within the prokaryotes,
which are as different from one another as they are
from eukaryotes, in terms of the sequences of
their genes, the set of genes they possess, and the
metabolic processes occurring in their cells. This
was discovered initially by comparative analysis of
rRNA sequences (Woese and Fox 1977). Now that

Genome evolution ® 283

many complete rRNA sequences are available, phy-
logenies based on rRNA have become a standard
way of classifying organisms (Woese 1987, Olsen,
Woese, and Overbeek 1994, Ludwig et al. 1998).
A recent “backbone tree”, showing the relation-
ship between representative groups of bacteria and
archaea, is available from the Ribosomal Database
Project (Cole et al. 2003).

One of the principal groups of bacteria recognized
from the rRNA sequences was the Proteobacteria.
This is a diverse group, containing many species of
interest, for which we have a lot of complete
genomes. We will use genomes from this group as
examples in this section. Table 12.1 lists the species
of Proteobacteria for which we have complete
genomes, together with some of their genome fea-
tures. The Proteobacteria fall into five subdivisions,
labeled o, B, v, 3, and €. When material for this chap-
ter was prepared, there were no complete genomes
available from the & subdivision, but several have
appeared in the last few months.

As a first example, we will consider the Rickettsia
group, which belong to the o subdivision. These
bacteria live inside the cells of arthropod hosts as
obligate parasites. R. conorii infects ticks, and can
be transmitted to humans by tick bite, leading to

284 @ Chapter12

Mediterranean spotted fever. R. prowazekii is trans-
mitted by lice, causing typhus in humans. Plate 12.1
shows the genome of R. conorii (Ogata et al. 2001). It
is a circular genome of approximately 1.2 million
bases (1.2 Mb or 1,200 kb), which is smaller than
average for bacteria, as can be seen from Table 12.1.
The second and third circles in Plate 12.1(a) show
the positions of genes on the two strands of the cir-
cular genome. We immediately get the impression
that the genome is “full of genes”, with little space
between them.

An expanded version of three sections of the
genome is shown in Plate 12.1(b). In each case, the
genome of R. conorii is compared with the corres-
ponding region in R. prowazekii (the similarities and
differences between these genomes are discussed
in more detail below). Plate 12.1(b) confirms our
impression that most of the genome consists of
protein-coding genes, and that gaps between genes
are short. In fact, 81% of the R. conorii genome is
estimated to be coding regions. These features are
typical of prokaryotes, in contrast to eukaryotes,
where there are often large non-coding intergenic
regions. The sixth and seventh circles in Plate
12.1(a) show the positions of repeat sequences in R.
conorii. Repeat sequence families were identified,

Table 12.1 Statistics of completely sequenced genomes from Proteobacteria.

with lengths between 19 and 172 bases (Ogata et al.
2001), that seem to be distributed randomly all over
the genome. However, the size of the arrows is mis-
leading. The repeat sequences constitute only 3.2%
of the R. conorii genome, and the figure is even lower
for R. prowazekii. Again, we can contrast this situ-
ation with eukaryotes, where there are many families

of repetitive sequences that take up large fractions of
the genome, and are probably “junk” as far as the
organism is concerned. In bacteria, there seems to be
selection to economize on genome length, keeping
the accumulation of junk DNA to a minimum.

The arrows in Plate 12.1(b) show that trans-
cription of neighboring genes is often in opposite

Genome evolution ® 285

7000

6000 -

5000 -

N

o

(=]

o
T

Number of genes
w
S
S
S
T

2000

1000 |-

1

1

Fig. 12.1 Correlation between the
total genome length and the estimated
number of genes on bacterial genomes.
Each point corresponds to one of the
species of Proteobacteria listed in Table
12.1. The correlation coefficient for the

4000
Genome length (kb)

0 2000

directions, i.e., the genes interchange between the
strands. Color is used to classify genes according to
their function, where this is known. There are sev-
eral genes of unknown function (in green), which
are simply labeled as numbered ORFs. An ORF is a
continuous region of DNA, beginning with a start
codon and ending with a stop codon in the same
frame, with no in-frame stop codons in between. The
presence of a long ORF is usually indicative of a cod-
ing region, since in random, non-coding DNA there
would be a relatively high frequency of chance
occurrence of stop codons. It is difficult to predict
from sequence analysis alone whether an ORF really
corresponds to an expressed gene, so it is possible
that some of these ORFs may not represent real
genes. However, in the case shown in Plate 12.1(b),
many of the unknown ORFs are present in the same
relative position in the genome of both Rickettsia
species, suggesting that they are real genes that
have been conserved during evolution. This is typ-
ical of the state of the art in genome annotation:
most genomes contain substantial numbers of genes
of unknown function.

Table 12.1 shows the lengths of complete
genomes from the Proteobacteria and the estimated
number of genes in each; Fig. 12.1 shows that there
is a very strong correlation between these numbers.
The linear regression passes almost through the
origin, and the slope is just below one, i.e., there is

286 ® Chapter12

6000

]
8000 linearregressionis0.98,i.e., thereisan
extremely good straight-line fit.

just less than one gene every kb, or slightly more
than 1,000 bases per gene on average. The presence
of this strong correlation reflects the fact that the
typical length of a gene varies little between bac-
terial species, and that most of the space in the
genome is occupied by genes. Figure 12.1 makes it
clear how much genome size and numbers of genes
vary between species. The largest genome in this set,
that of Mesorhizobium loti, is 12 times larger than the
smallest, that of Buchnera aphidicola.

12.1.2 Geneloss and gene rearrangement

Comparing genome sizes between related species
gives us some insight into the mechanisms of
genome evolution. Figure 12.2 shows a phylogen-
etic tree of Proteobacteria that we obtained from a
concatenated set of 26 tRNA genes present in all
species. There is not yet a consensus on the phylo-
geny of Proteobacteria, and some details of the tree
differ, according to which genes and which phylo-
genetic method are used. The tree shown is likely to
be correct in most aspects and is sufficient to illustrate
the points we make regarding genome evolution in
this section. The main observations from Fig. 12.2
are that both genome length and base composition
can change quite rapidly, and that closely related
species are not always similar in either length or
base composition.

= R. conorii

==z prowazekii

C. crescentus
— B. melitensis

M. loti
_LE S. meliloti
A. tumefaciens

R. solanacearum

[N. meningitidis Z2491
N. meningitidis MC58
E P. aeruginosa
P. syringae

C. burnetii

_I X. axonopodis
X. campestris

C. jejuni
H. pylori |99
€ _l
H. pylori 26695
ol
B
Y
G+C%
L 1>55
[45 -55
N < 45
2000 kb

| X. fastidiosa
X. fastidiosa T1

S. oneidensis

— V. cholerae
_E V. parahaemolyticus
V. vulnificus

H. influenzae

P. multocida
Y. pestis C092
Y. pestis KIMP12

E. coli CFT0753
E. coli O157H7
E. coli K12
S. flexneri
S. enterica

S. typhimurium

B. aphidicola Bp

—E B. aphidicola Sg
B. aphidicola Ap

T

Fig. 12.2 Phylogenetic tree of Proteobacteria obtained using a set of 26 concatenated tRNA genes that are present in every
genome. The bars indicate the genome length (scale bar shows 2,000 kb). Color indicates percentage of G+C bases.

Genome evolution @ 287

Species with short genomes appear to have
evolved from ancestors with much longer genomes
on several occasions. The Rickettsia species dis-
cussed above are reasonably close to M. loti, the
longest genome in this set, and to Agrobacterium
tumefaciens and Sinorhizobium meliloti, which also
have large genomes. These species are members of a
group called Rhizobia, which have close association
with plants. A. tumefaciens is a plant pathogen that
causes the growth of galls on many types of plant. It
is able to insert parts of its own DNA into plant
genomes. Scientists have made use of this to insert
specific genes into genetically engineered plants. A.
tumefaciens has an unusual genome composed of
one circular chromosome, one linear chromosome,
and two smaller circular plasmids (Wood et al.
2001). M. loti and S. meliloti are both nitrogen-fixing
bacteria that live symbiotically in the root nodules of
leguminous plants. M. loti has a single circular chro-
mosome and two small plasmids, while S. meliloti
has a 3.65 Mb circular chromosome, together with
1.35 Mb and 1.68 Mb “megaplasmids”, both of
which are larger than the Rickettsia genome.

The other group with very short genomes in Fig.
12.2 is the Buchnera aphidicola species. These bac-
teria are symbionts inside the cells of aphid hosts:
the abbreviations Bp, Ap, and Sg in Table 12.1 stand
for Baizongia pistaciae, Acyrthosiphon pisum, and
Schizaphis gramium, three species of aphid that feed
by sucking the sap from different host plants. Each
aphid is, in turn, host to its own variety of Buchnera.
These are transmitted through the maternal cell
line, and have little opportunity to be transmitted
between organisms. Therefore, it is thought that the
phylogeny of the bacteria follows the phylogeny of
the aphids. Buchnera appear to benefit their hosts by
synthesis of essential amino acids that are defici-
ent in the aphids’ diet. These species are members
of the Enterobacteria group, which also includes
Escherichia coli (a well-studied model organism that
is usually a harmless resident in the human gut, but
can sometimes be pathogenic), and several other
human pathogens, like Salmonella typhimurium (a
cause of gastroenteritis), and Yersinia pestis (respons-
ible for bubonic plague). These latter species all have
much larger genomes than Buchnera.

288 ® Chapter12

What Buchnera and Rickettsia have in common is
that they live inside other cells, either symbiotically
or as parasites. It seems that this specialized lifestyle
tends to allow species to survive with a much-
reduced set of genes. Bacteria in a host cell have a
very stable environment and may be able to rely on
the host to provide substances that a free-living bac-
terium would have to synthesize for itself. We can
expect that there is a selective pressure acting to
shorten genomes, because this leads to more rapid
genome replication and cell division. We also expect
that short deletions and unfavorable point muta-
tions will be occurring in genes all the time. If unfa-
vorable mutations occur in a redundant gene that is
no longer necessary to the bacterium, then there is
no selection against them. Consequently, a redund-
ant gene can be rapidly lost from a genome.

Almost all the genes in Buchnera are also present
in E. coliK12. Thus, the major factor in the evolution
of the endosymbiont genome has been the large-
scale loss of unnecessary genes. The establishment
of the symbiosis with aphids is estimated to have oc-
curred approximately 200 million years ago. Since
then, the process of gene loss has slowed down, but is
still detectable. When the three Buchnera species
were compared (van Ham et al. 2003), it was found
that 499 genes are present in all three, and a further
139 are present in only one or two of them. The
interpretation is that the common ancestor of these
species had a genome with at least 638 genes. As
this number is larger than the current gene content
of the individual species, all three genomes must
have been subject to further gene loss since the
establishment of symbiosis.

It is also interesting to compare the gene order in
related genomes and to ask to what extent this has
changed. An inversion is the reversal of a section of
DNA such that any genes present in that section
switch strands and have their direction of transcrip-
tion reversed. A translocation is the deletion of a sec-
tion of DNA from one place in a genome and its
reinsertion in another place. Inversions and trans-
locations can lead to complete reshuffling of gene
order when comparing distantly related species.
However, with closely related genomes, it is often
possible to find regions of the genome where colin-

earity is maintained. The order of the genes in the
three Buchnera species was found to be almost ident-
ical, except for two small inversions and two small
translocations. For 200 million years, this repres-
ents rather little change; van Ham et al. (2003)
therefore call this a “gene-order fossil”.

Although both the gene content and gene order in
the Buchnera group seem to have evolved rather
slowly, thisis not true with gene sequence. Van Ham
et al. (2003) observed an accelerated rate of non-
synonymous substitutions with respect to synonym-
ous substitutions (see Section 11.2.3) in these
species relative to free-living bacteria. Thisis indicat-
ive of the increased rate of fixation of mildly deleteri-
ous mutations. In Fig. 12.2, the branches leading to
Buchnera are rather long, indicating that the tRNA
genes have also evolved faster in these species than
in any of the other y-Proteobacteria. It is known that
small, isolated asexual populations are subject to
accumulation of deleterious mutations by a process
known as Muller’s ratchet. The effect of genetic drift
is larger in small populations, and the efficiency of
selection is reduced. It appears that the Buchnera
genome is gradually degenerating, and that the
aphids may have to find a new symbiotic bacterium
at some point in the future.

A similar picture is seen in the Rickettsia. The
number of genes in R. conorii is substantially larger
than in R. prowazekii: 767 orthologous gene pairs
were found between them (Ogata et al. 2001); 552
R. conorii genes have no functional counterpart in R.
prowazekii; but only 30 R. prowazekii genes have no
functional counterpart in R. conorii. The process of
gene loss seems to have continued at a faster rate in
R. prowazekii than R. conorii since their divergence.
We already compared regions of the R. conorii and R.
prowazekii genomes in Plate 12.1. This illustrates
that some long genes in one species have become
split into several consecutive ORFs in the other
when stop codons arose by mutations in the mid-
dle of the gene. The transcription patterns of the
split genes vary: in some cases, all the ORFs are still
transcribed, but in others only one or other of them.
So, some of the split genes may have retained their
function, but we can probably conclude that gene
splitting is an example of fixation of deleterious

mutations in isolated populations. The occurrence
of a stop codon in the middle of a gene would norm-
ally be strongly deleterious, and would be eliminated
by selection in most species. The bottom panel of
Plate 12.1(b) illustrates a gene in R. conorii that has
almost disappeared from R. prowazekii owing to
deletions, but where some vestigial sequence sim-
ilarity can still be detected, showing that the gene
was once there.

As with Buchnera, there is very strong conserva-
tion of gene order between the two Rickettsia. The
genomes are approximately colinear, apart from a
few translocations that have occurred in the shaded
sector of Plate 12.1(a). Gene order comparisons
become more interesting for pairs of species that are
slightly more divergent. One graphical way to rep-
resent such comparisons is by means of a dot-plot,
such as that shown in Fig. 12.3 for two of the
Rhizobia (Wood et al. 2001). Proteins from each
genome were queried against the other genome
using BLASTP. Each dot in Fig. 12.3 shows the posi-
tion of a bidirectional best hit. There is a substantial
degree of colinearity between the circular chromo-
some of A. tumefaciens and the S. meliloti chromo-
some, indicating that these chromosomes evolved
from a common chromosome in the ancestor of the
Rhizobia. The linear chromosome in A. tumefaciens
seems to have arisen at a later date. It contains genes
that have matches in the main S. meliloti chromo-
some that seem to have got there by individual
translocations; hence, there is no pattern of con-
served gene order in the linear chromosome.
Suyama and Bork (2001) show dot-plots of this type
for many pairs of bacterial genomes, and compare
the rate at which gene order is disrupted by rear-
rangements to the rate of sequence evolution.

In Fig. 12.3, we see that reshuffling of genes
appears to be largest around the origin and terminus
of replication of the circular chromosomes. This
illustrates the influence of genome replication on the
occurrence of inversions and translocations. The
same effect is also apparent in Rickettsia (Plate 12.1).
The shaded region, where genome rearrangement
has occurred, is next to the terminus of replication.
There is one more strange feature apparent in Plate
12.1 thatis also connected with genome replication.
® 289

Genome evolution

3.5F . S =R
..,‘ E % T P f =
—~ 300 - =t 7 E !-c- -
g : S it
X p5ps " = e &
Iy . 3 - i V5 f ST
\q-)/ ; ¢ L] ‘: o L o - : ®
Pl it "
E 201 o A B 0
2 L = s _- £ i b i s Fig. 12.3 A dot-plotillustrating
g 1.5¢- : 1 T i et regions of colinearity between the
5 ,Jf/ -~ * o circular chromosomes of A. tumefaciens
g 1oL ;I/.An. 2 = ' 2 and S. meliloti (reproduced from Wood
S i ‘?J" A . T . etal. 2001. Copyright 2001 AAAS).
§ = o s it b 1 . = Eachdotrepresents a bidirectional best
2051 A J Hprie = B «, = hit between protein sequences using
L Wl * 1 o L= BLASTP. A and B indicate putative
! s L L bl " = origin and terminus of replication.
0.0 0.5 1.0 1.5 2.0 2.5 Cindicates another sizeable region
A. tumefaciens circular chromosome (bp x 106) lacking colinearity.

The inner circle shows the G—C skew, defined as (%G
- %C)/ (%G + %C). One half of the genome has excess
G and one halfhas excess C on the strand analyzed. If
the other strand were analyzed, the G—C skew would
be opposite, because a C on one strand is com-
plementary to a G on the other. This shows that the
base composition is not equal on the two strands.
The effect arises as a result of the asymmetrical
nature of DNA replication (see Section 2.3.5), where
one strand is leading and one lagging. There appear
to be different mutational biases on the leading and
lagging strands. Bacterial chromosome replication
begins at an origin of replication, proceeds around
the circle in both directions, and finishes at a termi-
nus on the opposite side of the circle. Each strand of
the chromosome isleading in one half of the genome
and lagging in the other half, which leads to the
pattern seen in Plate 12.1. The same pattern is also
seen in many other bacteria (Lobry 1996) and can
be used to locate the position of the origin and ter-
minus in newly sequenced genomes (Chambaud
etal. 2001).

12.1.3 Gene duplication and horizontal gene transfer

So far, we have painted a dismal picture of genomes
degenerating via deleterious mutations and dele-

290 @ Chapter12

tions. How did the big genomes arise from which the
small ones have degenerated? To create a new gene
in a genome, the first way we might think of would
be to create it de novo by mutations in a DNA
sequence. However, this is hard! Mutations in a
sequence would have to occur in just the right way
to create a coding sequence that could be translated
into a protein that could do something useful.
Mutations in the upstream and downstream regions
of the gene would have to occur to ensure that the
proper signals were present that ensure the new
gene would be transcribed and translated. It seems
very unlikely that a new gene would arise like this in
amodern genome. At some point in the very distant
past, life must have arisen, and part of the problem of
the origin of life is to explain the de novo origin of sets
of genes that work together to control the function-
ing of an organism. However, there must have been
some last universal common ancestor (LUCA) of all
currently existing species (i.e., of archaea, bacteria,
and eukaryotes). We don’t know much about what
type of organism the LUCA was, but we can be fairly
sure that it had some type of genome with lots of
genes, many of which would have functions similar
to the functions of genes in present-day organisms.
If we consider how genomes evolved after the
establishment of cellular life forms, like present-day

prokaryotes, then the most obvious ways for gen-
omes to acquire new genes are gene duplication (i.e.,
making a second copy of a gene you already have)
and horizontal gene transfer (i.e., pinching an exist-
ing gene from somewhere else).

Duplications of regions of DNA can occur during
replication. Sometimes, these will contain a whole
gene, in which case the new genome now has two
copies of that gene. We can also suppose that, occa-
sionally, a larger chunk of DNA is copied, leading to
the simultaneous duplication of a large number of
genes. When two copies of a gene are present,
sequence evolution proceeds in the normal way.
Substitutions will accumulate in both sequences
such that the proteins they produce will no longer be
identical. Sometimes, one of the genes may accumu-
late deleterious mutations and become non-func-
tional, in which case it is likely to disappear from the
genome. Occasionally, however, one of the copies
might acquire a new function, slightly different from
the old, in which case selection would cause the
retention of both copies and would lead to diver-
sification and specialization of each of the genes for
different functions.

Horizontal (or lateral) gene transfer means that a
piece of DNA from an unrelated organism has been
incorporated into a genome. This isin contrast to the
normal vertical transmission of genes passed down
by DNA replication and cell division. There are sev-
eral ways in which foreign DNA can get into cells.
Many bacteria have the ability to take in fragments
of DNA from their surroundings through special
receptor sites on the cell surface — such cells are
known as “competent” cells. The foreign DNA can
sometimes form a heteroduplex with the host DNA
and replace the original complementary strand.
Descendants of this cell then possess the foreign
DNA sequence as an integral part of their genome —
this is known as transformation. Some bacteria also
deliberately transfer DNA to their fellow cells via
conjugation. Genes controlling the formation of the
conjugative bridge structure are often found on plas-
mids: this is how plasmids can be transferred to
other cells, along with any genes they happen to
contain. Another method of transfer is via bacterio-
phages: DNA packed in the capsids of bacterio-

phages is horizontally transferred when the virus
invades a new cell. Some DNA elements act as trans-
posons, which have the ability to insert and excise
themselves in and out of bacterial genomes; integ-
rons are specific locations in bacterial DNA where
new DNA sections can be incorporated. Bacteria
often come into contact with eukaryotic cells too,
as many are parasites or live as commensals
inside eukaryotic organisms. Transfer of genes from
eukaryotes to prokaryotes or vice versa has also
been claimed to occur. Some bacteria are intracel-
lular parasites, which puts them in even closer con-
tact with host DNA and makes horizontal transfer
seem one step more likely.

The subject of horizontal transfer is controversial,
owing to its medical importance and possible relev-
ance to genetically modified organisms. The spread
of antibiotic-resistance genes between bacteria is
largely thought to result from horizontal transfer of
genes carried on plasmids. It is also known that
pathogenic and non-pathogenic strains of bacteria
often differ from one another by the presence or
absence of DNA elements known as pathogenicity
islands. These sections contain one or more genes
whose function is directly linked to the pathogenic
lifestyle of the host. Therefore, it seems that the hori-
zontal gain of new genes is a major mode of evolu-
tion and adaptation in bacteria. The possibility of
horizontal transmission of genes for pesticide resist-
ance is also a major concern in relation to testing
genetically modified crops. Until we fully under-
stand the processes involved, it is difficult to be cer-
tain whether such concerns are justified.

Let us consider a further example from the Pro-
teobacteria: Escherichia coli. Most E. coli strains are
harmless inhabitants of our digestive tract: the K12
strain is one of these. However, strain EDL933 is
enterohemorrhagic (i.e., it is a pathogen inside the
digestive system), while strain CFT073 causes
infections of the urinary tract. Welch et al. (2002)
compared the genomes of these three strains. They
defined genes as orthologs if their sequence identity
was greater than 90% and the alignments covered
at least 90% of the gene. They found 2,996 genes
present in all three strains. However, the total
numbers of genes present in at least one of the
e 291

Genome evolution

MG1655 (K-12)
Non-pathogenic

Total proteins = 7638
2996 (39.2%) in all 3
911 (11.9%) in 2 out of 3

3554 (46.5%) in 1 out of 3

EDL933 (0O157:H7)
Enterohemorrhagic

genomes is 7,638, implying that only 39% of genes
are shared between all three strains. The results are
summarized in Fig. 12.4. One might argue that this
result is sensitive to the method by which the
orthologs were detected and that it is failing to find
all relevant matches; however, it is clear that there
are very large differences between these genomes,
and that each contains genes that have been
acquired horizontally.

When CFT073 was compared to K12, 247
regions of length at least 50 bases were found to
have been inserted in CFT073. These regions are
CFT073-specific “islands” in the genome, totaling
1.3 Mb, while the remaining “backbone” regions of
the genome, totaling 3.9 Mb, have clear homology
between the strains (Welch et al. 2002). Genes in the
backbone regions are usually very similar in sequ-
ence between the strains. The strains have thus
arisen relatively recently. Evidence that the island
regions consist of horizontally transferred DNA
comes from the fact that most of the genes without
orthologs in the other strains are on the islands, and
also from analysis of codon usage. Sequence-specific
patterns of mutation and selection lead to preferred
usage of certain codons in a given organism (Section
3.6). Genes transferred from outside that organism
will have different codon usage frequencies, and it
will take some time until this signal disappears as a
result of mutation and selection acting on the genes
in their new environment. Codon frequencies were
found to differ significantly between genes in the

292 @ Chapter12

CFT073
Uropathogenic

Fig. 12.4 Comparison of the gene
content in three strains of E. coli
(reproduced from Welch et al. 2002.
Copyright 2002 National Academy of
Sciences USA). The regions of the
diagram illustrate the numbers of
predicted proteins present in one, two,
or all three strains. Remarkably few are
shared between all three.

island and backbone regions, while codon frequen-
cies in the backbone regions of the different strains
did not differ.

Many of the genes in the islands are known to be
essential for the pathogenic lifestyle of the bacteria —
hence the term “pathogenicity islands”. The differ-
ent strains of E. coli have thus evolved new lifestyles
by acquiring genes for new functions. This is in con-
trast to the three Buchnera species, which have
diverged from each other “passively”, being carried
along as their host species diverged.

12.1.4 Detecting and quantifying horizontal transfer

Horizontal transfer is also controversial because it
flies in the face of the traditional tree-like view of evo-
lution. As we said above, our understanding of the
relationship between bacterial species derives prin-
cipally from phylogenies based on rRNA sequences.
The rRNA phylogeny has become so central that it is
often referred to as the “universal tree” (Woese
2000). As sequence information has accumulated
from an increasing number of genes, it has become
clear that not all genes give the same tree. It is then
tough to decide if this is the result of artifacts of phy-
logenetic reconstruction, or if genes have really fol-
lowed different evolutionary paths. Some authors
have argued that the amount of horizontal trans-
fer is so large that we should really think of bac-
terial evolution as a tangled network rather than a
tree (Doolittle 2000, Boucher, Nesbo, and Doolittle

2001). Others argue that it still makes sense to look
for a core set of genes that are passed down vertically
as a coherent group. Some of the most fundamental
genes possessed by all domains of life are those con-
nected with genome replication and expression, and
these usually give trees consistent with the rRNA
tree. Woese (2000) argues that this core set of genes
is giving us a valid picture of the organismal genea-
logy and defends the idea of a universal tree.

One family of genes for which there is agreement
that horizontal transfer is common is the aminoacyl-
tRNA synthetases (aaRSs), which are responsible for
charging tRNAs with their appropriate amino acid.
Most organisms have a set of 20 of these genes.
Because of their essential role in the translation pro-
cess, they occur in all three domains of life, and have
been widely studied. When phylogenetic trees for
aaRS genes are constructed, numerous anomalies
are found, many of which can be explained by hori-
zontal gene transfer (Doolittle and Handy 1998,
Koonin, Makarova, and Aravind 2001). One inter-
esting case is that of GIuRS in E. coli. Most eukary-
otes have a GluRS and a GInRS that are related in
sequence and probably arose via a gene duplication
event. On the other hand, most bacteria have only a
GluRS that is responsible for correctly charging
tRNAS" and for mischarging tRNA®™ with Glu.
Correctly charged GIn-tRNAS™ is then made from
the mischarged Glu-tRNAS™ by a transamidation
reaction that takes place on the tRNA. It is therefore
unusual to find that E. coli and some other pro-
teobacteria do possess a GInRS gene, and do not use
the transamidation route. This indicates horizontal
transfer of a eukaryotic gene into this group of bac-
teria. Many other cases of apparent horizontal trans-
fer are known in the aaRSs, making them unusual
in this respect.

For a horizontally transferred gene to be de-
tectable, it needs to survive as a functioning gene in
its new host genome. The new gene might replace
an existing ortholog that is subsequently deleted, or
it might have a useful function not possessed by any
of the host genes. If the horizontally transferred gene
were a non-functional pseudogene in its new envir-
onment, then it would rapidly accumulate muta-
tions, and sequence analysis techniques would be

unlikely to spot it. So, if a family of genes, like aaRSs,
is frequently horizontally transferred, this suggests
that the corresponding proteins can function more
effectively in a foreign cell than would the products of
most foreign genes, rather than that the DNA of these
genes is more likely to be transferred than others. The
aaRSs have to interact with tRNAs, which are very
conservative in their structure; other proteins might
be involved in large-scale complexes with other
fast-evolving proteins, so a horizontally transferred
sequence might be unable to function effectively and
to replace an existing gene. A contrast is sometimes
drawn between aaRSs and ribosomal proteins. The
latter must interact with many other proteins and
RNAs inside the ribosome, so there is large scope for
coevolution of these genes. Ribosomal proteins have
rarely been found to be horizontally transferred.

As a final note of caution, we should remember
that even rRNA genes, beloved of tree-builders, have
occasionally been transferred horizontally. Yap,
Zhang, and Wang (1999) found that, in the bac-
terium Thermomonospora chromogena, there are six
copies of the ribosomal RNA operon, containing
both SSU and LSU rRNA genes. One of these copies is
substantially different from the other five, but bears
a close relationship to the sequence in the related
species, T. bispora, indicating a likely horizontal
transfer from this species.

Given that horizontal transfer between bacteria
occurs to some degree, an important aim is to locate
particular cases and to give a quantitative estimate
of the frequency of occurrence. One way to do this is
to look for regions of a genome that appear to have
different properties from the surrounding regions:
the codon-usage patterns in islands of the E. coli
CFTO073 strain discussed above is an example of this.
The frequencies of bases in different genomes differ
substantially, so if a foreign piece of DNA is inserted
into a genome, it will often stand out by this alone. In
their study of the E. coli genome, Lawrence and
Ochman (1998) measured the GC frequency at the
first and third positions in each gene. The second
position was excluded, because it is most con-
strained by the genetic code and therefore least vari-
able. They defined genes as atypical if the GC
frequency was more than two standard deviations

Genome evolution ® 293

away from the mean for all genes. They then looked
for genes that appeared to have biased codon usage
with respect to typical E. coli genes. They also took
account of the possibility of horizontal transfer of
operons. If several genes are translationally coupled,
but not all of them appear unusual by the statistics
above, then it is nevertheless likely that the genes
were transferred together as an operon. One factor
that can influence the base composition of genes is
the amino acid composition of the corresponding
protein. For example, Lawrence and Ochman found
some proteins with large numbers of lysine residues.
As the corresponding codons are AAA and AAG, a
high AT content is apparent in these genes, which
does not indicate horizontal transfer.

Combining all these factors, it was estimated that
755 of 4,288 ORFs in E. coli had been horizontally
transferred, which is a huge 17.6%. What happens
to these genes when they arrive in a new genome?
First, they are subject to the mutational biases in the
host organism. This means that any usual base fre-
quencies and codon-usage patterns will gradually
decay away until the gene looks just like its sur-
roundings. Lawrence and Ochman (1998) had
estimates of mutation rates and hence were able to
obtain estimates of how long the horizontally trans-
ferred genes had been present, by looking at their
base frequencies. They estimated a mean age of 14.4
million years, which translates into an estimated
rate of 16 kb of DNA transferred per million years. In
the 100 million years since the divergence of E. coli
and Salmonella, this means a total of 1.6 Mb has been
added to the E. coli genome — this should be com-
pared to the total genome length of 4.6 Mb. The
large rate of gain by horizontal transfer must be bal-
anced by a significant amount of random deletion,
thus creating a turnover in gene content.

These numbers should be taken with a pinch of
salt. There is a degree of uncertainty in assigning
which genes are horizontally transferred, and there
is a large amount of educated guesswork in cal-
culating the rates. Nevertheless, the bottom line is
that horizontal transfer seems to be much more
important than anyone expected before complete
genomes were available. A more recent estimate
(Ochman, Lawrence, and Groisman 2000) gives a

294 @ Chapter12

horizontal transfer figure of 12.8% of the E. coli
genome, which is larger than for all but one of the
species considered. The figures vary considerably
between species: e.g., 11.6% of foreign DNA was
found in Mycoplasma pneumoniae, but none at all in
Mycoplasma genitalium.

12.1.5 Clusters of orthologous groups (COGs)

When comparing the sets of genes in different
genomes, a first question is which genes are ortho-
logous. Orthologs are genes in different species that
diverged from a common ancestral sequence as a
result of speciation of the organisms. If different
species had exactly the same genes, then it would be
possible to take each gene in one species and find an
ortholog for it in every other species. However, there
are many genes that are present in some, but not all,
of the complete genomes we have available, either
because they have arisen for the first time in certain
species, or because they have been deleted from
genomes that originally possessed them. Another
complication is gene duplication. Related genes in
one genome that have arisen from a common ances-
tral sequence by gene duplication are called par-
alogs. Many genes in eukaryotes consist of families
of paralogs. Sometimes, one gene in a bacterial
genome is orthologous to a family of genes in a
eukaryotic genome. Duplications can also occur
independently in different lineages, leading to situ-
ations where different species each possess families
of paralogs, but there is no correspondence between
individual pairs of genes in the different organisms.
In other words, relationships between genes may be
one-to-one, one-to-many, or many-to-many. An
example of complex gene duplications was given for
hexokinase genes in Fig. 6.5. Here, there are four
pairs of orthologs between human and rat, which
can be identified because the gene duplications
occurred before the divergence of the human and rat
species. However, if we compare human with yeast,
we can only say that there is a family of paralogs in
humans and a family of paralogs in yeast, but there
is no one-to-one relationship between individual
genes. In this case, we might nevertheless say that
the two families of genes are orthologous, because

the genes that gave rise to the families diverged as a
result of speciation at some point long ago.

The COG (Clusters of Orthologous Groups) data-
base was set up to identify related groups of genes in
complete genomes (Tatusov, Koonin, and Lipman
1997, Tatusov et al. 2001). Each COG is a set of
genes composed of individual orthologous genes,
or of orthologous groups of paralogs from three or
more species. For each gene in each of the complete
genomes analyzed, BLAST was used to find the best
hitting gene in each of the other genomes. The clus-
tering procedure began by looking for triangular
relationships of genes in three species, such that
each is the best hit of the other two. Whenever two
triangles of genes shared a side, these sets of genes
were combined into one cluster. Although this
clustering scheme is relatively simple and easy to
implement automatically, it avoids some of the dan-
gers that might arise in some other automated
schemes. For example, best hits according to BLAST
(and other search algorithms) are not necessarily
the most closely related when more careful phylogen-
etic analysis is carried out. In the COG system, each
member of a cluster is a best hit of at least two other
members of the group, which prevents connecting
two clusters that are only related by spurious single
links. Also, the COG system avoids defining a sim-
ilarity threshold. It is easy to envisage a system in
which all sequences are clustered if their similarity
score is above some threshold; but such clusters
would be very sensitive to the threshold chosen. As
some orthologous groups are much more divergent
than others, it would be difficult to choose a thresh-
old appropriate to all genes.

The COG database began with seven genomes and
found 720 clusters. The current version has ex-
panded to 43 genomes, including Saccharomyces
cerevisiae as the only eukaryote, and a range of bac-
teria and archaea. There are now 3,307 clusters. Of
the 104,000 genes in the full set of genomes, 74,000
of them (71%) have been clustered into COGs. The
percentage of genes that are clustered tends to be
larger for the smaller bacterial genomes: e.g., in
Buchnera, 568 out of 575 genes are clustered (99%).
As we saw above, Buchnera has retained a relatively
small fraction of the genes it once had, and those

that are retained appear to be essential genes for
which it is possible to find orthologs in many other
species. On the other hand, in E. coli K12, which has
amuch larger genome, 3,414 genes of 4,275 (80%)
were clustered. For the considerably larger S. cere-
visiae genome, only 2,290 genes of 5,955 (38%)
could be placed in COGs. This indicates that a sub-
stantial number of genes in eukaryotes do not have
orthologs in prokaryotes. As more complete eukary-
otic genomes become available, it will presumably
be possible to cluster many of these genes into COGs
containing only eukaryotic species.

If we consider only the average figure of 71%, this
still means that there are substantial numbers of
genes for which no reliable orthologs can be found.
How do we interpret this? Some of these genes could
really be “unique” to a given species or closely
related group of species. As more species are added,
the chances of finding related species that share
genes will become larger, hence the number of COGs
should increase and the fraction of genes assigned
to them should increase. This has indeed been hap-
pening, as can be seen by comparing the figures
above, from the Web site in December 2003
(http://www.ncbi.nlm.nih.gov/COG/), with those
published two years ago (Tatusov et al. 2001).
Another interpretation is that our methods for
detecting orthologous sequences are simply not
good enough to detect distant matches (this must be
at least partly true, but it is difficult to know how
many matches are being missed). A third possibility
is that some of the ORFs annotated as genes in the
published genomes are not real genes. By studying
COGs, Tatusov et al. (2001) gave evidence that
many of the ORFs originally predicted in Aeropyrum
pernix (an archaeon not closely related to previously
sequenced species) were not real genes. COG ana-
lysis can also potentially help in genome annotation
by detecting missing genes. If a gene is absent in a
species but present in several related ones, this
might suggest that it has been overlooked, and that
a more careful search of the genome is warranted.
Another potential use for COGs is that when a gene
has been reliably assigned to a cluster, one can infer
its function from that of others in the cluster.
However, there are still many clusters for which

Genome evolution ® 295

the function is unknown, or at best, only partially
understood.

There are several take-home messages here.
Complete genomes are an important resource, but
are just a beginning for future studies. Our current
knowledge is insufficient to say with certainty where
all the genes are in a genome. Knowing the complete
set of genes does not tell us their functions. Bioin-
formatics methods are important for genome annota-
tion, and methods that can compare new genomes
with many previously sequenced genomes can lead
to a substantial improvement in the reliability of
annotation.

12.1.6 Phylogenies based on shared gene content

Sometimes, phylogenies based on different genes are
not consistent with one another. This may result
from inaccuracies or lack of resolution of the meth-
ods, or from horizontal gene transfer. Either way, it
isinteresting to try to build phylogenies based on the
degree of similarity of the gene content of genomes
rather than on the similarity of individual gene
sequences. Arguably, this gives a better picture of
evolution of the whole organism than could be
obtained from any single gene.

The first step in this process is to measure the
number of shared genes between genomes. Snel,
Bork, and Huynen (1999) used the Smith—
Waterman algorithm to compare all the genes in a
set of complete genomes. Genes from two different
genomes were defined to be orthologs if they were
each the other’s best hit in the other genome, and
if the E value for the alignment was less than 0.01.
The more closely related the two genomes, the larger
the number of shared genes we would expect to find.
However, genomes differ considerably in the num-
ber of genes they possess. Larger genomes are likely
to share larger numbers of genes than smaller
genomes. Also, genome size can vary considerably
in closely related organisms, particularly in parasitic
and endosymbiotic bacteria, which can lose large
numbers of genes very quickly. To account for
genome size bias, the number of shared genes was
divided by the number of genes in the smaller of the
two genomes. This gives a measure of similarity, S,

296 © Chapter12

that varies between O (for no shared genes) and 1
(where the genes on the smaller genome are a subset
of the genes on the larger). If there were a continual
process of genome evolution via gain and loss of
genes, we would expect the similarity between two
genomes to decay roughly exponentially with time
since they diverged. We can therefore define a meas-
ure of distance between genomes as d=-In S. In
this way, a matrix of distances between a set of gen-
omes can be calculated, and this distance matrix can
be used as input to distance-matrix phylogenetic
programs, such as neighbor-joining and Fitch—
Margoliash methods (Sections 8.3 and 8.5).

Initial attempts at doing this (Snel, Bork, and
Huynen 1999, Fitz-Gibbon and House 1999) used
relatively small numbers of genomes. Now that sub-
stantial numbers of genomes are available, the
results become quite interesting, and Korbel et al.
(2002) have set up a Web-based resource, called
SHOT, for doing whole-genome phylogenies of this
type. An example of the output of SHOT is shown in
Fig. 12.5. Many aspects of this phylogeny confirm
what was previously deduced from rRNA sequence
phylogenies. The division into the 3 domains,
archaea, bacteria, and eukaryotes, is clearly shown
in the figure. The eukaryotes are divided into ani-
mals, fungi, and plants (animals and fungi being the
closest two of the three groups). This point has also
been shown using rRNA phylogeny (van de Peer et
al. 2000). Unfortunately, there is, as yet, no com-
plete genome information on the diverse array of
protists and other early-branching eukaryotes.
Several of the major groups of bacteria known from
rRNA phylogenies are also found in the whole-
genome phylogeny. But there are also aspects of the
tree that are not well resolved (e.g., branching
within the bacteria is rather star-like), or that
conflict with sequence-based phylogenies (e.g., D.
melanogaster appears closer to human than to C.
elegans, but sequence-based phylogenies place D.
melanogaster and C. elegans in the Ecdysozoa group
within the Protostomes, with humans as Deutero-
stomes (Section 11.3.2)).

It might be hoped that whole-genome phylo-
genies would be free of some of the sensitivity of
sequence-based phylogenies to the gene used, the

o. Proteobacteria

620TMD apjuownaud D

. pylori 2669 5

wnippHUnw D

/

B + v Proteobacteria

A maritimg
B subis

B. halodurans

S.a

Firmicutes

I‘/‘Opb /Q//)y

Spirochaetes

My
/;er/hag o

¢ Proteobacteria

M
/0/7/70.‘. chi

Animals

C 8/5’90/75

A tha//bﬂa) Plants

S. solfataricus

A /”/_le’u;
£ turiog,, 5

Fig. 12.5 Phylogeny based on shared gene content of completely sequenced genomes, calculated using the default options of the

SHOT program (Korbel et al. 2002).

alignment, the choice of species included, and the
method of tree construction. Nevertheless, there are
many factors that enter into whole-genome phylo-
genies too. There are several ways to calculate sim-
ilarity between genomes. By default, Korbel et al.
(2002) now use a weighted average of genome sizes
to normalize the number of shared genes, rather
than dividing by the smaller of the two genomes.
The number of shared genes between two genomes
depends on the definition of orthologs and the
method used to detect them. The number of genes on

each genome is also open to question. One might
wish to exclude genes that have no ortholog in any
of the other species. The way distance is calculated
from similarity is rather crude, and is not based on a
well-defined model of genome evolution. Once we
have a distance matrix, there are many ways to cal-
culate a phylogeny from it. Unfortunately, all these
details affect the resulting tree to some extent. We
are still in the early days of whole-genome phylogen-
etics, and although methods like this are unlikely
to solve all the problems, they promise to give

Genome evolution @ 297

increasingly useful information as the number of
complete genomes continues to rise.

An interesting study by Snel, Bork, and Huynen
(2002) compares gene content among Proteobac-
teria and Archaea. Rather than use gene content to
deduce the phylogeny, it is assumed that the tree is
already known, and phylogenetic methods are used
to study the mechanisms by which gene content
evolves on this tree. They allow for change in gene
content via gene loss, gene duplication, horizontal
gene transfer, and de novo origin of genes. A cost is
assigned for changes of each type. The gene content
is known for each species on the tips of the tree. The
gene content of each of the ancestral nodes of the
tree is estimated by a type of maximum parsimony
program that minimizes the total cost of changes
in gene content across the tree. The method can be
used to predict the gene content of ancestral gen-
omes, and also to give sensible bounds to costs
associated with each type of change.

The main factor influencing the results of this
study is the relative cost assigned to horizontal
transfer and gene deletion. Whenever a gene is pre-
sent in some species but not others, it is possible to
explain this entirely in terms of gene deletions or
entirely in terms of horizontal transfer, as shown in
the example of Fig. 12.6. If the cost of horizontal
transfer is very high, the maximum parsimony solu-

Possibility of
horizontal transfer

A B C D
Absent Present Present Absent

Possibility of two
independent losses of
the same gene

Fig. 12.6 The pattern of presence and absence of a gene in
the four genomes shown here can be explained either by
horizontal transfer from B to C, or vice versa, or by two
independent losses of the gene from species A and D.

298 @ Chapter12

tion will use only deletions. As a result, the program
will predict extremely large ancestral genomes con-
taining every gene that is present in at least one of
the species. If the cost of horizontal transfer is low,
the solution will not use deletions. Genes will ori-
ginate internally within the tree and will be hori-
zontally transferred many times. Hence, ancestral
genomes will be predicted to be very small. Snel,
Bork, and Huynen (2002) concluded that vertical
descent of genes was the leading factor in genome
evolution (i.e., most genes were transmitted vertic-
ally from the preceding node on the tree most of the
time), followed by gene loss and gene genesis.
Horizontal transfer was important in explaining the
patterns of presence and absence of genes, but was
less frequent than gene loss and genesis on the basis
of the number of events that occurred in the most
parsimonious solution.

12.2 ORGANELLAR GENOMES
12.2.1 Origin of mitochondria and chloroplasts

Both mitochondria and chloroplasts are organelles
in eukaryotic cells that are contained in their own
membranes and that possess their own genomes.
The idea that these organelles are descended from
endosymbiotic bacteria has been around for a long
time (Margulis 1981). We have already seen exam-
ples of bacteria that live obligately inside larger cells,
either as parasites or as symbionts. It seems a rela-
tively small step from such bacteria to organelles
that are an integral part of the cell. We now have
solid evidence, from analysis of gene sequences of
organellar genomes, that both mitochondria and
chloroplasts arose by endosymbiosis. This has been
shown by many researchers and has been reviewed
by Gray and Doolittle (1982) and Gray (1992).

One study that shows this clearly is that of
Cedergren et al. (1988). These authors aligned both
SSU and LSU rRNA from representative species of
archaea, bacteria, eukaryotes, mitochondria, and
chloroplasts. An alignment over such a wide range
is difficult, because of the large variability in length
between the sequences from the different domains.
Nevertheless, the secondary structure of these

molecules is known and there are some regions that
are very well conserved across all the domains.
Cedergren et al. (1988) chose sequence regions from
the most conserved parts of the secondary struc-
ture for their phylogenetic analysis. They found that
the division of life into the three domains — archaea,
bacteria, and eukaryotes — was strongly supported,
and that the sequences of mitochondria and chloro-
plasts branched within the eubacterial domain.
The chloroplast sequences were closely related to
cyanobacteria, a group of normally free-living pho-
tosynthetic bacteria. This means that photosyn-
thesis in eukaryotes (i.e., plants and algae) was
invented in prokaryotes and acquired by endosym-
biosis. The mitochondrial sequences were similar to
those of the a-Proteobacteria, a group that includes
intracellular bacteria, such as Rickettsia. The chief
role of present-day mitochondria is to carry out aer-
obic respiration. This means that aerobic respiration
was also invented by prokaryotes and acquired by
eukaryotes by endosymbiosis.

Several of the genes involved in the electron trans-
port system of the respiratory process are coded on
mitochondrial genomes. Two of the most conserved
of these are cytochrome ¢ oxidase subunit 1 and
cytochrome b. Sicheritz-Ponten, Kurland, and
Andersson (1998) compared the sequences of these
two genes from mitochondrial and bacterial
genomes. They found that the mitochondrial genes
were related to Rickettsia genes, and they estimated
that mitochondria and Rickettsia diverged from one
another 1,500-2,000 million years ago. This is
consistent with estimates of the time of origin of
eukaryotic cells from other sources. Another group
of sequences that provide evidence on the origin
of organelles are the Hsp60 heat-shock proteins
(known as GroEL in bacteria). These are chaper-
onins that assist unfolded or misfolded proteins in
finding their correct structure. Phylogenetic analysis
of these sequences also confirms the relationships
between mitochondria and Rickettsia, and between
chloroplasts and cyanobacteria (Viale and Arakaki
1994). Although the heat-shock proteins are found
in the mitochondria, the genes for these proteins are
actually in the eukaryotic nucleus. The interpreta-
tion is that the Hsp60 genes entered eukaryotes in

the bacterium that became the mitochondrion, and
that the gene was later transferred from the mito-
chondrial genome to the nuclear genome. Many
other genes from organelle genomes have also been
transferred to the nucleus, as we shall see below.

Most mitochondrial genomes are very much
smaller than bacterial genomes. For example, the
human mitochondrial genome, which is typical of
animal mitochondrial genomes, is only 16 kb in
length and possesses 37 genes: 13 protein-coding
genes associated with the electron transport chain,
two rRNAs, and 22 tRNAs. The gap between mito-
chondria and bacteria has been reduced recently by
the sequencing of several protist mitochondrial
genomes (Gray et al. 1998). The most bacteria-like
of the available mitochondrial genomes is that of
Reclinomonas americana (Lang et al. 1997). This is a
single-celled freshwater protist that belongs to a
group known as the jakobids. The genome is of
length 69 kb and contains 97 genes. The proteins
present include 24 from the electron transport
chain, 28 ribosomal proteins (i.e., components of
the mitochondrial ribosome), four that form an RNA
polymerase, six others of various functions, and five
of unknown function. There are three rRNA genes,
as a gene for 58 rRNA is present in addition to the
usual SSU and LSU rRNAs. There is also a gene for
ribonuclease PRNA, not usually found in mitochon-
drial genomes, and there is an expanded set of 26
tRNAs.

In addition to its having a larger repertoire of
genes, there are other reasons for concluding that
the R. americana mitochondrion more closely re-
sembles the ancestral bacterial genome than any
of the other known mitochondrial genomes. The
four-component RNA polymerase encoded by this
genome is similar to those found in bacteria, and it
is substantially different from the nuclear encoded
single-component polymerase that functions in
most mitochondria. This suggests that the single-
component polymerase replaced the bacteria-like
polymerase genes fairly early in mitochondrial evo-
lution. For several genes, Lang et al. (1997) also
located sequence motifs upstream of the start codons
that appear to be Shine—Dalgarno regions, and sug-
gest that translation is initiated in the same way as

® 299

Genome evolution

(a) Nad11, 1, Cox11, 3

[L11-L1-L10-RNAPB-RNAPRIST2-S7-EFTu [l e

[S12-S7-EFG]L11-L1-L10-L12-RNAPB-RNAPB"|

Reclinomonas
americana
mtDNA

(b) 100, 100
Marchantia polymorpha
97,91 - -
Reclinomonas americana
Rickettsia prowazekii

Aquifex aeolicus

Borrelia burgdorferi

Helicobacter pylori

Haemophilus influenzae
Escherichia coli
Mycobacterium tuberculosis

Bacillus subtilis

Synechocystis sp.

Porph
100,100|[5790 orphyra purpurea
E Cyanophora paradoxa

in bacteria. There are also several operons (i.e.,
groups of consecutive, co-transcribed genes) present
in both the R. americana and bacterial genomes.
Andersson et al. (1998) compared the mitochon-
drial genome of R. americana with the most
mitochondria-like of known bacterial genomes,
Rickettsia prowazekii. Figure 12.7 illustrates several
regions of conserved gene order between these
genomes, which are still present despite over 1,500
million years of separate evolution. They also car-
ried out phylogenetic analysis with ribosomal pro-

300 ® Chapter12

Rickettsia
prowazekii

Prototheca wickerhamii

] o-Proteobacteria

N\

Mitochondria

Fig. 12.7 Comparison of a bacteria-
like mitochondrial genome from
Reclinomonas americana with a
mitochondria-like bacterial genome
from Rickettsia prowazekii (reproduced
from Andersson et al. 1998, with
permission of Nature Publishing
Group). (a) Several regions of conserved
gene order are illustrated. S10, spc, and
o are each operons composed of several
consecutive genes. (b) The phylogeny,
constructed using ribosomal protein

] Cyanobacteria genes from bacteria, mitochondria, and
chloroplasts, demonstrates that the
Chloroplast mitochondria are related to Rickettsia

and the chloroplasts to cyanobacteria.

tein genes from both mitochondria and chloroplasts,
and confirmed the expected relationships of the
organelle sequences to bacteria.

12.2.2 The evolution of eukaryotic cells

Eukaryotic cells are defined by the presence of a
nucleus with its own nuclear membrane. Where did
the genesin the nucleus come from? Molecular phylo-
genies showing the three domains of life cannot tell
us whether eukaryotes are more closely related

to bacteria or to archaea, because trees like this are
unrooted. As we are talking about the whole of life,
there is no outgroup species that can be used to pro-
vide a root. This problem was overcome by using
pairs of genes that were duplicated prior to the diver-
gence of the three domains. Species from each
domain therefore possess both genes. Phylogenies
constructed from these gene pairs have two halves,
each half providing a root for the other half. An
example is the two-elongation factor genes, part of
the translation apparatus. Iwabe et al. (1989) and
Gogarten et al. (1989) concluded that the root lies on
the branch leading to bacteria, and hence that
eukaryotes are more closely related to archaea. The
implication is therefore that eukaryotes arose from
an ancestor that was something like an archaeon.
However, some protein phylogenies suggest that
eukaryotes are closer to some taxa within the
bacteria. Golding and Gupta (1995) argued for a
chimeric origin of the eukaryotic nucleus, possibly
by fusion of an archaeon and a bacterium. However,
if horizontal gene transfer was frequent in the early
stages of cellular evolution, then it may be that
a eukaryotic genome acquired genes from many
different sources at different times. Philippe and
Forterre (1999) reanalyzed the data on the rooting
of trees using duplicate genes. They found that trees
derived from different gene pairs were often incon-
sistent, and they also emphasized the problems of
mutational saturation and long-branch attraction
that arise in phylogenies with very divergent
sequences. They concluded that the rooting of the
tree of life in the eubacterial branch cannot be relied
on. Thus, the origin of the nuclear genome of
eukaryotes is much less clear than the origin of the
organellar genomes.

At what point did the primitive eukaryote acquire
mitochondria? Our understanding of this is linked to
our interpretation of the phylogeny of the early-
branching eukaryotes (we touched on this in
Section 11.3.3). Most eukaryotes contain mito-
chondria, but there are several groups that do not.
In some studies, these amitochondriate groups
appeared at the base of the tree, and were hence
referred to as Archezoa, implying that these groups
were ancient taxa that branched off the main

eukaryotic line prior to the endosymbiosis event. In
other words, it was assumed that the Archezoa
never possessed mitochondria. However, several
groups formerly called Archezoa have been found to
be closely related to crown eukaryote groups in
more recent trees (Embley and Hirt 1998, Roger
1999). There have also been cases where genes
thought to have originated from mitochondrial
genomes have been found in nuclear genomes of
species that do not possess mitochondria. This sug-
gests that these groups must have once had mito-
chondria and then lost them at a later stage. Thus, it
is not clear whether any of the current species lack-
ing mitochondria are actually descended entirely
from organisms that never had mitochondria.

It is generally assumed that the endosymbiosis
event leading to the origin of chloroplasts happened
after that leading to mitochondria, as there are
many eukaryotes lacking chloroplasts but very few
lacking mitochondria. There are several types of
chloroplast-containing algae that derived from the
initial incorporation of the cyanobacterium. Some of
these later evolved into land plants. It is fairly certain
that the chloroplasts in all these organisms derive
from a single endosymbiosis event (Gray 1992,
Douglas 1998). However, there are many other
chloroplast-containing eukaryotes that are thought
to derive from secondary endosymbiosis events, in
which an alga arising from the primary event is
incorporated inside another eukaryotic cell. Sec-
ondary endosymbiosis seems to have occurred
many times (Douglas 1998). Some of these cells still
contain nucleomorphs (which are the remnants of
the nucleus of the algal cell incorporated in the sec-
ondary event), in addition to a full eukaryotic
nucleus deriving from the new host cell.

12.2.3 Transfer of organellar genes to the nucleus

The number of genes in chloroplast and mitochon-
drial genomes has reduced tremendously since their
integration into the eukaryotic cell. We already saw
a tendency to reduction of genome size in intracellu-
lar bacteria, like Buchnera and Rickettsia, resulting
from loss of genes that were no longer necessary
to the bacteria because the host cell provided

Genome evolution @ 301

substances that would otherwise need to be made
by a free-living species. However, organelles have
gone a lot further than this. The majority of proteins
necessary for the function and replication of the
organelles have been lost from the organellar
genome and transferred to the nucleus.

In well-studied species like humans and yeast,
most nuclear genes for mitochondrial proteins have
been identified. There is a specialized database
of human mitochondrial proteins (http://bioinfo.
nist.gov:8080/examples/servlets/index.html) that
gives details of both nuclear and mitochondria-
encoded proteins in the mitochondrion. We there-
fore know that transfer of genes to the nucleus has
been frequent in the past—but is it still going on? One
way to answer this is to search for sequence similar-
ity between mitochondrial and nuclear genomes of
the same species. Blanchard and Schmidt (1996)
developed a computational strategy for doing this
and found a variety of identifiable mitochondrial
sequences in humans, yeast, and other species.
Many of these inserted sequences are just fragments
that do not encode whole genes, and therefore are
not important evolutionarily. However, the longest
section found in the human genome was over
3,000 bp and contained tRNA and rRNA sequences.

The location of mitochondrial DNA fragments in
the nucleus demonstrates that transfer may still be
possible, but it does not demonstrate that the trans-
ferred genes can be established as functional
replacements of the gene in the mitochondrion. In
fact, in animal (i.e., metazoan) mitochondria, trans-
fer seems to have stopped some time ago. Animal
mitochondrial genomes have a very reduced num-
bers of genes, but almost exactly the same set of
genes is found in all animal phyla. Thus, the gene
content of these genomes was established before the
divergence of the animal phyla and has remained
constant for over 500 million years. In the flowering
plants, however, many cases of recent (i.e., in the
last few hundred million years) transfer from both
chloroplast and mitochondrial genomes to the
nucleus are known. For example, Adams et al.
(2000) showed that there have been 26 independ-
ent losses of the ribosomal protein gene rps10 from
the mitochondrion in a set of 277 plant species.

302 @ Chapter12

Similarly, Millen et al. (2001) demonstrated the loss
of the translation initiation factor 1 gene infA from
chloroplast genomes of 24 separate lineages in a set
of 300 plant species. The number of times these
genes have been independently established in the
nucleus is not known, but is presumed to be large.

The above studies were done using Southern blot
hybridizations to probe for the presence of a known
gene. When complete organelle genomes are
known, a much more complete analysis is possible.
Martin et al. (1998) studied a set of nine complete
chloroplast genomes, with a cyanobacterial genome
as an outgroup. They identified 205 genes present
in at least one of the chloroplasts that must have
been present in the common ancestral chloroplast
genome. Of these, 46 were still found in all genomes.
These gene sequences were used to construct a
molecular phylogeny for the species. With this phy-
logeny, it was possible to study the process of loss
that had occurred in the remaining 159 genes,
using a parsimony principle. It was found that 58
genes had been lost once only, but 101 genes had
been lost more than once (including a few that had
been lost four times independently from the set of
only nine species). Thus, parallel losses of the same
gene occurred very frequently.

Transfer of an organelle gene to the nucleus
involves several steps. First, a copy of a piece of
organelle DNA has to find its way into the nucleus.
The fragment then has to insert itself into the
nuclear genome in a position that does not inter-
rupt an existing gene. It also has to acquire a pro-
moter, so that it gets expressed in the nucleus. Then
it has to find a way of getting its protein product
back to the organelle. Proteins destined to be tar-
geted to organelles usually have signal peptides
attached to the ends of their sequences. The cell
has mechanisms to recognize such labeled proteins
and transport them. One way in which a new
organelle-targeted gene might be established is to
insert itself next to a duplicate copy of the promoter
and signal peptide region of an existing mitochon-
drial gene.

All these steps cannot be as unlikely as they seem,
given the fact that transfers do occur frequently. If
the process goes to the stage described above, it

means that there is now a functioning copy of the
gene in both the organelle and the nucleus (note
that the gene in the organelle cannot be deleted
unless there is a functioning copy in the nucleus,
assuming that it is an essential gene for the function-
ing of the organelle). From this point, it is necessary
to think about population genetics. Why should the
gene from the organelle be deleted in preference to
the copy in the nucleus? The nuclear genome usu-
ally reproduces sexually and undergoes recombina-
tion, whereas the organelle multiplies asexually.
This means that the organelle genome is subject to
the accumulation of deleterious mutations via
Muller’s ratchet. It might also be argued that the
presence of recombination makes it more likely for a
favorable mutation to become fixed in the sequence
of the nuclear copy. Either way, if the nuclear copy
becomes fitter than the organelle copy after a certain
time, it is more likely that the organelle copy will be
eliminated. Another relevant factor is the difference
in rate of mutation in the different genomes. Animal
mitochondrial genes accumulate substitutions at a
far greater rate than nuclear genes or typical bac-
terial genes — see, for example, the rRNA trees of
Cedergren et al. (1988), in which the animal mito-
chondrial sequences appear on extremely long
branches. However, in plants, mitochondrial substi-
tution rates are low in comparison to both nuclear
and chloroplast rates (Wolfe, Li, and Sharp 1987). A
large part of the variation in substitution rates can
be attributed to variation in mutation rates. The
mutation rate clearly affects the likelihood of accu-
mulation of both favorable and unfavorable muta-
tions in the two gene copies. Another factor is that
organelle genomes from which a gene has been
deleted may also have a selective advantage in speed
of replication over longer genomes, and this might
tend to favor the fixation of deletions into the popu-
lation. For further discussion of these issues, see
Blanchard and Lynch (2000) and Berg and Kurland
(2000).

We might wonder why the organelle retains a
genome at all. The purpose of the mitochondrial
genome seems to be to code for the proteins of the
electron transport chain. However, some of these
have already been transferred to the nucleus, so why

not the rest? The system seems inefficient: if some
genes are maintained in the organelle, then it is also
necessary to maintain genes involved in the transla-
tion of those genes, like the rRNAs and tRNAs and
(in some organelles) the ribosomal proteins. It has
been suggested that the genes that remain are those
that could not easily be transported to the organelle,
because they are large hydrophobic proteins with
several membrane-spanning helices. It has also
been suggested that these proteins might be harmful
to the cell if expressed in the cytoplasm. However,
there is no clear answer to this question yet.

On the theme of the inefficiency of organellar
genomes, consider the 35 kb organellar genome of
the malaria parasite Plasmodium falciparum (Wilson
et al. 1996). This appears to resemble chloroplast
genomes from green algae, although P. falciparum is
not photosynthetic. The genome contains rRNAs,
tRNAs, ribosomal protein genes, and RNA poly-
merase genes, all of which are necessary purely
for the transcription and translation of just three
other genes. Despite the degenerate nature of this
genome, it has been maintained in the group of
apicomplexans, suggesting that it has a key function
for the organism that is still not understood.

Despite the many losses of genes from organelles,
there are relatively few cases of genes found to be
inserted into organelle genomes. The probable sim-
ple explanation of this is that, for many types of
organelle, it is physically difficult for DNA to get itself
inside the organelle membrane. Plant mitochon-
drial genomes appear to be an exception to this.
They are much larger than animal mitochondrial
genomes owing to the presence of large amounts of
non-coding sequence. Due to extensive variability in
the lengths of the non-coding sequences, the num-
ber of genes does not correlate with the genome size.
In the model flowering plant Arabidopsis thaliana,
there are 58 genes in a length of 367 kb; in the liver-
wort Marchantia polymorpha, there are 66 genes
in 184 kb; and in the green alga Prototheca wicker-
hamii, there are 63 genes in 58 kb (Marienfeld,
Unseld, and Brennicke 1999). There has thus been
a large expansion of genome size in the plant lin-
eage. There is evidence for the insertion of nuclear
DNA into the A. thaliana mitochondrial genome.
® 303

Genome evolution

However, this does not consist of nuclear genes, but
rather of copies of retrotransposons, which are
mobile elements able to copy and insert themselves,
usually within the nuclear genome itself. The A.
thaliana mitochondrial genome does not contain a
full set of tRNA genes, which means that some
tRNAs must be imported into the organelle. Of the
tRNA genes that are found in the mitochondrial
genome, some appear to be of chloroplast rather
than mitochondrial origin. This is the only known
case of chloroplast genes being transferred to mito-
chondrial genomes.

12.2.4 Gene rearrangement mechanisms

Animal mitochondrial genomes provide good exam-
ples for looking at the processes leading to change in
gene order. More than 470 of these genomes have
been completely sequenced, and almost all contain
the same set of 37 genes, but these occur in many
different orders in different species. The OGRe
(Organellar Genome Retrieval) database stores
information on complete animal mitochondrial
genomes and allows visual comparison of any pair of
genomes (Jameson et al. 2003). The examples
shown in Plate 12.2 depict mitochondrial genomes
linearly — it should be remembered that they are
actually circular and that the two ends are con-
nected. Genes on one strand, transcribed from left to
right, are drawn as boxes below the central line, and
genes on the other strand, transcribed from right to
left, are drawn as boxes above the line.

Plate 12.2(a) shows the human mitochondrial
genome. The 13 protein-coding genes are shown in
green, the two rRNAs in blue, and the 22 tRNAs in
green. The genome has almost no space between the
genes, with the exception of one large non-coding
region, which is the origin of replication for the
genome. The same gene order occurs in all placental
mammals, and many other vertebrates too. Birds,
however, differ from mammals. Plate 12.2(b) com-
pares the human and chicken mitochondrial
genomes. Regions of the genomes in which the gene
order is the same in both species are shown in the
same color. Points on the genome where the gene
order changes between the two species are called

304 @® Chapter12

breakpoints. There are three breakpoints in the
human-—chicken example. In this case, the yellow
block, containing one protein and two tRNAs, has
switched positions with the red block, containing
one protein and one tRNA.

We can represent this process as

1,234—-13,24

where each number represents a gene or a block of
consecutive genes. There are several ways in which
the order of the two blocks can be reversed. One is by
a translocation, in which one of the blocks is cut out
and reinserted in its new position. A second possibil-
ityisaninversion, in which a segment of the genome
is reversed and reconnected in the same position,
thus:

1234—->1-3-24

Here, the minus signs in front of 2 and 3 indicate
that these genes (or gene blocks) are now on the
opposite strand and transcribed in the opposite
direction. Note that this is not what happened in the
human-—chicken case, because the red and yellow
blocks are on the same strand in both species.
Switching two blocks while keeping them on the
same strand can be achieved with three separate
inversions, like this:

1234—-1-234—-1-2-34—->1324

However, this would mean that three inversions had
occurred in the same place on the genome in a short
space of time, without leaving any surviving species
having the intermediate gene orders. This does not
seem like a parsimonious explanation.

There is another, quite likely way in which the
interchange in human and chicken could have oc-
curred. This is via duplication followed by deletion.

1,234—-1,23234—-123234—-1324

In this case, a tandem duplication of the region
2,3 has occurred (e.g., because of slippage during

DNA replication). There are now redundant copies
of these two genes and we expect one or other copy
to disappear rapidly as a result of accumulation of
deleterious mutations and deletions, and possibly
selection for minimizing the genome length. After
the duplicate copies have disappeared, we are left
with genes 2 and 3 in reverse order. However, if the
central 3,2 pair had been deleted instead, the original
gene order would have been maintained.

This mechanism seems likely whenever we see
switching of order within two short neighboring
regions. A case where the same mechanism seems
extremely likely (Boore and Brown 1998) is in the
region containing the consecutive tRNAs W,-A,
—N,—C,~Y (the letters label tRNA genes according
to their associated amino acid). This is shown on
the right of the human genome diagram in Plate
12.2(a). This order occurs in the platypus, echidna,
and in placental mammals, but in all the marsupials
sequenced so far, the order is —A,—C,W,—-N,-Y. This
can be explained by a duplication and deletion of
four genes:

W-A-N,-C~-Y—
W,-A~-N,-C,W,-A-N,-C~-Y --A~-CW,-N,-Y

Note that all the genes remain on the same strand,
so it is unlikely that this occurred by inversions.
Interestingly, the change is not reversible: if the
four genes A,—C,W,—N in the marsupials are duplic-
ated, it is not possible to return to the order in the
placentals.

The mobility of tRNA genes within the mitochon-
drial genome is illustrated in Plate 12.2(c). This
compares two insect genomes (honey bee and
locust). There are some long expanses of unchanged
gene order, but there are also areas with complex
reshufflings of tRNAs, including long-distance
jumps of E and A. Ignoring the tRNAs, the order of
the proteins and rRNAs is identical.

When genomes from different animal phyla are
compared, complex rearrangement patterns are
often seen. However, iftRNAs are excluded, a simple
pattern sometimes emerges for the rearrangement
of the proteins and rRNAs. In the comparison of a
mollusc and an arthropod shown in Plate 12.2(d),

the blue gene block has been translocated and the
yellow gene block has been inverted. This can be
compared with the much more complex pattern of
movement when tRNAs are included (see the OGRe
Web site, Jameson et al. 2003).

12.2.5 Phylogenies based on gene order

Gene order has the potential to be a strong phylo-
genetic marker. There are so many different possible
orders, even for a small genome like the mitochon-
drial genome, that when conserved patterns of gene
order are seen, they are unlikely to have arisen twice
independently. For example, the tRNA rearrange-
ment shared by the marsupials would be a strong
argument that these species form a related group,
had we not already known this from a wealth of other
evidence. In some cases, however, gene order can
provide a strong argument to resolve issues for which
there is no conclusive evidence from other sources.

One such case is the relationship between the four
major groups of arthropods: chelicerates (e.g., spiders,
scorpions); myriapods (centipedes and millipedes);
crustaceans; and insects. Taxonomists have disagreed
about this for decades, but one hypothesis that had
generally been accepted is that myriapods and insects
were sister groups. However, Boore, Lavrov, and
Brown (1998) compared the mitochondrial gene
order of these groups and found that insects and
crustaceans shared a genome rearrangement not
present in myriapods and chelicerates. By consider-
ing gene orders from outside the arthropods, they
were able to show that the chelicerates and myriapods
had retained features of gene order present in other
phyla, and hence that the rearrangement in insects
and crustaceans is a shared derived feature that
links these as sister groups. Roehrdanz, Degrugillier,
and Black (2002) have continued this approach,
looking at the relationships between subgroups of
arthropods at a more detailed level. Scouras and
Smith (2001) give another good example of how
gene order information can be linked to molecular
phylogenies for several groups of echinoderms.

In cases such as those above, where clear shared
derived features of gene order are located, this gives
important phylogenetic information in a qualitative

Genome evolution ® 305

way. However, there have also been attempts to
develop more general computational algorithms to
deduce phylogeny from gene order. As with sequence-
based methods, the simplest to understand are
distance-matrix methods. First, we need to define a
measure of distance between two gene orders. We
can then determine a matrix of distances for each
pair of genomes in the set considered, and input this
matrix to any of the standard methods, like neighbor-
joining and Fitch—-Margoliash (see Chapter 8).

The issue, then, is how to measure distances be-
tween gene orders. One possibility is simply to count
the number of breakpoints (Blanchette, Kunisawa,
and Sankoff 1999). This is an intuitively easy-to-
understand measure of how much disruption of the
gene order there has been. It is also very simple to
calculate. However, it is not directly related to any
particular mechanism of genome rearrangement.
Other possible types of distance are edit distances
(Sankoff et al. 1992), which measure the minimum
number of editing operations necessary to transform
one gene order into another. The simplest of these
would be the inversion distance, in which the only
editing operations allowed are inversions of a con-
secutive block of genes. Distances can also be cal-
culated that allow a combination of translocations
and inversions (Blanchette, Kunisawa, and Sankoff
1996).

Although the principle of these edit distances is
simple to state, the algorithms for calculating them
are complex (see Pevzner 2000, and references
therein). If the genes in a genome are numbered
from 1 to N, then a possible gene order can be rep-
resented as a permutation of these numbers. Some
algorithms deal with unsigned permutations, i.e.,
the strand a gene is on and its direction of transcrip-
tion are ignored, and only the position of the gene
matters. However, it is much more realistic to treat
gene orders as signed permutations, as in the exam-
ples in Section 12.2.4, in which case a minus sign
indicates a gene on the opposite strand. It turns out
that there is an exact algorithm for the inversion dis-
tance (i.e., sorting signed permutations using only
inversions) that runs in polynomial time. How-
ever, no such algorithm is known for edit distances
that use translocations as well; hence, combined

306 ® Chapter12

inversion—translocation distances have to be cal-
culated heuristically by trying many possible path-
ways of intermediates between the two genomes.

Somewhat surprisingly, it has been shown that, in
problems with real genomes, the simple breakpoint
distance is very close to being linearly propor-
tional to both the inversion distance and the com-
bined inversion—translocation distance (Blanchette,
Kunisawa, and Sankoff 1999, Cosner et al. 2000).
This means that if the distance matrices calculated
with the different measures of distance are put into
phylogenetic algorithms, the same shaped tree will
emerge. This is an argument for using the simplest
measure of distance, i.e., the breakpoint distance.

There are also several methods for constructing
gene-order trees that can be thought of as maximum
parsimony methods. With “normal” parsimony, using
character states coded as O or 1 (Section 8.7.1), the
parsimony cost for a given tree is the sum of the
number of character-state changes over the whole
tree, and the tree with the minimum cost is selected.
To calculate the cost for any given tree, it is necessary
to determine the optimal values of the character states
on each internal node, and then to sum the changes
necessary along each branch of the tree. This is directly
analogous to the minimal-breakpoint tree method of
Blanchette, Kunisawa, and Sankoff (1999). Here, a
gene order is assigned to each internal node of a tree
in such a way that the sum of the breakpoint distances
along all branches of the tree is minimized. The tree
is then selected that minimizes this minimum value.
Bourque and Pevzner (2002) have also developed a
similar method, where gene orders on the internal
nodes are calculated so as to minimize the sum of the
inversion distances along all the branches.

Another parsimony method for gene order
(Cosner etal. 2000) creates a set of binary characters
that represent each gene order and inputs the binary
characters into a normal parsimony program. Each
character represents the presence or absence of a
consecutive gene pair in the order. Consider the four
gene orders below:

(i) 1,2,3,4
(i) 1,-3,-2,4
(iii) 1,2,-3,4
(iv) 1,3,2,4

The character for the pair 2,3 would be assigned to 1
in (i) and also in (ii), because these genes are still
consecutive and run in the same direction relative to
one another, whereas it would be assigned to 0 in
(iii) and (iv). A parsimony program will be able to
reconstruct the most parsimonious assignments of
the character states on all the internal nodes. The
method has the drawback that not every possible set
of Os and 1s that might arise on the internal nodes
represents a valid gene order. This is because the
characters are not independent. For example, if the
pair 2,3 is present, then the pair 2,4 cannot be pre-
sent in the same genome. Parsimony programs treat
each character as being independent. Despite this
drawback, Cosner et al. (2000) found this method
useful. They use it to generate trial trees that they
then screen using other criteria.

Another gene-order phylogeny method worth
mentioning is the Bayesian approach of Larget et al.
(2002). This is the only method to date that has an
explicit probabilistic model of genome rearrange-
ments. The only events permitted are inversions.
The number of inversions that occur on a branch
has a Poisson distribution, with a mean proportional
to the branch length. A trial configuration consists
of a tree with specified branch lengths and specified
positions of inversions. It is possible to calculate the
likelihood of any given configuration according to
the probabilistic model. A Markov Chain Monte
Carlo (MCMC) method is then used to obtain a rep-
resentative sample of configurations weighted accord-
ing to the model.

There are as yet rather few data sets that can be
used with these methods, and it remains to be seen
just how useful the algorithms will be. Sankoff et al.
(1992) studied mitochondrial genomes of fungi and
a few animals. Chloroplast genomes have been stud-
ied for the Campanulaceae family of flowering plants
(Cosner et al. 2000) and for the photosynthetic
protists (Sankoff et al. 2000). The animal mitochon-
drial genomes have been studied several times, but
the results are not as good as might be hoped.
Distance-matrix methods using breakpoint distance
(Blanchette, Kunisawa, and Sankoff 1999) failed
to place the Deuterostomes (i.e., Chordates +
Echinoderms) together in a clade, and failed to place

the Molluscs together. These are things that
sequence-based phylogenies would have no prob-
lem with. The minimal-breakpoint tree method was
considerably better — it did find both of these clades,
but placed the Arthropods as sister group to the
Deuterostomes, rather than as part of the Ecdysozoa,
as expected from sequence-based phylogeny (Section
11.3.2). With the method of Bourque and Pevzner
(2002), neither the Arthropods nor the Molluscs
appeared as monophyletic groups. With the method
of Larget et al. (2002), a wide variety of alternative
tree topologies arose in MCMC simulations, and the
posterior probabilities did not strongly discriminate
between alternatives. There was also a tendency
for the Molluscs to be polyphyletic and, for some
reason, the human tended to cluster with echino-
derms rather than the chicken. The phylogeny of
the animal phyla is still not well understood, and
additional evidence deriving from gene order would
be welcome. However, the results from these studies
of mitochondrial gene order do not seem sufficiently
reliable to draw firm conclusions.

The reason for this may lie in the gene orders
themselves, rather than with problems in the meth-
ods. Several of the animal phyla contain both con-
servative and highly derived gene orders. There is a
tendency for all the methods to group the more con-
servative genomes from different phyla together,
and to form another separate group of all the highly
derived genomes. This is particularly a problem with
the distance-matrix methods, but it probably also
underlies the difficulties encountered by the other
methods. Table 12.2 shows breakpoint distances
between mitochondrial genomes, calculated both
including and excluding the tRNA genes. As we can-
not show the whole matrix, we simply give distances
from one example species, Limulus polyphemus, the
horseshoe crab. Limulus is thought to be a fairly
primitive arthropod, and is phylogenetically related
to the arachnids. Examination of the gene order
suggests that it has retained the order possessed by
the ancestral arthropod, or is at least very close.
Measuring distances from Limulus to the other
arthropods therefore tells us how much change
there has been within the arthropod phylum, while
distances from Limulus to non-arthropod species are

® 307

Genome evolution

Table 12.2 Breakpoint distances between mitochondrial genomes obtained from OGRe (Jameson et al. 2003). Distances are
measured from the horseshoe crab, Limulus polyphemus, to the species listed.

a good indication of how much change there has
been between phyla.

The species in each of the boxes corresponding to
the taxa in Table 12.2 should be equidistant from
Limulus in terms of the time since the common
ancestor. However, the breakpoint distances differ
tremendously for the species in each box. For the
two closely related tick species, the genome of L. per-
sulcatus has remained unchanged, while that of R.
sanguineus is highly derived. In the other arthropods
(i.e., non-arachnids), there are many examples of
insects and crustaceans, like D. melanogaster and A.
franciscana, where there has been very little change,
but there are also examples of unusual species, like
T. imaginis and P. longicarpus, whose genomes appear
to have been completely shredded and reassembled.
In these latter two cases, we know that a lot of
genome rearrangement has occurred in an isolated
lineage of organisms in a short time. We have no

308 ® Chapter12

idea why these particular genomes should have
been so unstable.

When comparing genomes between phyla, the
distances that exclude the tRNAs are probably more
informative — some of the distances with tRNAs are
as large as 37, meaning that there is complete ran-
domization, with a breakpoint after every gene.
Each phylum is seen to contain conservative gene
orders (e.g., K. tunicata, T. retusa, H. sapiens) and
divergent ones (e.g., C. gigas, T. transversa, P. lividus).
All nematode species sequenced to date seem fairly
divergent. Thus, there is little support for the idea of
grouping arthropods and nematodes together as
Ecdysozoa. However, the nematodes are not similar
to any other group either, so this just represents lack
of evidence for Ecdysozoa, rather than positive evid-
ence for an alternative. Another interesting point
is that the Deuterostomes are rather less divergent
than most phyla, and hence appear closer to the

arthropods than many of the other Protostomes. On
reflection, therefore, it is not too surprising that
these methods had problems with the animal mito-
chondrial genomes. We may remain optimistic that

gene-order phylogeny methods may prove to be
more useful in future, as new, larger, and hopefully
less badly behaved data sets emerge. Such methods
are also applicable to bacterial genomes.

Genome evolution ® 309

REFERENCES

Adams, K.L., Daley, D.O., Qiu, Y.L., Whelan, J., and
Palmer, J.D. 2000. Repeated, recent and diverse trans-
fers of a mitochondrial gene to the nucleus in flowering
plants. Nature, 408: 354-7.

Andersson, S.G.E., Zomorodipour, A., Andersson, J.O.,
Sicheritz-Ponten, T., Alsmark, U.C.M., Podowski, R.M.,
Naslund, A.K., Eriksson, A.S., Winkler, H.H., and
Kurland, C.G. 1998. The genome sequence of Rickettsia
prowazekii and the origin of mitochondria. Nature, 396:
133-43.

Berg, O.G. and Kurland, C.G. 2000. Why mitochondrial
genes are most often found in nuclei. Molecular Biology
and Evolution, 17:951-61.

Blanchard, J.L. and Lynch, M. 2000. Organellar genes:
Why do they end up in the nucleus? Trends in Genetics,
16:315-20.

Blanchard, J.L. and Schmidt, G.W. 1996. Mitochondrial
DNA migration event in yeast and humans. Molecular
Biology and Evolution, 13: 537-48.

Blanchette, M., Kunisawa, T., and Sankoff, D. 1996. Para-
metric genome rearrangement. Gene, 172: GC11-17.
Blanchette, M., Kunisawa, T., and Sankoff, D. 1999. Gene
order breakpoint evidence in animal mitochondrial
phylogeny. Journal of Molecular Evolution, 49: 193-203.

Boore, J.L. and Brown, W.M. 1998. Big trees from little
genomes: Mitochondrial gene order as a phylogenetic
tool. Current Opinion in Genetics and Development, 8:
668-74.

Boore, J.L., Lavrov, D.V., and Brown, W.M. 1998. Gene
translocation links insects and crustaceans. Nature,
392:667-8.

Boucher, Y., Nesbo, C.L., and Doolittle, W.F. 2001.
Microbial genomes: Dealing with diversity. Current Opin-
ion in Microbiology, 4: 285-9.

Bourque, G. and Pevzner, P. 2002. Genome-scale evolu-
tion: Reconstructing gene orders in ancestral species.
Genome Research, 12: 26-36.

Cedergren, R., Gray, M.W., Abel, Y., and Sankoff, D. 1988.
The evolutionary relationships among known life
forms. Journal of Molecular Evolution, 28: 98—122.

Chambaud, 1., Heilig, R., Ferris, S., Barbe, V., Samson, D.,
Galisson, F., Moszer, I., Dybvig, K., Wroblewski, H.,
Viari, A., Rocha, E.P.C., and Blanchard, A. 2001. The
complete genome sequence of the murine respiratory
pathogen Mycoplasma pulmonis. Nucleic Acids Research,
29:2145-53.

Cole, J.R., Chai, B., Marsh, T.L., Farris, R.J]., Wang, Q.,
Kulam, S.A., Chandra, S., McGarrell, D.M., Schmidt, T.M.,
Garrity, G.M., and Tiedje, J.M. 2003. The ribosomal

310 @ Chapter12

database project (RDP-II): Previewing a new autoaligner
that allows regular updates and the new prokaryotic
taxonomy. Homepage: http://rdp.cme.msu.edu/html/.
Prokaryotic backbone tree: http://rdp.cme.msu.edu/
pubs/NAR/Backbone_tree.pdf

Cosner, M.E., Jansen, R.K., Moret, B.M.E., Raubeson, L.A.,
Wang, L.S., Warnow, T., and Wyman, S. 2000. An
empirical comparison of phylogenetic methods on
chloroplast gene order data in Campanulaceae. In D.
Sankoff and J.H. Nadeau (eds.), Comparative Genomics,
pp. 99-121. Amsterdam: Kluwer Academic.

Doolittle, W.F. 2000. Uprooting the tree of life. Scientific
American, 282:90-5.

Doolittle, R.F. and Handy,]J. 1998. Evolutionary anom-
alies among the aminoacyl-tRNA synthetases. Current
Opinion in Genetics and Development, 8: 630-6.

Douglas, S.E. 1998. Plastid evolution: Origins, diversity,
trends. Current Opinion in Genetics and Development, 8:
655-61.

Embley, T.M. and Hirt, R.P. 1998. Early branching
eukaryotes. Current Opinion in Genetics and Development,
8:624-9.

Fitz-Gibbon, S.T. and House, C.H. 1999. Whole genome-
based phylogenetic analysis of free-living microorgan-
isms. Nucleic Acids Research, 27:4218-22.

Gogarten, J.P., Kibak, H., Dittrich, P., et al. 1989. Evolution
of the vacuolar H*ATPase: Implications for the origin of
eukaryotes. Proceedings of the National Academy of Sci-
ences USA, 86: 6661-5.

Golding, G.B. and Gupta, R.S. 1995. Protein-based phylo-
genies support a chimeric origin for the eukaryotic
genome. Molecular Biology and Evolution, 12: 1-6.

Gray, M.W. 1992. The endosymbiot hypothesis revisited.
International Review of Cytology, 141: 233-357.

Gray, M.W. and Doolittle, W.F. 1982. Has the endosym-
biont hypothesis been proven? Microbiology Review, 6:
1-42.

Gray, M.\W., Lang, B.F., Cedergren, R., Golding, G.B.,
Lemieux, C., Sankoff, D., Turmel, M., Brossard, N.,
Delage, E., Littlejohn, T.G., Plante, I., Rioux, P., Saint-
Louis, D., Zhu, Y., and Burger, G. 1998. Genome struc-
ture and gene content in protist mitochondrial DNAs.
Nucleic Acids Research, 26: 865-78.

Iwabe, N., Kuma, K.I., Hasegawa, S., Osawa, S., and
Miyata, T. 1989. Evolutionary relationship between
archaebacteria, eubacteria, and eukaryotes inferred
from phylogenetic trees of duplicated genes. Proceedings
of the National Academy of Sciences USA, 86:9355-9.

Jameson, D., Gibson, A.P., Hudelot, C., and Higgs, P.G. 2003.
OGRe: A relational database for comparative analysis of

mitochondrial genomes. Nucleic Acids Research, 31:
202-6. http://ogre.mcmaster.ca

Koonin, E.V., Makarova, K.S., and Aravind, L. 2001. Hori-
zontal gene transfer in prokaryotes: Quantification and
classification. Annual Review of Microbiology, 55: 709—-42.

Korbel, J.O., Snel, B., Huynen, M.A., and Bork, P. 2002.
SHOT: A web server for the construction of genome
phylogenies. Trends in Genetics, 18: 158—62. http://
www.Bork.EMBL-Heidelberg.de/SHOT

Lang, B.F., Burger, G., O'Kelly, C.]J., Cedergren, R., Golding,
G.B., Lemieux, C., Sankoff, D., Turmel, M., and Gray,
M.W. 1997. An ancestral mitochondrial DNA resem-
bling a eubacterial genome in miniature. Nature, 387:
493-7.

Larget, B., Simon, D.L., and Kadane, J.B. 2002. Bayesian
phylogenetic inference from animal mitochondrial gen-
ome arrangements. Journal of the Royal Statistical Society
B,64:681-93.

Lawrence,].G. and Ochman, H. 1998. Molecular archae-
ology of the Escherichia coli genome. Proceedings of the
National Academy of Sciences USA, 95(16): 9413-17.

Lobry, J.R. 1996. Asymmetric substitution patterns in the
two DNA strands of bacteria. Molecular Biology and
Evolution, 13: 660-5.

Ludwig, W., Strunk, O., Klugbauer, S., Klugbauer, N.,
Weizenegger, M., Neumaier, J., Bachleitner, M., and
Schleifer, K.H. 1998. Bacterial phylogeny based on com-
parative sequence analysis. Electrophoresis, 19: 554—-68.

Margulis, L. 1981. Symbiosis in Cell Evolution. San
Francisco: W.H. Freeman.

Marienfeld, J., Unseld, M., and Brennicke, A. 1999. The
mitochondrial genome of Arabidopsis is composed of
both native and immigrant information. Trends in Plant
Science, 4:495-502.

Martin, W., Stoebe, B., Goremykin, V., Hansmann, S.,
Hasegawa, M., and Kowallik, K.V. 1998. Gene transfer
to the nucleus and the evolution of chloroplasts. Nature,
393:162-5.

Millen, R.S., Olmstead, R.G., Adams, K.L., Palmer,]J.D.,
Lao, N.T., Heggie, L., Kavanagh, T.A., Hibberd, J.M.,
Gray, J.C., Morden, C.W., Calie, P.J., Jermiin, L.S., and
Wolfe, K.H. 2001. Many parallel losses of infA from
chloroplast DNA during angiosperm evolution with
multiple independent transfers to the nucleus. The Plant
Cell, 13: 645-58.

Ochman, H., Lawrence,].G.R., and Groisman, E.A. 2000.
Lateral gene transfer and the nature of bacterial innova-
tion. Nature, 405: 299-304.

Ogata, H., Audic, S., Renesto-Audiffren, P., Fournier, P.E.,
Barbe, V., Samson, D., Roux, V., Cossart, P.,

Weissenbach, J., Claverie,].M., and Raoult, D. 2001.
Mechanisms of evolution in Rickettsia conorii and R.
prowazekii. Science, 293: 2093-8.

Olsen, G.J., Woese, C.R., and Overbeek, R. 1994. The
winds of (evolutionary) change: Breathing new life into
microbiology. Journal of Bacteriology, 176: 1-6.

Pevzner, P. 2000. Computational Molecular Biology: An
Algorithmic Approach. Cambridge, MA: MIT Press.

Philippe, H. and Forterre, P. 1999. The rooting of the uni-
versal tree of life is not reliable. Journal of Molecular
Evolution, 49: 509-23.

Roehrdanz, R.L., Degrugillier, M.E., and Black, W.C. 2002.
Novel rearrangements of arthropod mitochondrial DNA
detected with long-PCR: applications to arthropod phylo-
geny and evolution. Molecular Biology and Evolution, 19:
841-9.

Roger, A.]. 1999. Reconstructing early events in eukary-
otic evolution. American Nature, 154: S146—-63.

Sankoff, D., Leduc, G., Antoine, N., Paquin, B., Lang, B.F.,
and Cedergren, R. 1992. Gene order comparisons for
phylogenetic inference: Evolution of the mitochondrial
genomes. Proceedings of the National Academy of Sciences
USA, 89: 6575-9.

Sankoff, D., Deneault, M., Bryant, D., Lemieux, C., and
Turmel, M. 2000. Chloroplast gene order and the diver-
gence of plants and algae, from the normalized number
of induced breakpoints. In D. Sankoff and J.H. Nadeau
(eds.), Comparative Genomics, pp. 89-98. Amsterdam:
Kluwer Academic.

Scouras, A. and Smith, M.J. 2001. A novel mitochon-
drial gene order in the crinoid echinoderm Florometra
serratissima. Molecular Biology and Evolution, 18: 61—
73.

Sicheritz-Ponten, T., Kurland, C.G., and Andersson, S.G.E.
1998. A phylogenetic analysis of the cytochrome b and
cytochrome ¢ oxidase I genes supports an origin of mito-
chondria from within the Rickettsiae. Biochimica et
Biophysica Acta (Bioenergetics), 1365: 545-51.

Snel, B., Bork, P., and Huynen, M.A. 1999. Genome
phylogeny based on gene content. Nature Genetics, 21:
108-10.

Snel, B., Bork, P., and Huynen, M.A. 2002. Genomes in
flux: The evolution of archaeal and proteobacterial gene
content. Genome Research, 12:17-25.

Suyama, M. and Bork, P. 2001. Evolution of prokaryotic
gene order: Genome rearrangements in closely related
species. Trends in Genetics, 17(1): 10-13.

Tatusov, R.L., Koonin, E.V., and Lipman, D.J. 1997. A
genomic perspective of protein families. Science, 278:
631-7.

Genome evolution @ 311

Tatusov, R.L., Natale, D.A., Garkavtsev, I.V., Tatusova,
T.A., Shankavaram, U.T., Rao, B.S., Kiryutin, B.,
Galperin, M.Y., Fedorova, N.D., and Koonin, E.V. 2001.
The COG database: New developments in phylogenetic
classification of proteins from complete genomes. Nucleic
Acids Research, 29: 22—8. http://www.ncbi.nlm.nih.gov/
COG/

Van de Peer, Y., Baldauf, S.L., Doolittle, W.F., and Meyer,
A. 2000. An updated and comprehensive rRNA phylo-
geny of crown eukaryotes based on rate-calibrated
evolutionary distances. Journal of Molecular Evolution,
51:565-76.

Van Ham, R.C.H.]., Kamerbeek, J., Palacios, C., Rausell, C.,
Abascal, F., Bastolla, U., Fernandez,].M., Jimenez, L.,
Postigo, M., Silva, F.]., Tamames,]., Viguera, E., Latorre,
A., Valencia, A., Moran, F.Y., and Moya, A. 2003.
Reductive genome evolution in Buchnera aphidicola.
Proceedings of the National Academy of Sciences USA, 100:
581-6.

Viale, A.M. and Arakaki, A.K. 1994. The chaperone con-
nection to the origins of the eukaryotic organelles. FEBS
Letters, 341:146-51.

Welch, R.A. and 18 others. 2002. Extensive mosaic struc-
ture revealed by the complete genome sequence of uro-
pathogenic E. coli. Proceedings of the National Academy
of Sciences USA, 99: 17020—4.

312 @ Chapter12

Wilson, R.J.M., Penny, P.W., Preiser, P.R., Rangachari, K.,
Roberts, K., Roy, A., Whyte, A., Strath, M., Moore, D.].,
Moore, P.W., and Williamson, D.H. 1996. Complete
gene map of the plastid-like DNA of the malaria parasite
Plasmodium falciparum. Journal of Molecular Biology,
261:155-72.

Woese, C.R. 1987. Bacterial evolution. Microbiology
Review, 51:221-71.

Woese, C.R. 2000. Interpreting the universal phylogenetic
tree. Proceedings of the National Academy of Sciences USA,
97:8392-6.

Woese, C.R. and Fox, G.E. 1977. Phylogenetic structure of
the prokaryotic domain: The primary kingdoms. Proceed-
ings of the National Academy of Sciences USA, 74: 5088-90.

Wolfe, K.H., Li, W.H., and Sharp, P.M. 1987. Rates of
nucleotide substitution vary greatly among plant mito-
chondrial, chloroplast and nuclear DNAs. Proceedings of
the National Academy of Sciences USA, 84: 9054 8.

Wood, D.W. and 49 others. 2001. The genome of natural
genetic engineer Agrobacterium tumefaciens C58. Science,
294:2317-23.

Yap, W.H., Zhang, Z., and Wang, Y. 1999. Distinct types of
rRNA operons exist in the genome of the actinomycete
Thermomonospora chromogena and evidence for the hori-
zontal transfer of an entire rRNA operon. Journal of
Bacteriology, 181: 5201-9.

DNA Microarrays

and the ’'omes

CHAPTER PREVIEW

Here, we discuss the rationale behin
transcriptome and the proteom
microarrays to measure expr
discuss techniques for nor
statistical analysis and vi
ental techniques us
protein interactiol

13.1 'OMES AND 'OMICS

Everyone is now familiar with the word “genome”
— the standard term describing the complete sequ-
ence of heritable DNA possessed by an organism.
“Genomics” is the study of genomes, and as there are
many approaches to studying genomes, genomics
is rather a broad term. In Chapter 12, looking at
the structure of genomes, we considered questions
about the complete set of genes possessed by an
organism, and compared genomes of different
organisms. The subject of Chapter 12 can be classed
as genomics, because it considers questions relating
to whole genomes rather than single genes. How-
ever, genomics does not just cover the structure and
evolution of genomes; it also encompasses many
additional issues relating to how genomes function.
As most things that go on inside cells are closely

CHAPTER

linked to the genome, it seems
we might risk including the
whole of molecular biology
and genetics under the gen-
omics banner. However, this
isnotreally the case. What dis-
tinguishes genomics studies
from more conventional stud-
ies in genetics and molecular
biology is that they focus on
the broad scale — whole sets
of genes or proteins — rather
than the details of single genes
or proteins.

Genomics is a new way of thinking about biology
that has only become possible as a result of techno-
logical advances in the last few years. Genome-
sequencing projects are, of course, the primary
example, but alongside complete genomes have come
several techniques for studying the sets of genes in
those genomes. It is these so-called “high-throughput”
techniques that are the focus of this chapter. High-
throughput means that the same experiment is
performed on many different genes or proteins very
rapidly in an automated or partially automated way.
This generates large amounts of data that must be
carefully analyzed to look for trends and statistically
significant features. High-throughput experiments
are closely linked to bioinformatics because they
raise questions both of data interpretation and mod-
eling, and also of data management and storage.

The success of genomics, and its holistic way
of thinking, has led to the coining of other 'ome

DNA microarrays and the 'omes ® 313

and 'omic terms. For example, the complete set of
mRNAs that are transcribed in a cell has been
dubbed the transcriptome; the complete set of pro-
teins present in a cell is termed the proteome; and the
complete set of chemicals involved in metabolic
reactions in a cell is the metabolome. Each of these
words can be changed into 'omics, meaning the
study of the corresponding 'ome. The term pro-
teomics is now used very commonly because it has
become associated with a particular set of experi-
mental techniques for studying the proteome:
two-dimensional gel electrophoresis and mass
spectrometry. The chief tools of transcriptomics are
based on DNA microarrays. Microarrays have
become very popular recently and the majority of
this chapter is devoted to them.

13.2 HOW DO MICROARRAYS
WORK?

A DNA microarray is a slide onto which a regular
pattern (i.e., an array) of spots has been deposited.
Each spot contains many copies of a specified DNA
sequence that have been chemically bonded to the
surface of the slide, with a different DNA sequence
on each spot. Spots are rather small (typically a few
hundred nanometers across) and it is possible to
deposit thousands of spots on a single slide a few
centimeters across, like a glass microscope slide. The
DNA sequences in the spots act as probes that
hybridize with complementary sequences that may
be present in a sample. Fluorescence techniques are
used to visualize the spots where hybridization has
taken place, as described below. Microarrays are
able to detect the presence of the sequences cor-
responding to all the spots simultaneously in one
sample. Two good reviews on the technology of
microarrays are Schulze and Downward (2001)
and Lemieux, Aharoni, and Schena (1998). There
are many steps involved in microarray experiments,
as summarized in Fig. 13.1.

There are two types of microarray, which differ
with regard to the preparation of both the array and
the sample. The first type are called oligonucleotide
arrays, because the DNA attached to the array is in

314 @ Chapter13

the form of short oligonucleotides, usually 25 bases
long. Arrays of this type are manufactured commer-
cially by the Affymetrix company. The sequences
used in each spot are carefully chosen in advance
with reference to the genome of the organism under
study. Each oligonucleotide should hybridize to a
specific gene sequence of the organism. However,
cross-hybridization is possible between genes with
related sequences, especially if the probe sequence is
only short. For this reason, several separate oligonu-
cleotide sequences are chosen for each gene, and the
expression of a gene in a sample is only inferred if
hybridization occurs with almost all of them.

Having chosen the oligonucleotide sequences, the
slide is prepared by synthesizing the sequences, one
base at a time, in situ in the appropriate place on the
slide. This type of array is sometimes called a “chip”,
because the surface is made of silicon (or, to be more
precise, it is a wafer of quartz — silicon dioxide). The
technique used is photolithography. Chemical link-
ers are attached to the slide that will anchor the
sequences. These linkers are protected by a light-
sensitive chemical group. The slide is then covered
with a solution containing one particular type of
nucleotide — say A. Light is then shone at precisely
those spots on the slide where an A is required in the
sequence. This activates the binding of A to the
linker in those positions, but not elsewhere. The A
solution is then washed away and replaced by each
of the other nucleotides, one after the other. After
doing this four times, the first base of each sequence
will have been synthesized. The process is then
repeated for each base in the sequence. Once the
manufacturing process has been set up for a given
chip, many copies can be synthesized, containing
exactly the same oligomers, in a reproducible way.
More information on the manufacture of gene
chips is available on the Affymetrix Web site
(http://www.affymetrix.com/index.affx).

The aim of the microarray experiment is to meas-
ure the level of expression of the genes in a cell, i.e.,
to measure the concentrations of mRNAs for those
genes. Solutions extracted from tissue samples con-
tain large numbers of mRNAs of many different
types that happen to be present in the cells at that
time. These cannot be used directly on the chip

(a) cDNA microarray (b) High-density
oligonucleotide microarrays

mRNA reference
O AAAAAAAAA
gg8898608088(8300l00(sequence
cDNA collection [8
% | Insert amplification Mismatch set
s by PCR
@' Vector-specific l
e primers
P .
s Gene-specfic
< primers
Printing In situ §ynthesis by
Coupling photolithography
Denaturing
Ratio —<G—— : - Ratio array 1/
Cy5/Cy3 T array 2
' Staining |
B Hybridization hybridization oo
mixing - o __o
— 0 - o0
Cv3 Cy3 / \ Cy5 < - 00 Biotin-labeled
g or C;IS TTTTTTTT _Q_U_TTTTTTTT In vitro cRNA
= —OJ—TTTTTTTT —O—O—O—TTTTTTTT o
E labeled ——QTTTTTTT @ @ TTTTTITT I transcription I
8| oNA SorrTrTTIT © 9 qrrrrTTT ———————AAAAAAAA — AAAAAAAA
g First strand —TTTTTTTT —TTTTTTTT DOUbIe-Stranded
< | cDNA synthesis | I cDNA synthesis I cDNA
9 ——————AAAAAAAA AAAAAAAA ———AAAAAAAA —AAAAAAAA
S Total AAAAAAAA ——— AAAAAAAA AAAAAAAA —— AAAAAAAA
AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA PolyA+ RNA
RNA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA
| tissue tissue

Fig. 13.1 Stepsinvolved in DNA microarray experiments for (a) cDNA arrays and (b) oligonucleotide arrays. The top illustrates
preparation of the array and the bottom illustrates preparation of the sample (reproduced from Schulze and Downward, 2001,
with permission of Nature Publishing Group).

because they are not labeled. By a series of steps, solution of biotin-labeled RNAs for several hours,
biotin-labeled RNAs are created with the same during which hybridization occurs with the DNA
sequences as the population of mRNAs extracted oligomers on the chip. The remaining unhybridized
from the tissue sample. The chip is immersed in the sequences are then washed away. Biotin is used

DNA microarrays and the ‘omes @ 315

because of its very strong binding to streptavidin.
The final step is to add a streptavidin-linked fluores-
cent molecule (fluorophore) that will bind to the
biotin wherever there is hybridized RNA on the chip.
The level of fluorescence can then be measured in
each of the spots using optical microscopy. Hope-
fully, this fluorescence level is proportional to the
amount of mRNA in the original extract. Usually,
we want to compare the mRNA levels of genes under
different experimental conditions, or at different
times, or in different cell populations. To do this, the
absolute intensities of equivalent spots on different
chips treated with the different biological samples
are compared with one another.

The second type of array is called a cDNA array. A
c¢DNA (where the ¢ stands for complementary) is a
DNA strand synthesized using a reverse transcriptase
enzyme, which makes a DNA sequence that is com-
plementary to an RNA template. This is the reverse
of what happens in transcription, where an RNA
strand is made using a DNA template. It is possible to
synthesize cDNAs from the mRNAs present in cells.
The ¢cDNAs can then be amplified to high concen-
tration using PCR. Biologists have built up cDNA
libraries containing large sets of sequences of differ-
ent genes known to be expressed in particular cell
types. These libraries can be used as the probe
sequences on microarrays. Each cDNA is quite long
(500-2,000 bases), and contains a significant frac-
tion of a gene sequence, but not necessarily the com-
plete gene. Hybridization to these long sequences
is much more specific than with oligonucleotides;
therefore, usually only one spot on a cDNA array
corresponds to one gene and this is sufficient to
distinguish between genes.

Another name for ¢cDNA arrays is “spotted”
arrays, because of the spotting process that is used to
deposit the cDNAs onto the slide. In this case, the
slide is usually made of glass. It is pre-coated with a
surface chemical that binds DNA. Gridding robots
with sets of pins are then used to transfer small
quantities of cDNAs onto the slide. This technology
is cheaper than that for preparation of oligonu-
cleotide arrays and is therefore more accessible to
many research groups. Preparation of a cDNA array
nevertheless requires a large amount of prior labor-

316 ® Chapter13

atory work in order to create the cDNAs. Whereas
with an oligonucleotide array, knowledge of the
gene sequences is necessary, preferably for a whole
genome, with a cDNA array, we do not need to know
the whole genome sequence, as long as we have
already identified a set of suitable cDNAs experi-
mentally. Note that the in situ synthesis techniques
used for oligonucleotide arrays do not work for
sequences as long as cDNAs, although sometimes
spotted arrays can be prepared with short oligonu-
cleotide probes instead of cDNAs.

The process of array manufacture is less repro-
ducible for spotted arrays, and the amount of DNA in
each spot is not so easy to control. Hence, it is not
usually possible to compare absolute intensities of
spots from different slides. This problem is circum-
vented using an ingenious two-color fluorescent
labeling system that allows two samples to be com-
pared on one slide. Usually, we have a reference
sample to which we want to compare a test sample.
We want to know which genes have increased or
decreased their level of expression in the test sample
with respect to the reference. RNA extracts from
these two samples are prepared separately. cDNA
is then made from the reference sample using
nucleotides labeled with a green fluorophore (Cy5),
and cDNA is made from the test sample using
nucleotides labeled with a red fluorophore (Cy3).
These two labeled populations of sequences are then
mixed, and the mixture is allowed to hybridize with
the array. The red- and green-labeled cDNAs from
the samples should bind to the spot in proportion to
their concentrations. The intensity of both red and
green fluorescence from each spot is measured. The
ratio of the red to green intensity should not be
dependent on spot size, so this eliminates an import-
ant source of error. In cases where there are many
different experimental conditions to compare, each
one can be compared to the same reference sample.

13.3 NORMALIZATION OF
MICROARRAY DATA

The raw data arising from a cDNA microarray ex-
periment consist of lists of red and green intensities

for each spot on the slide. There can be thousands of
spots per slide and, for an organism like yeast, with
approximately 6,000 genes, it is possible to have a
spot for every gene in the organism in a single array.
Handling this amount of data from a single experi-
ment requires careful statistical analysis.

Let R; and G, be the red and green fluorescence
intensities from spot i. These intensities can vary by
orders of magnitude from one spot to another,
because of real variation in the amount of mRNA for
each gene. However, because of the complex nature
of sample and array preparation, there are many
stages in which biases can creep into the results, and
there can be significant spot-to-spot intensity vari-
ation on the array that has nothing to do with the
biology of the sample. The data analysis is usually
done in terms of the ratio, R,/G,, of intensities for
each spot, rather than in terms of the absolute intens-
ities, because this eliminates a lot of spot-to-spot
variability. If the ratio is greater than 1, the gene is
up-regulated (i.e., turned on) in the test sample with
respect to the reference. If the ratio is less than 1, the
gene is down-regulated (i.e., turned off or repressed)
with respect to the reference. It is useful to deal with
the ratio on a logarithmic scale:
M, =log,(R/G,) (13.1)

As we are using base 2 logs, a doubling of expres-
sion level corresponds to M; = 1, and a halving cor-
responds to M, =—1. The intensity ratios are often
plotted against a measure of the average intensity of
the spot. The geometric average of the red and green
intensities is \/ﬁ , and it is therefore useful to
define an average intensity of a spot on a log scale as:

A;=log,(JRG,)= % log, (RG,) (13.2)

An example of real data from over 27,000 spots in
amouse cDNA array (Quackenbush 2002) is shown
in Fig. 13.2(a). The scale of average intensity used
here is log,,(R,G,), which is directly proportional
to A, as defined above. The figure shows a broad
horizontal band containing points for many genes,
and a few outlier points, with significantly higher

(a) R-I plot raw data

log,(R/G)

-3
-4
l0g1o(R*G)
(b) R-I plot following lowess
3
2

log,(R/G)

l0g:0(R*G)

Fig. 13.2 Intensity-ratio data from a mouse cDNA array
(reproduced from Quackenbush 2002, with permission of
Nature Publishing Group): (a) raw data before normalization,
and (b) after normalization with the LOWESS method. R-I
stands for Ratio-Intensity, which we have called M and A.

or lower ratios than average. It is the outliers that
we are interested in, because these represent genes
whose expression has been significantly up- or down-
regulated with respect to the reference. However,
before we can interpret the data, it is necessary to
correct the positions of the points to account for
various biases. This process is called normalization.
The labeled sequences from the test and reference
samples are combined in such a way that the total
amounts of cDNA are equal. For a gene whose
expression level has not changed, we would expect
that R,=G, and therefore M;=0. However, in
Fig. 13.2(a), the vast majority of points have negat-
ive M, values. This suggests a systematic bias in the
experiment, not that the majority of genes have been
down-regulated. One possibility, suggested in early

DNA microarrays and the ‘omes ® 317

experiments, is to normalize the data with respect to
“housekeeping” genes, which are assumed to be
expressed at a constant level that does not change
between test and reference samples. The data would
then be shifted so that M, = O for the housekeeping
genes. However, it is difficult to be sure which genes
are really unchanged, and the housekeeping method
also fails to account for several other biases. A sim-
ple, alternative way of data normalization involves
simply adding a constant to all the M,, to shift them
so the mean is at zero. These methods are global norm-
alizations, where all the points are shifted by the
same factor, so that the shape of the cloud of points
in Fig. 13.2(a) would remain unchanged.

One reason for the systematic downshifting of
points apparent in Fig. 13.2(a) is dye bias. The green
and red cDNA populations are labeled with different
fluorescent dyes. Bias could be introduced if the
efficiency of labeling of the two DNA populations
were different, or if the binding between the labeled
DNA and the probe were affected by the dye in a
systematic way, or if the efficiency of detecting the
fluorescent signal from the two dyes were different.
Global normalization would eliminate these dye
biases, if we assume that they affect all spots in the
same way.

Another way of eliminating dye bias is to perform
dye-flip experiments. Here, a second experiment is
performed in which the red and green labeling of the
samples is done in reverse. The M, values from the
two arrays are then subtracted, and the result should
be twice the unbiased M, value, because the dye bias
will cancel out. This is called self-normalization
(Fang et al. 2003). The normalized value for each
spot only depends on the measured intensity ratios
for that spot, and not on any other spot intensities.
Self-normalization will eliminate any type of bias
that is assumed to be dependent on the particular
spot but reproducible between arrays. Unfortu-
nately, biases can be more subtle than this — real
biases may neither be equal for all spots (as in global
normalization) or independent for all spots but re-
producible between arrays (as in self-normalization).

One type of error that is neither global nor com-
pletely independent for different spots is when the
bias depends systematically on the average intensity

318 @ Chapter13

of the spot, A, In Fig. 13.2(a), it is apparent that
there is an upward trend in the M, values at high A,.
Note that there is no reason to suppose that the cell
should up-regulate all the genes that are highly
expressed. Whether a gene is up- or down-regulated
should, to a first approximation, be independent of
its average expression level. The upward curve in
Fig. 13.2(a) involves many spots, and hence has the
hallmark of a systematic experimental bias. A pos-
sible cause for this would be if the fluorescence detec-
tor were saturated at high intensity. The detectors
must be sensitive enough to detect a signal from the
lowest intensity spots, and it may be that they
respond in a non-linear way at very high intensity.
There could also be steps in the sample preparation
process that depend in a non-linear way on the ini-
tialmRNA concentration, or the hybridization of the
labeled DNA to the spot could be non-linear.

One way of removing this type of bias is called
LOWESS (LOcally WEighted Scatterplot Smoothing)
normalization. In this method, a smooth curved
function m(A) is fitted through the data points (e.g.,
by least-squares fitting of the curve to the points).
Then the corrected values of the intensity ratios are
calculated as M; — m(A,). Note that the shift depends
on A and is therefore not global, but the value of
m(A) depends on the data points for many spots
at the same intensity, and hence this is not self-
normalization either. The results of applying the
LOWESS method to the mouse cDNA data are
shown in Fig. 13.2(b). The cloud of points is now
centered on M =0 for all values of A, and the
upward curve in the data is no longer present.

Another good example of LOWESS normalization
is given by Leung and Cavalieri (2003), whose
data similarly show a systematic trend with A that
is successfully removed. This example also shows
print-tip bias that arises during array manufacture.
Spotting robots typically have a 4 x 4 grid of print
tips. The resulting array is divided into 16 regions,
such that spots in different regions are produced
by different tips, and spots in the same region are
produced sequentially by the same tip. Variation in
spot properties from different tips may lead to sys-
tematic bias between the different regions of the
slide. Leung and Cavalieri (2003) therefore applied

Fig. 13.3 Spot-position dependent bias in a yeast
microarray study calculated by fitting a smooth quadratic
function of spot coordinates to the intensity ratios of spots in
each of the 16 print-tip regions (reproduced from Fang et al.,
2003, with permission of Oxford University Press).

LOWESS normalization independently to each of the
16 print-tip groups.

Careful analysis may reveal even more subtle
biases that depend on the position of a spot on the
slide. Fang et al. (2003) fitted a smooth quadratic
function of the row and column positions of the spots
to each of the 16 print-tip regions in a yeast micro-
array. The mean values depend on the print tip, but
the biases also vary across the region covered by
each tip, as shown in Fig. 13.3.

Another issue in microarray experiments is the
location of spots during the image analysis. Software
is used to distinguish the foreground pixels (i.e., the
spot) from background pixels. This works well when
the spots are clearly defined, but can be problematic
if the slide is contaminated with dust, or if the back-
ground intensity is high with respect to the spot.
Examples of good and bad spot images are shown in
figure 2 of Leung and Cavalieri (2003). Sometimes
an additional normalization is applied to the data,
whereby the intensity of the background is estim-
ated and then subtracted from the spot intensities.
However, Fang et al. (2003) show an example where
including such a background correction actually
makes the data noisier, and therefore advise against
making the correction.

There are clearly many issues involved in normal-
ization, and there is not yet a universally accepted,
standard way to deal with all the problems. Wolk-
enhauer, Moller-Levet, and Sanchez-Cabo (2002)
have discussed some of these issues, and point out
that while normalization is necessary, it can also
lead to loss of information from the data. They com-
ment that normalization of microarray data is “an
art enjoyed by statisticians and dreaded by the rest”.

13.4 PATTERNS IN MICROARRAY
DATA

13.4.1 Looking for significant changes in
expression level

The most fundamental question to ask of microarray
data is which genes have been significantly up- or
down-regulated in the test sample relative to the
reference sample. There is clearly a large amount of
scatter in the points on the normalized plot of M
against A; much of this may be statistical error in the
measurement. A simple way to deal with this is to
calculate the mean, |, and standard deviation, o, of
the M values (note that the mean will be zero for
some types of normalization), and then to calculate
the z score: z = (M — n)/c. If the M values are norm-
ally distributed, then the probability that a point
lies outside the range —1.96 <z<1.96 is 5% (see
Section M.10). Genes with z scores outside this
range can be said to have significantly changed their
expression level.

Sometimes, the statistical error may depend on
the intensity — in particular, it may be difficult to
accurately measure very low-intensity spots. This
effect is apparent to some extent in Fig. 13.2(b),
where the scatter of the normalized M values
appears slightly larger at the low-intensity end of the
range. If this occurs, it is possible to estimate a func-
tion o(A) by considering the standard deviations of
points in a sliding window of A values. Then the z
score for each point can be calculated with the ¢ that
is appropriate for its particular A —see Quackenbush
(2002) for an example of this.

Note that z scores are only applicable when the
data points have a normal distribution. There is

DNA microarrays and the 'omes ® 319

some empirical evidence that the M values (logs of
the intensity ratios) are approximately normally dis-
tributed (Hoyle et al. 2002). Thus, the use of the z
score may be reasonable. The intensity ratios them-
selves, R,/G,, are certainly not normally distributed.
In fact, we say that the ratios have a log-normal dis-
tribution, meaning that logs of these ratios have a
normal distribution.

Some factors contributing to statistical errors
in array data are truly biological (e.g., variation in
gene expression between different individuals),
some arise from problems with sample preparation
(e.g., samples from multicellular organisms may
contain different cell types that may be difficult to
separate), and some are just technical (e.g., lack
of reproducibility between identical experiments
on different arrays). The only way to distinguish
between these types of error is to repeat each experi-
ment several times, trying both the same sample
on different arrays, and separate, but supposedly
equivalent, mRNA extracts from different samples.
Despite the associated costs, it is accepted that
experiment repetitions are essential for reliable
interpretation of the data. Rigorous statistical tech-
niques for determining which genes are differen-
tially expressed are being developed. These need
to account for the fact that there are usually only
small numbers of replicates, and that multiple tests
are being made on the same data (and only a few
genes may have changed out of thousands on the
array), which has a large effect on significance
levels. For more information on statistical testing
of array data, see Slonim (2002) and references
therein, Tusher, Tibshirani, and Chu (2001), and
Li and Wong (2001). Also, Finkelstein et al. (2002)
give a useful account of experimental design and stat-
istical analysis of arrays used by the Arabidopsis
Functional Genomics Consortium.

13.4.2 Clustering

In a typical microarray experiment, we have a set of
arrays representing different samples, each with the
same set of genes, with intensity ratios measured
relative to the same reference. The normalized log
intensity ratios form a data matrix whose columns

320 @ Chapter13

are the different arrays and whose rows are the
different genes. A matrix like this can be represented
visually, as in the central part of Plate 13.1, using
red to indicate up-regulated genes, green to indicate
down-regulated genes, and black to indicate no
change. In this example, the scale runs from M = -2
to 2, i.e., from four-fold down-regulated to four-fold
up-regulated.

In this study, Alizadeh et al. (2000) were inter-
ested in a type of tumor called diffuse large B-cell
lymphoma (DLBCL). This is classified as a single dis-
ease, although it was suspected that there may be
distinguishable subtypes that might differ in their
behavior. Identification of these subtypes might
then be important in assessing a patient’s prognosis,
and possibly in deciding suitable treatments. The
study compared 96 samples from lymphoid cells,
including patients with DLBCL, B-cell chronic lym-
phocytic leukaemia (CLL), follicular lymphoma (FL),
and a variety of normal lymphocytes. The micro-
arrays used contained cDNAs selected from genes
thought to be relevant to the function of lympho-
cytes and other related cells. The reference state was
a pool of mRNAs isolated from nine different lym-
phoma cell lines.

In Section 2.6, we discussed clustering algorithms
that can be applied to matrices of data such as this.
Alizadeh et al. (2000) applied a hierarchical cluster-
ing to the columns of their data, to investigate the
relationship between the expression patterns in
the different samples. The resulting tree is shown at
the top of Plate 13.1; the columns of the matrix have
been ordered according to this tree. A larger version
of the tree is illustrated on the left. It can be seen that
the expression patterns differ significantly between
the different cell types, and that cells of the same
type from different patients almost always cluster
together. This means that the expression pattern is
able to distinguish between the different medical
conditions and is potentially useful in diagnosis.
Within the DLBCL samples, two distinct clusters
were found that were characterized by high expres-
sion levels in two different sets of genes. It was later
found that DLBCL patients falling into these two
classes had significantly different survival prospects.
Thus, the array data permitted the identification of

two subtypes of the disease that had been indistin-
guishable morphologically.

The data matrix can also be clustered horizont-
ally. This allows identification of sets of genes that
have similar expression profiles across the samples.
In Plate 13.1, some of the horizontal gene clusters
have been labeled (Pan B cell, Germinal Center B
cell, etc.), to indicate clusters of genes that are highly
expressed in particular cell types and are thus char-
acteristic of those cells. One type of study where hori-
zontal clustering is particularly important involves
time series data: e.g., in yeast, the response of cells to
several types of stimuli has been studied, as has the
periodic variation of gene expression that occurs
during the cycle of cell growth and division (Eisen
etal. 1998). Vertical clustering of the samples would
not make sense for time series.

As emphasized in Section 2.6, there are many
variants of clustering algorithms, and details of the
clusters formed will depend on the algorithm. Leung
and Cavalieri (2003) give a simple example with
artificial data to illustrate this (see Fig. 13.4). This
represents the log expression ratios for five genes at
seven different time points. Several different meas-
ures of similarity/difference between the expression
profiles are used. Let M;;be the expression ratio of the
ith gene at the jth time point. This matrix has Nrows
(genes) and P columns (arrays). Let y, be the mean
of the M values for the ith gene. The “correlation
coefficient with centering” is used in this example,
defined as:

P
z (M — ui)(M]‘k - H;)
k=1

Ri}' - 1/2 1/2

P P
DMy =) | Y (M —p)?
k=1 k=1

The “correlation coefficient without centering” is

P
D My My
k=1
Rii 1/2 1/2

P P
DM | | XM
k=1 k=1

The Euclidean distance between the gene profiles is

P 12
dy = Z(Mik - M)
k=1

and the Manhattan distance is
P
dij = Z|M1’k _Mjk|
k=1

where| . . . |indicates the absolute value.

Each of the tree diagrams in Fig. 13.4 is generated
by hierarchical clustering using the UPGMA algo-
rithm, which is described in the context of distances
between sequences in Section 8.3 and corresponds
to the “group average” rule for similarities described
in Section 2.6.2. The difference between the trees
arises from the definition of similarity/distance used.
In Fig. 13.4(a), the correlation coefficient without
centering ranks D and E as the most similar, and also
ranks A and B as similar. This measure is sensitive to
the magnitude and sign of the data points. The
Euclidean distance measure in (e) is fairly similar to
(a), and the Manhattan distance in (f) is also fairly
similar, except that the order of clustering of C, D,
and E is different. The correlation coefficient with
centering in (b) is noticeably different from any of
these. This measure spots that the profiles for A and
C are identical in shape although they differ in abso-
lutelevel, and that the same is true for D and E. These
two pairs have correlation coefficient 1 (distance 0)
when this measure is used. If this pattern arose in
real data, it might indicate that the genes were regu-
lated by a common transcription factor that up- and
down-regulated the genes in a similar way.

The use of the absolute values of the correlation
coefficients in (c) and (d) clusters profiles that have
mirror-image shapes, as well as those that have the
same shape. For example, in (d), genes A, C,D, and E
are all perfectly correlated. This might arise in a real
example if genes were regulated by the same tran-
scriptional control system, but one was repressed
when the other was promoted. Different similar-
ity measures therefore measure different things,
and more than one measure might be meaningful

DNA microarrays and the 'omes @ 321

OGeneA A GeneC % GenekE
3r O0GeneB X GeneD

Gene expression ratio (log2)

Time (hr)

(a) Correlation

Gene_A
A . Gene B =l
coefficient without ‘ Gene D E |
. Gene_E
centering - Gene_C

(b) Correlation
coefficient with
centering

Distance similarity ~ Time (hr)
measure

0 0.534 1.067 1.601

0 0.647 1.294 1.941

(c) Absolute correlation Gene_B

.. . Gene_A
coefficient without = Gene £ :—_I |

centering CeneC

0 0.201 0402 0.603

EEEEEEE
(d) Absolute correlation pamme== Gene B
. . Gene_A
coefficient with ! Gene D l
centering] ggﬂgf
0 0059 0119 0178
o
(e) Eyclldean Genep
distance Gene D ey
Gene_E
o] GENE_C
0 307 6139 9.209
—ONNTNION
) Manhatten gggggg
distance Gene D
B Gene E
0 7.222 14444 21.667

Fig. 13.4 Hierarchical clustering of gene-expression profile data for a series of seven time points. The data are artificial and
intended to illustrate the sensitivity of the clustering procedure to the details of the measure of similarity between gene profiles
(reproduced from Leung and Cavalieri 2003. Copyright 2003, with permission from Elsevier).

in a real case. It should also be remembered that
all these examples use UPGMA. In Section 2.6, we
already discussed alternative hierarchical and non-
hierarchical clustering schemes, any of which could
potentially be used with microarray data, and which
could well give different clustering patterns, even if
the same similarity measure were used. Although this
example is artificial and designed to be sensitive to the
similarity measure, it does provide a strong warn-
ing that we should not rely too much on any one
method of clustering when analyzing real data sets.

322 @ Chapter13

13.4.3 Principal component analysis and singular
value decomposition

We presented the PCA method in Section 2.5 using
the example of amino acid properties. We considered
each amino acid as a point in multidimensional
space, and we aimed to select a small number of
orthogonal directions in that space, known as the
principal components, that would capture the
greatest variance in position of those points. Plotting
the point representing each amino acid in the space

defined by the first two principal components
showed clearly which amino acids were similar to
one another, and suggested groups of amino acids
that might be thought of as clusters with similar
properties.

This method is also useful for visualizing patterns
in microarray data. Plate 13.2 shows an example
where PCA has been used to visualize the similarities
and differences in the expression patterns of 60 dif-
ferent cancer cell lines (Slonim 2002). A certain
amount of clustering of samples of different types
is apparent. For example, the leukemia samples
form a tight cluster (red dots almost superimposed),
and the CNS samples form a cluster quite isolated
from the rest (black dots). These clusters also appear
in the hierarchical cluster analysis (underlined in
Plate 13.2(b)). Other types of cancer appear to be
much more variable in this example: e.g., the breast
cancer samples (dark blue dots) do not appear
close together in the PCA or in the hierarchical
clustering.

Clustering algorithms will always create clusters,
even if the data do not have well-defined groups.
PCA makes it clear when there is variation between
gene-expression profiles, but there is no clustering of
genes. Raychaudhuri, Stuart, and Altman (2000)
show an example where expression profiles of genes
during a time-series experiment on sporulation in
yeast have a smooth continuous distribution in the
space defined by the first two principal components,
and argue that clustering would be inappropriate in
this case. Other good examples of visualization of
structure within microarray data using PCA are
given by Crescenzi and Giuliani (2001) and Misra
etal. (2002).

The method referred to as singular value decom-
position (SVD) by Alter, Brown, and Botstein (2000)
is essentially the same as the PCA method described
in Chapter 2, but the details of the mathematical pre-
sentation differ. An important point emphasized by
Alter, Brown, and Botstein (2000) is that we often
want to visualize patterns in both the genes (rows)
and the arrays (columns) of the expression data
matrix. The term eigenarray is used to describe a lin-
ear combination of columns of data from different
arrays, while the term eigengene is used to describe

a linear combination of gene profiles from the rows.
SVD identifies a set of orthogonal eigenarrays and
eigengenes that allows the structure in the data to
be visualized in a small number of dimensions. Alter,
Brown, and Botstein (2000) studied gene expression
during the yeast cell cycle, in which many genes
have expression levels that rise and fall in a periodic
manner. The first two eigengenes in this example are
shaped like sine and cosine waves as functions of
time, i.e., they are 90° out of phase. Plotting the data
using the first two eigengenes/arrays clearly reveals
the cyclic nature of these expression patterns (see
Plate 13.3). See also Landgrebe, Wurst, and Welzl
(2002) for another PCA analysis of cell-cycle data.

13.4.4 Machine-learning techniques

Microarray experiments provide complex multi-
dimensional data sets that are interesting to study
using a wide variety of techniques. Two techniques
from the machine-learning field are self-organizing
maps (SOMs) and support-vector machines (SVMs).
We will give only the briefest of explanations of these
methods here.

The SOM method has some similarity to a non-
hierarchical clustering method, like the K-means
algorithm discussed in Section 2.6.4. The object is to
group the expression profiles of a large set of genes
into a prespecified number of clusters. The addi-
tional feature of SOMs is that some type of geometric
relationship between the positions of the clusters in
the multidimensional gene-expression space is spe-
cified. This is often a rectangular grid. Tamayo et al.
(1999) draw an analogy with an entomologist’s
specimen drawer, in which neighboring drawers,
moving horizontally or vertically, contain insects of
similar shape and size. During the calculation of the
SOM, the grid points defining the centers of the clus-
ters move as close as possible to the data points, and
the grid is deformed but retains its rectangular topo-
logy. Each gene is then placed in the cluster corres-
ponding to the nearest grid point at the end of the
calculation.

Figure 13.5 shows an interesting application of
an SOM to gene-expression data on metamorphosis
in Drosophila. At the end of their larval period,

DNA microarrays and the 'omes ® 323

@ 5. . n
sEefBER
B e
= EzzEz

Indhucad Duiing Lals Thid
i Eoshriona Pubiss

Aogressed Dunng Late Thrd
matar Ecdysors Pulsp

s W ol

e W P

i B2 da 2 TN 2m A e e

(b)

ol % LR R [= (2] ol o5 8 LE
o e = e = 1
- - r . | -
e il | 2
i ot r == . |
I L — - et | Rt
o7 W, 'aa » o = el 1o Ei1 B0 . §2 IR
5 = e
- e " . |
- - i . W e A
= /i~ ALY A\ A
e A = o | 4 "

Fig. 13.5 Analysis of expression profiles of 534 genes that vary during the metamorphosis of Drosophila using (a) hierarchical
clustering and (b) a self-organizing map (reproduced from White et al. 1999. Copyright 1999, AAAS). PF stands for puparium
formation. Time points are labeled by the number of hours before or after this point (BPF and APF). The PF stage is used as

the reference for the other samples; hence the solid black stripe in the third column of data. The SOMs figure shows the mean
expression profile of genes in each cluster, together with lines indicating one standard deviation above and below the mean.
The number of genes contributing to each cluster is shown above each profile. Cluster c15 corresponds to the co-regulated set of
genes that is the uppermost block of expanded gene profiles illustrated in (a).

insects pupate, and emerge from the pupa as adults
some time later. The coordinated change of expres-
sion of many genes is required to control this major
change in the organism’s morphology. The shapes
of the gene profiles identified by the SOM show differ-
ent sets of genes that are turned on and off at differ-
ent times before or after formation of the pupa.

SVMs are used for “yes” or “no” classification
problems, e.g., we want to ask whether a gene is or is
not a member of a particular class of genes. The
input data would be the expression profile for each
gene across a series of arrays. We expect that the
genes in the class being studied have some similar
features in the shapes of their expression profiles,
and the SVM is intended to recognize these features.
The principles involved are similar to those in neural

324 @ Chapter13

networks (NNs) (see Section 10.5). For any given
input, the program gives a yes or no output. The
value of the output depends on the internal variables
of the program. We begin with a training set com-
posed of expression profiles for genes belonging to
the class of interest (positive examples) and genes
not belonging to this class (negative examples). As
with NNs, the SVM is trained by optimizing the inter-
nal variables of the program such that it gives the
correct answer for as many as possible of the exam-
ples in the training set. When the SVM is then used
on further data, it will predict that genes with similar
profiles to the positive examples are also members of
the class.

In Section 10.5.4, we discussed the perceptron,
the simplest NN, and showed that it could solve only

linearly separable problems, i.e., those in which a
hyperplane can be found that separates all the posit-
ive and negative points from one another. With
NNs, the way to solve more complex problems is to
make a network composed of many neurons. SVMs
are another way of solving problems that are not
linearly separable. They work by mapping each
point in the original vector space onto a point in a
higher-dimensional space in which the problem
becomes linearly separable. The book by Cristianini
and Shawe-Taylor (2000) gives a mathematical
explanation of the method.

Brown et al. (2000) applied SVMs to expression
array data from yeast. Many genes in yeast have
known functions and have already been classified
into functional categories in the MIPS database
(Mewes etal. 2002). They trained SVMs to recognize
several of the gene categories, and showed that
this method outperformed several other types of
classification algorithm. The results were also inter-
esting from the biological point of view. In several
cases, genes were “misclassified” by the SVM accord-
ing to the expectations from the MIPS categoriza-
tion; yet, it can be understood why there should
have been similarities in the expression profile. For
example, the gene for the translation elongation
factor EFB1 was misclassified as a member of the
ribosomal protein category by the SVM. Although
the elongation factor is not actually part of the
ribosome, and therefore was not included in this
category by MIPS, it nevertheless plays a key role in
translation, and is likely to be expressed at the same
time as the ribosomal proteins. The SVM works with
gene-expression data, and uses different criteria
from MIPS for assigning genes to categories — so, in
this case, both can be right. SVMs are relatively new
to bioinformatics and have not yet been widely used.
However, they are very general and have the poten-
tial to be applied to many different types of data.

13.5 PROTEOMICS
13.5.1 Separation and identification of proteins

The primary aim of proteomics experiments is to
determine which proteins are present in a sample

and how much of each one there is. To do this, it is
necessary to separate proteins from one another. A
standard technique for doing this is SDS-PAGE
(sodium dodecyl sulfate — polyacrylamide gel elec-
trophoresis). The proteins in a mixture extracted
from a sample are denatured using SDS, a negatively
charged molecule that binds at regular intervals
along the protein chain: this means that they will
be pulled in the direction of an electric field. The
proteins are added to one side of a polyacrylamide
gel, and an electric field is applied across it. Smaller
chains are able to move faster through the pores of
the gel, whereas longer ones get entangled and
move more slowly. Hence, the proteins are sepa-
rated according to their molecular weight. A stain is
then applied, which reveals each protein as aband at
a particular position on the gel.

In proteomics studies, we can have samples con-
taining thousands of different proteins. SDS-PAGE
does not have sufficient resolving power here. The
most commonly used technique in this case is two-
dimensional polyacrylamide gel electrophoresis
(2D-PAGE). This involves a combination of standard
one-dimensional PAGE, which separates proteins
according to their molecular weight, and isoelectric
focusing (IEF), which separates them according to
their charge.

As some amino acids are acidic and some are basic,
and as the numbers of amino acids of each type differ
between proteins, the charge on proteins at neutral
pH will differ. If the pH of the surrounding solution is
varied, the equilibrium of ionization of the acidic and
basic groups on the protein will be shifted. At some
particular pH, called the isoelectric point, or pI, there
will be no net charge on the protein. IEF is able to
separate proteins with different pI values. The tech-
nique uses a gel in the form of a long narrow strip.
Acidic and basic chemicals are bound to the gel in
varying quantities along its length, so that an im-
mobilized pH gradient is created from one end to the
other (Gorg et al. 2000). The protein sample is placed
on this gel and a potential difference is applied.
Charged proteins move through the gel in the direc-
tion of the electric field. As they move through the
pH gradient, their net charge changes; each will
then come to a stop at a position corresponding to its

DNA microarrays and the 'omes ® 325

isoelectric point, where there is no net charge, and
hence no force from the electric field.

The gel strip is then connected along one edge of a
two-dimensional gel sheet that is used to separate
the proteins in the second dimension using SDS-
PAGE. After interaction with SDS, all the proteins
have the same sign charge, so they will all move in
the same direction into the 2D gel when a potential
difference is applied, but they will be separated
according to molecular weight. A stain is then
applied, which reveals each protein as a spot at a
particular position on the gel. To identify the protein
present in a spot, the spot is cut out of the gel and the
protein is digested with a protease enzyme (like
trypsin), which breaks it down into peptide frag-
ments. These fragments are analyzed with a mass
spectrometry technique called matrix-assisted laser
desorption/ionization (MALDI), which determines
the mass of each fragment. See Pandey and Mann
(2000) for more details.

The masses of the fragments provide a character-
istic fingerprint for the protein sequence; therefore,
the protein can be identified by comparing the
measured masses with the masses of fragments that
can be generated from sequences in a database. This
is known as peptide mass fingerprinting (PMF).
Henzel, Watanabe, and Stults (2003) discuss the
history of techniques used for protein identification,
and consider the improvements that have occurred
since the early 1990s in mass spectrometry, sample
preparation, and programs for identifying the mass
fingerprint. The programs take a sequence from a
protein sequence database, calculate the fragments
that would be formed if it were digested enzymatic-
ally (e.g., trypsin cuts the chain after every lysine
and arginine), and compute the masses of these frag-
ments. When several measured fragment masses
are available, this can often be matched uniquely to
a single database protein. Sometimes, it is even pos-
sible to identify individual proteins from the same
spot, in cases where these have not been fully
resolved on the gel.

PMF may be complicated by several factors: there
may be experimental error in the measured fragment
masses; the database sequence may contain errors
that affect the theoretical fragment masses; and there

326 ® Chapter13

may be post-translational modifications of the protein,
such as phosphorylation or glycosylation of certain
residues, that will affect the experimental mass
(Mann and Jensen 2003). PMF programs account
for these errors. One frequently used program is
ProFound (Zhang and Chait 2000), which uses a
Bayesian probabilistic model to calculate the poster-
ior probabilities that the set of observed fragment
masses was generated from each database protein,
and returns a ranked list of hits against the database.

Another obvious point is that PMF can only
identify a protein if its sequence is already in the
database. The method therefore works well for
organisms with complete genomes, where, in prin-
ciple, we have all the protein sequences. However, in
practice, we are not exactly sure which of the ORFs
are real genes, and we do not have complete infor-
mation about the alternative splicing that might
occur in a gene, and the many possible post-transla-
tional modifications. For organisms without com-
plete genomes, the method is much more limited.
It is sometimes possible to identify an unknown pro-
tein in one organism by comparing it to the theoret-
ical fragment masses of a known sequence from a
related organism. Lester and Hubbard (2002) have
compared proteins from many different genomes
and investigated how the proportion of conserved
fragment masses drops off as the percentage ident-
ity between the proteins decreases. In fact, it drops
off rather rapidly, which means that cross-species
identification is only likely to work for very closely
related species. However, there is still a considerable
signal for more distantly related species, which may
be useful if the fragment mass information is com-
bined with other types of data.

13.5.2 Afew examples of proteomics studies

Figure 13.6 shows two examples of 2D gels from Bae
et al. (2003). Nuclei were extracted from cells of
Arabidopsis by cell homogenization and density gra-
dient centrifugation. Extracts of the nuclear proteins
were then studied. On the gels shown, 405 and 246
spots were detected for the pH gradients 4—7 and
6-9, respectively, and a total of 184 of these were
successfully characterized using PMF. Bae et al.

Fig. 13.6 2D gel clectrophoresis map of nuclear proteins from Arabidopsis (reproduced from Bae et al. 2003). The vertical scale is
protein molecular weight (in kDa). The horizontal scale is pI. Two gels were prepared from the same sample using different ranges
of pH in the isoelectric focusing stage. Numbers indicate protein spots that were successfully identified from their mass fingerprint.

Copyright 2003 Blackwell Publishing Ltd.

(2003) were particularly interested in the response
of the proteome to cold stress, i.e., in which proteins
were up- or down-regulated when the Arabidopsis
seedlings were grown at unusually low temperat-
ures. They used image analysis software to measure
the sizes of spots and to determine which ones had
changed under cold stress. Of the 184 identified pro-
teins, 40 were induced and 14 were repressed by
more than a factor of two. Proteomics thus allows
the identification of genes that are interesting in the
context of a particular biological question, and sug-
gests where further biochemical experiments might
be done.

Another recent large-scale study concerns the
proteome of the human fetal brain. Fountoulakis et
al. (2002) analyzed protein extracts from the brains
of aborted fetuses. They were motivated by an inter-
est in diseases of the central nervous system, includ-
ing Alzheimer’s disease and Down’s syndrome. They
analyzed 3,000 spots excised from 2D gels and were
able to characterize 1,700 of these. Somewhat sur-
prisingly, the 1,700 proteins were the products of only
437 different genes: there were typically 3—5 spots
for each gene product; there were only 50 proteins
that had a single spot; and there were five proteins
with more than 100 spots. Although some of these
multiple spots could be the result of artifacts in the
2D electrophoresis, Fountoulakis et al. conclude that
most of the spots represent post-translationally

modified proteins. We are still far from understand-
ing what the functions of all the protein variants
might be.

More than 200 samples were analyzed, and it was
found that relatively few proteins were detected in
all the samples: ~12% of the proteins were detected
in 10 or fewer samples, and most of the proteins
were detected in fewer than half the samples. Thus,
there is considerable variability in the sets of pro-
teins detected. The authors argue that the proteins
detected in only a few samples are likely to be the
interesting ones, as they are more likely to be
involved in disease-related changes. Nevertheless, it
seems very likely that much of the apparent variabil-
ity between samples is the result of problems with
the experimental detection technique. Quantities of
different proteins differ by orders of magnitude,
resulting in widely different spot sizes (see Fig. 13.6).
Faint spots are difficult to detect, and difficult to
resolve from nearby larger ones. Fountoulakis et al.
(2002) also give the distribution of lengths and
numbers of fragments in the identified proteins.
Longer proteins have more lysine and arginine
residues and therefore produce more tryptic frag-
ments. This makes them easier to identify, i.e., the
probability of a false identification by chance drops
rapidly with the number of fragments. In this study,
the proteins have between four and 16 fragments
per sequence, with an average around six.

DNA microarrays and the 'omes ® 327

As mentioned above, one way to ascertain which
proteins have changed in expression level is to look
at variation in spot size in the 2D gel images. Henzel,
Watanabe, and Stults (2003) give an example of a
myosin light chain 2 protein that was shown to be
present at significantly different levels in two cell
lines by repeated gel measurements (their figure 10).
However, this method can be problematic for faint or
overlapping spots, and needs to be performed with
care (Moritz and Meyer 2003). In order to avoid
comparisons between gels, it is possible to combine
extracts from two samples on the same gel, and mea-
sure ratios of concentrations between them. This is
the same principle as the Cy3/Cy5 labeling system
for microarrays. One way of doing this with 2D gels
is to use stable isotope labeling. Proteins from one
sample are labeled by incorporation of a heavy iso-
tope, like 13C or >N, and proteins from the other
sample are left unlabeled. The labeling can be done
in vivo, by growing the cells in a medium contain-
ing the labeled isotope, or in vitro, by chemical
modification after extraction of the proteins from the
cells (Moritz and Meyer 2003). The labeled and
unlabeled samples are combined before the 2D elec-
trophoresis. Both sets of proteins should behave in
the same way during the separation process. Hence,
each spot should contain both a labeled and an unla-
beled protein. The ratio of the two proteins can then
be obtained by quantitative comparison of the sizes
of the two peaks seen for each fragment in the mass
spectrum.

Study of the proteome is not yet as automated or
on such a large scale as microarray studies of the
transcriptome. There is considerable interest in try-
ing to develop an array-based technology for identi-
fying proteins that would get around some of the
limitations of 2D electrophoresis. With DNA arrays,
the pairwise interactions between complementary
strands make it easy to develop probes that are
specific to one nucleic acid sequence. For protein
arrays, it would be necessary to develop probe
molecules to attach to the array that would bind
specifically to one type of protein. One possibility
would be to use antibodies, and another would be to
select for RNA aptamers that recognize particular
proteins. Some progress has been made along these

328 ® Chapter13

lines, and protein arrays may become an important
technique in the near future (Jenkins and Penning-
ton 2001, Cutler 2003).

13.5.3 Protein—protein interactions

A large part of what we think of as “function” in a
cell involves proteins interacting with one another
— binding to one another, assembling into multi-
protein complexes, modifying one another chem-
ically, etc. A goal of genomics is therefore to try to
establish which protein—protein interactions occur.
Many proteins have unknown functions, but if
we can establish that an uncharacterized protein
interacts with one of known function, this is an
important clue for understanding the function of the
unknown protein.

The yeast two-hybrid (Y2H) system is an im-
portant experimental technique that has been used
to investigate protein—protein interactions on a
genomic scale (Vidal and Legrain 1999, Kumar and
Snyder 2001). The technique makes use of a tran-
scription factor that has a binding domain and an
activation domain, such as Gal4. In nature, these
domains are part of one protein. The binding domain
recognizes and binds to the DNA sequence in the
promoter region of genes that are regulated by the
transcription factor. The activation domain inter-
acts with the proteins that carry out transcription,
and recruits them to the appropriate site on the
DNA, which leads to the initiation of transcription of
the regulated gene. In the Y2H experiment, the two
domains are split apart and connected to two differ-
ent proteins, known as the bait and the prey. The
object is to determine if there is an interaction
between the bait and the prey. The experiment is
carried out using two haploid strains of yeast of
opposite mating type. One strain contains a plasmid
with a gene for the bait protein, to the end of which
the DNA sequence for the binding domain has been
added; this strain will synthesize a bait protein with
an added binding domain covalently attached. The
other strain has a different plasmid, with the gene for
the prey protein and an added activation domain;
this synthesizes a prey protein with a covalently
attached activation domain.

Mating occurs between the two strains, produc-
ing diploid cells containing both plasmids. The
diploid cells also contain a reporter gene, i.e., a gene
whose expression causes an easily observable phe-
notype (Vidal and Legrain 1999). The reporter gene
has a promoter that is normally regulated by the
transcription factor. In order to express the reporter
gene, both the binding and activation domains of
the transcription factor are required. These domains
are now on separate proteins and will only be
brought together if there is an interaction between
the bait and the prey. The experiment can be carried
out in a high-throughput fashion by creating many
different prey strains (i.e., each containing a differ-
ent protein as prey), and allowing each to mate with
the same bait strain. It is possible to tell which of the
many prey proteins interact with the bait by select-
ing the diploid strains that express the reporter gene.

Y2H is rather indirect, and is prone to both false-
positive and false-negative results. Nevertheless, it
has produced a considerable amount of useful infor-
mation (Ito et al. 2002), and with it we can, in prin-
ciple, determine the complete set of interactions
between proteins in a fully sequenced organism. A
new 'ome has been coined for this set of interactions
—the “interactome”.

Using the available information on protein—
protein interactions in yeast, Jeong et al. (2001)
constructed a network where each node represents
a protein and each link represents an interaction
between a pair of proteins. This contained 1,870
proteins and 2,240 links. The largest connected
cluster of proteins in this network is shown in Plate
13.4. Jeong et al. were interested in the distribution
of links between nodes, and therefore calculated
P(k), the probability that a node has k links. The
simplest model to which one can compare this
network is a random network in which links are
added at random between pairs of nodes. In such a
network, each node would have the same number
of connections on average, and P(k) would have
a fairly narrow distribution about this average.
However, this is not the case in the yeast protein net-
work: there are some proteins that have very many
interactions, and others that only have one or two.
A model that has this feature is a scale-free network

— for such networks, the link distribution is a power
law P(k) = k™% The observed distribution, shown in
Plate 13.4, is approximately scale-free, with an
exponential cut-off at large k and small corrections
at low k. The equation P(k) = (k + k,)~* exp(=k/k,)
fits the data quite well.

Biologically, we would expect that highly con-
nected proteins are very important to the cell. Since
the completion of the yeast genome, there have been
systematic studies of yeast mutants in which one
gene has been deleted. Some of these deletions are
lethal, i.e., the cell cannot grow without the gene.
Others have a quantitative effect on the growth rate,
while a fairly large number have little or no observ-
able effect. The coloring system for the nodes of the
graph in Plate 13.4 shows this information. Plate
13.4 also shows the percentage of proteins that are
essential to growth as a function of the number of
links in the network. There is a strong positive cor-
relation, indicating that the more highly connected
proteins tend to be more important to the cell,
because they carry out many different roles, or
because they carry out a role that cannot be substi-
tuted by another protein. A similar point has been
made by Fraser et al. (2002), who show that proteins
with a larger number of interactions have a slower
rate of evolution, as measured by the evolutionary
distance between pairs of orthologs from S. cerevisiae
and C. elegans. This is because for proteins with
many interactions, a greater part of the protein is
essential to its function, and there are fewer sites at
which neutral substitutions can occur.

Another interesting study with yeast protein
interaction networks is that of Bu et al. (2003), who
wished to identify sets of highly connected proteins.
A clique is a set of nodes in which every node is con-
nected to every other; a quasi-clique is a set of nodes
in which almost all nodes are connected to each
other. They identified 48 quasi-cliques containing
between 10 and 109 proteins. In most cases, the
quasi-cliques contained mostly proteins of a single
functional category. Where a protein of unknown
function is a member of a quasi-clique, this is then a
useful indication that the probable function of the
protein corresponds to that of the majority of the
other members.

DNA microarrays and the 'omes ® 329

Many proteins assemble into complexes contain-
ing many different molecules that together perform
a specific function. Whereas Y2H is able to detect
pairwise interactions between proteins, another
technique, known as tandem affinity purification
(TAP), is specifically designed to isolate complexes
involving many proteins. The method works by
inserting a sequence called the TAP tag onto the end
of the gene for a target protein (Rigaut et al. 1999).
The target protein is then synthesized with the extra
section coded by the TAP tag. This contains an
immunoglobulin G (IgG)-binding domain. Proteins
with this domain can be separated from a mixture
using an affinity column containing IgG beads,
because they stick to the column. If the target
protein is part of a complex, then other proteins
associated with the target are also retained on the
column. The mixture of proteins obtained in this
way is then washed off the column, the proteins are
separated from each other with SDS-PAGE, and
mass spectrometry is used to identify them. One way
of verifying that the mixture of proteins was really
part of a complex is to use other proteins that are
thought to be from the complex as the target — this
should allow isolation of the same set of proteins (see
Fig. 13.7).

Using this technique, Gavin et al. (2002) tagged
1,739 different yeast proteins, and identified 232
complexes. Of these, 98 were already known, and
134 were not previously known from other tech-
niques. The number of proteins per complex varied
from two to 83, with a mean of 12. The functions
of many of the proteins found in the complexes
were not previously known; therefore, the tech-
nique reveals important information about these
molecules. Some proteins were found in more than
one complex. Gavin et al. (2002) show a network
diagram where each node represents a complex, and
a link between nodes represents a protein shared by
the complexes. The information from TAP is comple-
mentary to the Y2H studies: when the members of
each complex were examined, pairwise interactions
between proteins within complexes had already been
identified by Y2H in a fairly small fraction of cases.

Dezso, Oltvai, and Barabasi (2003) carried out a
computational analysis of the protein complexes

330 ® Chapter13

identified in the study of Gavin et al. (2002). This
combined information from the proteomics study
with gene-expression data from microarray experi-
ments, and with information on deletion pheno-
types (i.e., on whether a gene is essential or
non-essential for survival in gene-deletion experi-
ments). They measured correlation coefficients
between the mRNA expression profiles for all pairs
of genes in each complex, and found that many
complexes contained a core of proteins that were
strongly correlated with one another according to
expression profiles. These were usually of the same
deletion phenotype; hence, they were able to classify
complexes as either essential or non-essential
according to the phenotype of the majority of the
core proteins. This suggests that the core proteins
are all required for functioning of the complexes,
so that deletion of any one of them disrupts the
function. The complexes also contained non-core
proteins with low correlation in mRNA expression,
and often these proteins had different deletion phe-
notypes from the core. Some proteins that were
essential but not part of the core of one complex were
also members of the core in another essential com-
plex. Therefore, it appeared that the reason they
were essential was because of their role in the second
complex, not the first. It may be that the non-core
proteins are only temporarily attached to the com-
plexes and do not play a full role in their function, or
are spurious interactions arising in the experiment.
The study of Dezso, Oltvai, and Barabasi (2003) is a
good example of what bioinformatics techniques
can achieve in the post-genome age by integrating
several types of data in a coherent way.

13.6 INFORMATION MANAGEMENT
FOR THE ‘'OMES

Having read to the end of this book, you will be famil-
iar with biological sequence databases and the type
of information they contain. Submitting sequences
to the primary databases ensures that everyone will
have access to them and that information can be
shared. Specifying a format in the primary sequence
databases ensures that programs can be written to

(b)

Fig. 13.7 Anexample of the TAP
technique applied to the proteins in the
polyadenylation machinery complex
(Gavin et al. 2002, with permission of
Nature Publishing Group), which adds
apoly-A tail onto mRNAs. A schematic
diagram of the complex is shown in (b).
In (a), band patterns are shown from
SDS-PAGE, with bands labeled
according to the corresponding protein.
The proteins labeled at the top of each
lane were used as the target. The band
from the target protein is marked with
an arrowhead. This shows that the
same bands are observed in each case,
confirming that these proteins really do
interact in a complex.

RNA

read and analyze the information contained in
them. Having stable primary sequence databases
allows those with expertise in specific areas to build
on this information and create more specialized
resources with in-depth information in narrower
fields. Thus, a network of biological databases is
developing that link to one another and that are
mutually supportive.

However, sequences are only one type of biolo-
gical information that we might wish to make
available in databases. This chapter has discussed
high-throughput experiments that produce huge

Cft1

Cft2
Ysh1
Ptal
Rnal4
Pab1

Pcf11

Ref2
Pap1
Clp1

Pfs2
Ptil
Fip1
Rnal5 +YKLO18W
Gz
Yth1
Ssu72
YOR179C

amounts of data that are not always easy to analyze.
These results can become much more meaningful if
they can be compared with similar results from
other laboratories, or if they can be combined with
entirely different sorts of information, or if they
can be re-analyzed at a later date using newer
algorithms. To make this possible, efficient means of
storage and retrieval of high-throughput data are
necessary.

For microarray data, a database has been estab-
lished at Stanford, USA, where many of the early
microarray experiments were performed (Gollub

DNA microarrays and the 'omes ® 331

etal. 2003). Thisnow contains publicly available data
from more than 5,000 experiments, corresponding
to information included in more than 140 publica-
tions. Experimental data files can be downloaded,
and images of the arrays can be viewed, including
zoom-in images of individual spots at the pixel level.
Links are also available to a wide variety of software
for array-data analysis. More recently, the Array-
Express database has been established at the Euro-
pean Bioinformatics Institute (Brazma et al. 2003).
At the end of 2003, this contained 96 experiments
(i.e., related groups of arrays designed for a single
purpose), 132 arrays (i.e., complete measurements
from a single array), and 631 protocols (i.e., descrip-
tions of how samples were prepared, how arrays
were designed or how normalization procedures
were applied).

In developing ArrayExpress, considerable thought
was put into deciding exactly what information
should be stored. For example, most data analysis is
done on the ratios of red to green intensities, as dis-
cussed above. However, if only these ratios were
stored, a lot of information necessary for determin-
ing errors and checking reproducibility between
arrays would be lost. Therefore, it is necessary to
include raw data in an unprocessed form. Also, it is
much easier for database users if information on the
experimental procedures is included with each data
set, rather than separately in printed publications.
Experimental protocols are separate entries in the
database, so that when several different experiments
use the same protocol, they can each link to that
protocol entry without having to input the same
information several times. The ArrayExpress de-
velopers have defined a set of standards known
as Minimal Information About a Microarray
Experiment (MIAME) (Brazma et al. 2001). MIAME
specifies minimal required information in six cate-
gories: (i) experimental design, describing the type of
experiment and which samples are used on which
arrays; (ii) array design, specifying which genes are
on the array and their physical layout; (iii) samples,
describing the source of the samples, treatments
applied to them, and methods of extracting the
nucleic acids; (iv) hybridizations, describing the lab-
oratory conditions under which the hybridizations

332 @ Chapter13

were carried out; (v) measurements, including the
original image scans of the array, the quantified data
from the image analysis, and the normalized gene
expression matrix; and (vi) normalization controls,
describing the method of normalization used. These
standards are likely to be adopted by the Stanford
database too, and compliance with MIAME is be-
coming a requirement for publication in certain
journals (Oliver 2003).

The situation in proteomics is less advanced with
respect to databases than with microarrays. The
need for a central repository clearly exists, and for
this reason, Taylor et al. (2003) have proposed a
design for a Proteomics Experiment Data Reposit-
ory, or PEDRo. Database design and database man-
agement systems are topics regrettably absent from
this book, although there are many computer sci-
ence books covering this field: e.g., Connolly, Begg,
and Strachan (1999). Here, we briefly introduce the
idea of schema diagrams to represent database
designs. A key step in database design is to specify
exactly which pieces of information will be in the
database and how they are related to each other.
Such a design plan is called a schema — the schema
diagram for PEDRo, drawn in unified modeling
language (UML), is shown in Fig. 13.8. UML is a
“language”, or a set of conventions, for drawing
diagrams representing the relationships between
types of information stored in a database. Each box,
or “class”, represents a type of object, and each line
of text in the box represents an attribute of that type
of object: e.g., the SampleOrigin class (top left) has
attributes that describe the tissue and cell type used
and the methods for generating the sample; the Gel
class (right) has attributes that include the gel
image, the stain used to visualize the proteins, the
pixel size in the image, etc.; and the Gel2D class has
attributes for the range of pI and molecular mass
covered by the gel. When a database is implemented
with such a schema, it will store many objects of
each type. So, for example, every 2D gel entered
into the database must have pI and molecular mass
ranges associated with it (the values of these attri-
butes will, of course, be different for every gel). The
point is, the schema does not describe the particu-
lar entries in the database, but rather the properties

SampleOrigin
description
condition
condition_degree
environment
tissue_type
cell_type
cell_cycle_phase
cell_component
technique
metabolic_label

Experiment
hypothesis
method_citations
result_citations

MassSpecMachine
manufacturer
model_name
software_version

Electrospray
spray_tip_voltage
spray_tip_diameter
solution_voltage
cone_voltage
loading_type
solvent
interface_manufacturer
spray_tip_manufacturer

MALDI
laser_wavelength
laser_power
matrix_type
grid_voltage
acceleration_voltage
ion_mode

Otherlonization

1
1 " name
ionization_
pammeters
« OntologyEntry
category
value
* P
mz_analysis description
_parameters

1 OthermzAnalysis

name

ToF

reflectron_state
internal_length

Organism

analyte_processing

Sample generation

Mass spectrometry

PEDRo UML class diagram: key to colors

species_name _step_parameters :
* strain_identifier * REBAESS Column AssayDataPoint
relevant_genotype OntologyEntry Component ., ; description &'Edi ssayRaiaholn
category description manufacturer ! time
TaggingProcess value concentration part_number T 13 protein_assay
% 0.1 lysis_buffer description 1 batch_number S
= 0.1y — 1 PercentX internal_length H
1ag_type * i i 0.1|2 | OtherAnalyte
tag_purity analyte_parameters 7. percentage internal_diameter 0.1 ¢ Maicy 1
Ln protein_concentration 1 1 stationery_phase filocessNosStep
tag_concentration OtherAnalyte ' GradientStep bead size name
y ore_size
final_volume name —] step_time Jordered] PorS=
temperature -
AnalyteProcessingStep
Sample] — flow_rate
* 5 1. raction ; injection_volume
. samp:e,:;i Analyte start_point parameters_file el
1 samp}eﬁ a:e 1 [end_point description
experimenter . . :
p Gelltem protein_assay ChemicalTreatment raw_image
« digestion annotated_image
o id i
1 s MassSpecExperiment area | TreatedAnalyte 1 derivatisations softwa;eTversmn
description i i — warpec_image
; ters fil intensity i) warping_map
parameters_file local_background Band T e' equipment
Tt 1 annotation lane_number ~ ~*—— denaturing_agent percent_acrylamide
1 e annotation_source apparent_mass mass_start solubilization_buffer
> type volume mass_em‘i stain_details
collision_energy pixel_x_coord Spot run_details protein_assay
0.1 pixel_y_coord . 1 in-gel_digestion
. N apparent_pi T =
— oav |1 plXE|_I‘?dIL!S T s apparent_mass o Gel2D background
o %) normalisation B pi_start pixel_size_x
mzAnalysis normalised_volume é BoundaryPoint pi_end pixel_size_y
> type 1] . mass_start
* pixel_x_coord d *
i * ixel d mass_en DiGEGel
01 RelatedGelltem BIXEy=coor first_dim_details g
< 4 second_dim_details lye_type
Detection ;:Isc:gf)et:'z:ce DiGEGelltem excitation_wavelength
type = d " exposure_time
i lye_type MSMSFraction 7P =
item_reference tiff_image
] Quadrupole has_children | argetm=torz
I —_ . i plus_or_minus
description o1 - 1 . DBSearch
= PeakList T Tordered username
Hexapole 1.n |list_type % Tandem id_date
™ description description ListProcessing SequenceData n-terminal_aa
mass_value_type smoothing_process source_type c-terminal_aa
- lonTrap 1 background_threshold sequence count_of_specific_aa
5 e x| name_of_counted_aa
gas_tyr':ssure heak *] - regex_pattern
?f f_P Jfm_to_z 4 PeptideHit
"_frequency 1 % [ordered] 1
— excitation_amplitude abul?d?nie & DBSearchParameters score
R multiplicif 3
isolation_centre R % program score.type Li.n_« ProteinHit
o . 3 sequence
|§olat|on_W|dth *|S database firsrmELEn r7|all_peptides_matched
final_ms_level Chromatogram database_date ™
N 9 probability *
Point parameters_file w -
A B " _search_ [1..n . 1
CollisionCell freipait tlaxonom|C§!_fllFer parameters | peptide_hit_ o
— gas_type U fixed_modifications 7 parameters Protein
| ion_count - o *f % "
gas_pressure N variable_modifications OntoloavEnT accession_number
collision_offset — max_missed_cleavages ntologyLntny, gene_name
= PeakSpecific i -
ch o - i mass_value_type Category synonyms
romatogramintegration fragment_ion_tolerance value‘ . organism
resolution peptide_mass_tolerance description orf_number
software_version accurate_mass_mode description
Sample processing background_threshold mass_error_type RelatedGelltem sequence
area_under_curve mass_error description | *| | modification
MS results analysis peak_description protonated gel_reference predicted_mass
sister_peak_reference icat_option item_reference predicted_pi

Fig. 13.8 Schema diagram for PEDRo (Taylor et al. 2003, with permission of Nature Publishing Group), a proposed Proteomics
Experiment Data Repository.

DNA microarrays and the ‘omes

® 333

possessed by each entry and the relationships be-
tween the objects described.

Relationships are represented in UML by lines
connecting the boxes. The most common type of
relationship in Fig. 13.8 is a one-to-many relation-
ship, indicated by a line with a 1 at one end and a *
at the other. Each SampleOrigin is associated with
an Organism, but there may be many different
SampleOrigins (e.g., different tissue types) from the
same Organism. The Sample table contains brief
information needed to identify a single sample, like
identification number and date. Many samples may
be associated with the same SampleOrigin (e.g.,
replicates extracted from the same tissue type). One
reason for splitting information about samples into
two classes is so that it is not necessary to repeat all
the information in the SampleOrigin table for every
sample.

We cannot cover details of UML here. An intro-
duction to the use of UML in bioinformatics is given
by Bornberg-Bauer and Paton (2001), and com-
puter science textbooks are also available. The main
point is that careful design of databases is essential if
we are to store complex information in a useful way,
and that expertise from both computer scientists and
biologists is needed to make such ventures work. For
further examples, take a look at the schema dia-
grams for ArrayExpress and the Stanford microar-
ray database, which are available on their respective
Web sites. Also, Bader and Hogue (2000) give an
instructive account of the data specification of the
Biomolecular Interaction Network Database (BIND),
which includes information on many different types
of interaction between many different types of mole-
cule. The PEDRo schema we used as an example has
been proposed to stimulate comments and potential
improvements to the design. Let’s hope they eventu-
ally get round to implementing the database!

In information management systems, we want to
know exactly what information we have and where
itisin the database — this is what the schema tells us.
But we also want to know, in a more abstract way,
what the data mean — this is where so-called onto-
logies come in. Ontologies attempt to describe all
the terms and concepts used in some domain of
knowledge, such as all the background knowledge

334 @ Chapter13

we need to possess to understand the information in
a particular database. The ontology should define the
terms in an unambiguous way, so that when people
use a term, they mean the same thing. The ontology
should also tell us about the relationship between
concepts, e.g., when one thing is part of something
else, or when one thing is a specific example of a cat-
egory of things. It should also make it clear when
alternative terms are used to mean the same thing.
Unfortunately, scientists are not always as precise
in their use of technical terms as we might like them
to be. People use the same word in slightly different
ways, or they describe the same thing with different
words. Experts in a field gradually become familiar
with the terminology of their subject, but this takes
time. In the genomic age, bioinformaticians need to
be generalists who can understand terms used in a
wide range of fields and integrate information from
different types of study. We cannot all be experts
in everything. A biological ontology can help by
defining things in a precise way, and encouraging
people to use the same terminology in different sub-
disciplines. It can thus help people to communicate
with each other and, at the same time, it can help
computers to communicate with each other.
Clearly, we can only crosslink databases if they
deal with the same kinds of object (i.e., sequences,
structures, species names, or whatever) and if they
use the same name for the same thing. Gene names
are a nightmare. There are committees doing
important work in standardizing gene names for
particular organisms, such as the HUGO Genome
Nomenclature Committee, which maintains a data-
base of approved names for human genes and pub-
lishes guidelines on gene nomenclature (Wain et al.
2002). However, when we compare genes between
species, we immediately hit the snag that ortholo-
gous genes in different species often have completely
different names, even though they do the same
thing. This makes it difficult for a person to find all
the relevant sequences, and even more difficult to
write a computer program to do it. How nice it would
be if there were a program that could handle queries
like, “Find all the genes that have function X", or
“Find all the proteins that interact with protein Y”,
or “Find all the genes whose expression profiles are

correlated with gene Z”. We are still far from being
able to integrate all our available knowledge in a
sufficiently coherent way to allow such complex
queries to be performed for all organisms, but a step
in the right direction is the establishment of the Gene
Ontology (GO).

GO has been developed by a consortium of cur-
ators of species-specific genome databases, begin-
ning with those for yeast, mouse, and Drosophila,
and now extended to include C. elegans, Arabidopsis,
and others (Ashburner et al. 2001). GO defines terms
that are useful for the annotation of these genomes.
The curators of the different species databases then
agree to use these terms in the same way. In par-
ticular, specific genes in different organisms are asso-
ciated with each of the relevant GO terms. In fact, GO
consists of three ontologies. The first, “molecular
function”, describes what a gene product does at the
biochemical level; the second, “biological process”,

describes biological objectives to which usually more
than one gene product contributes; and the third,
“cellular component”, describes places in cells where
gene products are found. Examples of GO terms in
each of these categories are given in Box 13.1.

The GO consortium (Ashburner et al. 2001)
insists that GO is not itself a way of integrating bio-
logical databases, but that sharing nomenclature is
an important step in this process. They emphasize
that GO is not a dictated standard, but hope that
groups will see the benefit of participating in the sys-
tem and helping to develop it. They also warn that
the association of genes from different organisms to
the same GO molecular function is not sufficient to
define them as homologs, although clearly this is a
useful pointer. There are many things that GO does
not include: it is not a complete ontology of biology.
Nevertheless, it is rapidly expanding, and promises
to be useful for a wide range of different organisms.

DNA microarrays and the ‘omes ® 335

336 ® Chapterl3

DNA microarrays and the 'omes ® 337

REFERENCES

Alizadeh, A.A., Eisen, M.B., Davis, R.E., and 27 others.
2000. Distinct types of diffuse large B-cell lymphoma
identified by gene expression profiling. Nature, 403:
503-11.

Alter, O., Brown, P.0O., and Botstein, D. 2000. Singular
value decomposition for genome-wide expression data
processing and modeling. Proceedings of the National
Academy of Sciences USA,97:10101-6.

Ashburner, M. and 18 others. 2001. Creating the Gene
Ontology resource: Design and implementation. Genome
Research, 11: 1425-33. http://www.geneontology.org/.

Bader, G.D. and Hogue, C.W.V. 2000. BIND — A data
specification for storing and describing biomolecular
interaction, molecular complexes and pathways. Bio-
informatics, 16: 465-77.

Bae, M.S., Cho, EJ., Choi, E.Y., and Park, 0.K. 2003.
Analysis of the Arabidopsis nuclear proteome and its
response to cold stress. The Plant Journal, 36: 652-63.

Bornberg-Bauer, E. and Paton, N.W. 2001. Conceptual
data models for bioinformatics. Briefings in Bioinform-
atics, 3: 166—-80.

Bu, D., Zhao, Y., Cai, L., Xue, H., Zhu, X., Lu, H., Zhang, J.,
Sun, S., Ling, L., Zhang, N., Li, G., and Chen, R. 2003.
Topological structure analysis of the protein—protein
interaction network in budding yeast. Nucleic Acids
Research, 31: 2443-50.

Brazma, A. and 23 others. 2001. Minimum information
about a microarray experiment (MIAME) — Toward stand-
ards for microarray data. Nature Genetics, 29: 365-71.

Brazma, A., Parkinson, H., Sarkans, U., Shojatalab,
M., Vilo, J., Abeygunawardena, N., Holloway, E.,
Kapushesky, M., Kemmeren, P., Lara, G.G., Oezcimen,
A., Rocca-Serra, P., and Sansone, S.A. 2003.
ArrayExpress — A public repository for microarray gene
expression data at the EBI. Nucleic Acids Research, 31:
68-71. http://www.ebi.ac.uk/arrayexpress/.

Brown, M.P.S., Grundy, W.N., Lin, D., Cristianini, N.,
Sugnet, C.W., Furey, T.S., Ares, M. Jr., and Haussler, D.
2000. Knowledge-based analysis of microarray gene
expression data by using support vector machines.
Proceedings of the National Academy of Sciences USA, 97
262-7.

Connolly, T., Begg, C., and Strachan, A. 1999. Database
Systems: A Practical Approach to Design, Implementation
and Management. Harlow, England: Addison-Wesley.

Crescenzi, M. and Giulani, A. 2001. The main biological
determinants of tumor line taxonomy elucidated by a
principal component analysis of microarray data. FEBS
Letters, 507(1): 114-18.

338 @ Chapter13

Cristianini, N. and Shawe-Taylor, J. 2000. An Introduction
to Support Vector Machines. Cambridge, UK: Cambridge
University Press.

Cutler, P. 2003. Protein arrays: The current state-of-
the-art. Proteomics, 3: 3—18.

Dezso, Z., Oltvai, Z.N., and Barabasi, A.L. 2003. Bioin-
formatics analysis of experimentally determined protein
complexes in the yeast Saccharomyces cerevisiae. Genome
Research, 13:2450-4.

Eisen, M.B., Spellman, P.T., Brown, P.O., and Botstein, D.
1998. Cluster analysis and display of genome-wide
expression patterns. Proceedings of the National Academy
of Sciences USA, 95:14863-8.

Fang, Y., Brass, A., Hoyle, D.C., Hayes, A., Bashein, A.,
Oliver, S.G., Waddington, D., and Rattray, M. 2003. A
model-based analysis of microarray experimental error
and normalization. Nucleic Acids Research, 31: 96.

Finkelstein, D., Ewing, R., Gollub, J., Sterky, F., Cherry,
J.M., and Somerville, S. 2002. Microarray data quality
analysis: Lessons from the AFGC project. Plant Molecular
Biology, 48:119-31.

Fountoulakis, M., Juranville,].F., Dierssen, M., and Lubec,
G. 2002. Proteomic analysis of the fetal brain. Proteom-
ics, 2:1547-76.

Fraser, H.B., Hirsch, A.E., Steinmetz, L.M., Scharfe, C., and
Feldman, M.W. 2002. Evolutionary rate in the protein
interaction network. Science, 296: 750-2.

Gavin, A.C. and 37 others. 2002. Functional organization
of the yeast proteome by systematic analysis of protein
complexes. Nature, 415: 141-7.

Gollub, J., Ball, C.A., Binkley, G., Demeter, J., Finkelstein,
D.B., Hebert, H.M., Hernandez-Boussard, T., Jin, H.,
Kaloper, M., Matese, J.C., Schroeder, M., Brown, P.O.,
Botstein, D., and Sherlock, G. 2003. The Stanford
Microarray Database: Data access and quality assess-
ment tools. Nucleic Acids Research, 31: 94—6. http://
genome-www 5.stanford.edu/.

Gorg, A., Obermaier, C., Boguth, G., Harder, A., Scheibe,
B., Wildgruber, R., and Weiss, W. 2000. The current
state of two-dimensional electrophoresis with immob-
ilized pH gradients. Electrophoresis, 21: 1037-53.

Henzel, W.]., Watanabe, C., and Stults, J.T. 2003. Protein
identification: The origins of peptide mass fingerprint-
ing. Journal of American Society for Mass Spectrometry,
14:931-42.

Hoyle, D.C., Rattray, M., Jupp, R., and Brass, A. 2002.
Making sense of microarray data distributions. Bioin-
formatics, 18: 567—-84.

Ito, T., Ota, K., Kubota, H., Yamaguchi, Y., Chiba, T.,
Sakuraba, K., and Yoshida, M. 2002. Roles for the two-

hybrid system in exploration of the yeast protein inter-
actome. Molecular and Cellular Proteomics, 18: 561—6.

Jenkins, R.E. and Pennington, S.R. 2001. Arrays for pro-
tein expression profiling: Towards a viable alternative
to two-dimensional gel electrophoresis? Proteomics, 1:
13-29.

Jeong, H., Mason, S.P., Barabasi, A.L., and Oltvai, Z.N.
2001. Lethality and centrality in protein networks.
Nature, 411:41-2.

Kumar, A. and Snyder, M. 2001. Emerging technologies
in yeast genomics. Nature Reviews Genetics, 2: 302—12.

Landgrebe, J., Wurst, W., and Welzl, G. 2000.
Permutation-validated principal component analysis of
microarray data. Genome Biology, 3(4): research/0019.

Lemieux, B., Aharoni, A., and Schena, M. 1998. Overview
of DNA chip technology. Molecular Breeding, 4: 277-89.

Lester, P.J. and Hubbard, S.J. 2002. Comparative bioin-
formatic analysis of complete proteomes and protein
parameters for cross-species identification in proteom-
ics. Proteomics, 2: 1392—-405.

Leung, Y.F. and Cavalieri, D. 2003. Fundamentals of
c¢DNA microarray data analysis. Trends in Genetics, 19:
649-59.

Li, C. and Wong, W.H. 2001. Model-based analysis of
oligonucleotide arrays: Model validation, design issues
and standard error application. Genome Biology, 2(8):
research/0032.

Mann, M. and Jensen, O.N. 2003. Proteomic analysis of
ost-translational modifications. Nature Biotechnology,
21:255-61.

Mewes, H.W., Frishman, D., Giildener, U., Mannhaupt, G.,
Mayer, K., Mokrejs, M., Morgenstern, B., Miinster-
koetter, M., Rudd, S., and Weil, B. 2002. MIPS: A data-
base for genomes and protein sequences. Nucleic Acids
Research, 30: 31—4. http://mips.gsf.de/genre/proj/yeast/
index.jsp.

Misra, J., Schmitt, W., Hwang, D., Hsiao, L.L., Gullans, S.,
Stephanopoulos, G., and Stephanopoulos, G. 2000.
Interactive exploration of microarray gene expression
patterns in a reduced dimensional space. Genome
Research,12:1112-20.

Moritz, B. and Meyer, H.E. 2003. Approaches for the
quantification of protein concentration ratios. Proteom-
ics, 3:2208-20.

Oliver, S. 2003. On the MIAME standards and central
repositories of microarray data. Comparative and Func-
tional Genomics, 4: 1.

Pandey, A. and Mann, M. 2000. Proteomics to study genes
and genomes. Nature, 405: 837-46.

Quackenbush, J. 2002. Microarray data normalization
and transformation. Nature Genetics supplement, 32:
496-501.

Raychaudhuri, S., Stuart, J.M., and Altman, R.B. 2000.
Principal component analysis to summarize microarray
experiments: Application to sporulation time series.
Citeseer Scientific Literature Digital Library (http://
citeseer.nj.nec.com/287365.html).

Rigaut, G., Shevchenko, A., Rutz, B., Wilm, M., Mann, M.,
and Seraphim, B. 1999. A generic protein purification
method for protein complex characterization and pro-
teome exploration. Nature Biotechnology, 17: 1030-2.

Schulze, A. and Downward, J. 2001. Navigating gene
expression using microarrays — A technology review.
Nature Cell Biology, 3: E190-5.

Slonim, D. 2002. From patterns to pathways: Gene expres-
sion data analysis comes of age. Nature Genetics supple-
ment, 32: 502-7.

Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan,
S., Dmitrovsky, E., Lander, E.S., and Golub, T.R. 1999.
Interpreting patterns of gene expression with self-organ-
izing maps: Methods and application to hematopoietic
differentiation. Proceedings of the National Academy of
Sciences USA, 96:2907-12.

Taylor, C.F. and 24 others. 2003. A systematic approach
to modelling, capturing and disseminating proteomics
experimental data. Nature Biotechnology, 21: 247-54.
http://pedro.man.ac.uk/schemata.shtml.

Tusher, V.G., Tibshirani, R., and Chu, G. 2001. Signi-
ficance analysis of microarrays applied to the ionizing
radiation response. Proceedings of the National Academy
of Sciences USA,98:5116-21.

Vidal, M. and Legrain, P. 1999. Yeast forward and reverse
“n"-hybrid systems. Nucleic Acids Research, 27: 919—
29.

Wain, H.M., Lush, M., Ducluzeau, F., and Povery, S. 2002.
Genew: The Human Gene Nomenclature Database.
Nucleic Acids Research, 30: 169—-71. http://www.gene.
ucl.ac.uk/cgi-bin/nomenclature/searchgenes.pl.

White, K.P., Rifkin, S.A., Hurban, P., and Hogness, D.S.
1999. Microarray analysis of Drosophila development
during metamorphosis. Science, 286: 2179-84.

Wolkenhauer, O., Moller-Levet, C., and Sanchez-Cabo, F.
2002. The curse of normalization. Comparative and
Functional Genomics, 3: 375-9.

Zhang, W. and Chait, B.T. 2000. ProFound: An expert sys-
tem for protein identification using mass spectrometric
peptide mapping information. Analytical Chemistry, 72:
2482-9.

DNA microarrays and the ‘omes ® 339

340 ©® Chapter13

GTGOECTTA
GTGEECTTA
Alede T'Aled iy
CTTA
CTTA

CTTA
CTTA
CTTA
CTTA
CTTA

GTG@QACTTA

DNA microarrays and the 'omes ® 341

342 @ Chapter13

Mathematical appendix

ENCOURAGEMENT TO
“MATHEMOPHOBICS”

As a reader of this book, you will probably be study-
ing for a science degree or you may already have
one. This means that you will have been exposed to
mathematics courses at some time in your past.
However, we recognize that many biological scien-
tists do their best to forget everything they were
taught in mathematics lessons. We hope that most
of the concepts in this book can be understood qual-
itatively without worrying too much about the
mathematics. However, if you want to understand
how some of the methods in bioinformatics work,
then you will need to brush up on your mathematics
a bit. The book Basic Mathematics for Biochemists by
Cornish-Bowden (1999) is a good basic-level text-
book that we recommend; however, there are many
others, so find one you like.

Sections M.1-M.8 of this chapter briefly cover
some basic mathematical definitions that we hope
you know already (they are all in the Cornish-
Bowden book, for example). If so, these sections will
just be a reminder and a confidence builder; if not,
they will summarize some important results that we
make use of in this book, and they will tell you what
you need to read up in more detail elsewhere.
Sections M.9-M.13 cover the ideas of probability
distributions and statistical tests. These distributions
will be familiar to you if you have done any statistics
previously. Examples are given of problems in sequ-
ence analysis where these probability distributions
crop up.

If you think you already know this stuff, check the
self-test and the problem questions at the end of this
Appendix.

M.1 EXPONENTIALS AND
LOGARITHMS

We know that 1,000 = 103. Another way of saying
this is that log(1,000) = 3. Here, “log” means “loga-
rithm to the base 10”. In general, if y = 10%, then
log(y) = (x).

We can take logarithms to any base; for example,
base 2. So, if 16 = 2%, then log,(16) = 4. The sub-
script 2 means that we are using base 2 logarithms.
If the subscript is omitted, it is usually assumed that
we are using base 10, i.e., log(x) means log, ,(x).

As powers of 2 come up a lot, it is worthwhile
remembering them. A couple of easy ones to remem-
ber are 2°= 64 (because it begins with 6), and
210=1,024 (because it begins with 10). If we know
2104sroughly a thousand, then 22° must be roughly
a thousand times a thousand = a million, and 23°
must be roughly 107, etc.

The most frequent type of logarithms used are
natural logarithms, or logarithms to the base e.
The constant eis approximately 2.718 . . .—infact, e
is an irrational number, which means that its value
cannot be written down precisely in a finite number
of decimal places. Aslogs to the base ¢ are important,
there is a special symbol for them: In(x) means
log (x). Following the usual rules of logs, if y = e*,
then In(y) = (x).

Mathematical appendix ® 343

As an exercise, plot graphs of the functions y = ¢*
and y = In(x) over a range of values of x. Compare
these graphs to the functions y = x? and y = x/2. (As
you will remember, x/2 is another way of writing
«/’%).

Some general rules of logarithms that are worth
remembering are:

In(ab) = In(a) + In(b)
In(a/b) = In(a) — In(b) (1)

In(a") = n In(a)

These formulae are true for any values of a, b, and n.
Try them out on a calculator.

Another way of writing ¢* is exp(x). This is usu-
ally used when we want to write the exponential
of a more complex function. For example, rather
than write ¢ *~9", it is easier to read if we write
exp(—(x — a)?). The exp and In functions are inverses
of one another and it is useful to think of them as
canceling each other out, so that

exp(In(x)) = x
exp(n In(x)) = exp(In(x")) = x"

M.2 FACTORIALS

The factorial function, denoted by an exclamation
mark, is defined as the product of the integers
between nand 1:

n=nxn-1)x...x3x2x1 (3)
Factorials are big numbers. For example 10! is more
than three million, and 70! is greater than 1010
(my pocket calculator is unable to work it out).

There is another special property of the factorial
function: 0! = 1. (Don’t worry about this—it just is).

M.3 SUMMATIONS

The sign . is a Greek S and means that we are to take
a sum of whatever follows it. For example,

344 © Mathematical appendix

Yi=1+2+...+n (4)

i=1

and for any function f:

n

D f=1M)+f2)+

i=1

.+ f(n) (5)

In the first case, we are to sum all the integers, start-
ing with i=1 and ending with i=n. There is a
simple formula for the value of this sum:

21':@ (6)

i=1

This works for any value of n.Ifn = 3,then1 + 2 + 3
=6,and 3 x 4/2 = 6. Try it for a higher value of n.

The sum of the squares of the integers can also be
written down:

+1)@2n+1
Z ponntben+) 7)
6
Forexample, 12 + 22 + 32 =3 x4 x 7/6 = 14.
Another important sum is known as a geometric
series:

_ antl
Zx":1+x+x2+...+x":w (8)
pared 1-x)

For example, 1+ Y2+ Ys=(1-(%2)%)/(1-"2)=

7/4. As long as x < 1, then this series can be sum-
med to an infinite number of terms:

3= . x) (9)

i=0

Many functions can also be written as series.
Three that will come up in this book are:

&l 2 x3
X — — "
e _EOH 1+a+2+6... (10)

v X2 x3
Inl-x)==-) —=—x——-——... 11
1-x) g{i > "3 (11)

nn-1)

1+x)"=1+nx+ x2+. .. (12)

The first of these works for any value of x. Try sum-
ming the terms on the right using a calculator for
some small value of x (say 0.1 or 0.2) and show that
they give the same figure as calculating ¢*. The sum
for In(1 — x) only makes sense when x < 1, other-
wise you would have the log of a negative number.
Again, pick a small value of x and show using a cal-
culator that this series gives the right answer.

M.4 PRODUCTS

The sign [] is a Greek P and means that we are to
take a product of whatever follows it.

[Tr0)=r@)xf@)x...x fin) (13)
i=1

If we take the logarithm of a product, we get a sum, i.e.,

ln[H f(i)] =Y, In(f() (14)
i=1 i=1

M.5 PERMUTATIONS AND
COMBINATIONS

Suppose aman has 50 CDs and a rack to put them in
that has 50 slots. How many ways can he arrange
his CDs in the rack? Well, he has 50 choices of CD for
the first slot, 49 choices for the second slot, 48 for the
third, and so on. The number of ways of doing it
is therefore 50 x 49 x48 x...3x2x1=50! An
ordering of distinct objects is called a permutation.
The number of permutations of n objects is n!, as in
this example. In fact, this is the same problem as the
number of possible routes for a traveling salesman
who has to visit n cities (as in Section 6.1).

Now suppose the man wants to play three CDs in
an evening. How many different possible selections
does he have for his evening’'s entertainment?
Simple — he has 50 choices for the first CD to be
played, 49 for the second and 48 for the third. Thus,
there are 50 x 49 x 48 = 117,600 selections, which
is more than enough for him to listen to a different
selection of three CDs every day of his life. In making
this calculation, we have assumed that the man is
bothered about the order in which he listens to the
CDs (Madonna followed by Bach followed by the Sex
Pistols is different from Bach followed by the Sex
Pistols followed by Madonna). The three CDs are a
permutation of three objects selected from 50. The
number of permutations of r objects selected from n
has the symbol P;'. Following the same argument as
for the CDs, we have

Pl=nx(n-1)xn-2)X...x(n-r+1)

=— (15)

Note that when we take the ratio of the two factor-
ials in the above equation, all the numbers from
(n — r) downwards cancel out on the top and bottom.

Our friend now decides to lend five CDs to his sis-
ter. How many different ways can he choose five CDs
from his collection? As we now know, the number of
ways of drawing five CDs one after the other from the
rack is P2° = 501/45! However, the sister is not both-
ered about the order in which the CDs were drawn
from the rack. She only cares about which five CDs
she gets. This unordered set of five CDs is called a
combination. The number of combinations of five
CDs drawn from 50 is equal to the number of per-
mutations of five CDs drawn from 50, divided by the
number of different ways in which those same five
CDs could have been drawn (= 5!). The number of
combinations of r objects drawn from nis written C".
In this case

50x49x48x47x46
030 = XTI XEOXELXED) 118,760
) 5x4x3x2x1
In the general case,

Mathematical appendix ©® 345

. n
Cr = rin—r)! (10

Note that C]'=C]!_. because the above formula is
unchanged when we swap rfor n — r. In other words,
the number of ways in which the man can select five
CDs to give to his sister is the same as the number of
ways he can select 45 CDs to keep for himself.

There are some problems of permutations and com-

binations for you to try at the end of this Appendix.

M.6 DIFFERENTIATION

Suppose we plot a graph of a quantity y that is a
function of a variable x (Fig. M1). Consider any point
(x,y) on this curve, and another point (x+8x, y+0y)
slightly further along the curve. The gradient of the
dotted line that connects these two points is dy/dx.
In the diagram, the dotted line lies close to the ori-
ginal curve y(x). As the distance, dx, between the
points gets smaller and smaller, the line gets closer
and closer to the curve. In the limit, where dx tends
to zero, the slope of the line is equal to the slope of the

y(x)

(x + 3x, y + dy)

Fig. M1 Differentiation measures the slope of a curve.

346 © Mathematical appendix

d; d
curve, and this is written as d—y The gradient d—y is
x X

referred to as the derivative of the function y, or the
rate of change of y with respect to x. The process
of taking the derivative of a function is known as
differentiation. Here are two derivatives that you
should definitely remember:

%(x”) =nx"1 17)
%(ek") = kek* (18)

Ifthe constant kisequal to 1 in Eq. (18), thisjust says
that the derivative of ¢* is equal to itself. One way of
proving this is to take the series expansion for ¢* in
Eq. (10) and differentiate each term separately. The
derivative of each term is equal to the previous term
in the series (try this!) and so the series is unchanged
by differentiation. Occasionally, we will require the
derivative of the exponential of a more complicated
function of x:

di(exp(ﬂx»)= exp(f(0) L (19)
X dx

This is an example of the “function of a function” rule.

The second derivative of a function y is written
2

d
—g. Itis the derivative of the derivative, i.e.,
x

ey _dfdy
dx? dx | dx

Returning to Fig. M1, the second derivative may
be thought of as the curvature of the function y(x). If
we want to estimate the value of the function y at the
point x+0x, then we can use a rule known as a
Taylor expansion:

dy 1 d2y
x + Ox) = dx— +=(dx)>—=+... 20
y(x +0x) = y(x) + xd +2(7C) dx2+ (20)

X

where each of the derivatives is to be evaluated at
the point x, and the dots indicate that higher-order

terms have been neglected. If dx is small enough,
then the second-order term can also be neglected,
and we are left with just the first-order term, asin the
definition of differentiation above.

M.7 INTEGRATION

Integration is the inverse of differentiation. If y and z
are two functions of x, and z is the derivative of y,
then y is the integral of z:

z=@<:>yzfzdx
dx

A definite integral is one where the limits of integ-
ration are specified. If we have a graph of a curve
y(x) and two specified limits of integration x, and x,
(asin Fig. M2), then the definite integral

J y(x)dx

X

is the area of the shaded region.

y(x)

X1 X2

Fig. M2 Integration measures the area under a curve.

M.8 DIFFERENTIAL EQUATIONS

Suppose we know that the function y satisfies the
equation

@=ky+c (21)
dx

where k and ¢ are known constants. What is y? This
is one of the most common forms of differential equa-
tion. Whenever we see an equation of this form, we
can use our prior experience to tell us that the solu-
tion must be of the form

y=Ae*+B (22)

where A and B are constants whose values are yet to
be determined. To prove that this solution satisfies
Eq. (21), we need to calculate the left- (LHS) and
right-hand sides (RHS) of Eq. (21) and show that
they are equal.

LHS = ; (Ae** + B) = Ake*

X
RHS = k(Ae** + B) + ¢ = Ake® + Bk + ¢

We see that the term Ake** appears on both the left-
and right-hand sides, so these terms are certainly
equal. We end up with Bk + ¢ on the right, and if
both sides are to be equal, then this must be zero.
Thus, we have determined that B must equal —c/k, if
the solution (22) is to satisfy Eq. (21). We have not
yet determined A, because the solution will satisfy
the equation for any value of A. In order to deter-
mine A, we need what is known as a boundary con-
dition, or an initial condition. This is the value of
the function specified at a particular point (usually
at x = 0). Suppose that additional information that
we have about the problem tells us that y = y, when
x = 0. Putting these values into our trial solution
(22) givesus y, = A + B, because ¢’ = 1, and so

A=y,—-B=y,+c/k

Thus, finally, we know that the solution to the
equation is

Mathematical appendix ® 347

y = (y, + c/k)ek — o/k (23)

This type of differential equation crops up several
times in this book and the method described here is a
general way of solving it.

M.9 BINOMIAL DISTRIBUTIONS
For any two constants a and b, we know that

(a+Db)>=b*>+2ab+a?
, (24)
(a+Db)?=b%+3ab?*+ 3a’b+a°

We can calculate these things by multiplying out the
brackets. For larger powers, n, we cannot do this by
hand, so we need to remember the general formula

(@+Dby =Y Crab"" (25)

r=0

where C'is the number of combinations of r objects
selected from n, asin Eq. (16).

The binomial expansion (25) is related to the
binomial probability distribution in the following
way. Let a and b be the probabilities of two opposite
outcomes of an event, e.g., if a is the probability of
rolling a six on a die, then b is the probability of not
rolling a six. As one or other of these opposing out-
comes must happen, the sum of the two probabilities
must be 1, so b=1 — a. In the die-rolling example,
a=1/6 and b= 5/6 if the die is a fair one. Suppose
the event occurs n times, then the probability that
the outcome we are interested in occurs r times is
given by the appropriate term in Eq. (25):

P(r) = Cla’b"" (26)

So this formula gives us the probability of rolling a
six r times out of n die-rolls. As another example, let
us return to the man with 50 CDs. Every day for 100
days running he selects three CDs at random to play.
The probability that the Madonna CD is selected
on any one day is therefore 3/50. The probability
that he listens to Madonna r times during this period

348 © Mathematical appendix

is given by Eq. (26), with n=100, a= 3/50, and
b=47/50.

The binomial probability distribution is normal-
ized so that summing up the terms over r gives 1:

Y Pi=1 (27)
r=0

In fact, we know this already from Eq. (25), because
the left-hand side is 1 owing to the fact thata + b= 1.
The mean value of r and of r? and the variance of r
(which we will call 62) can be calculated fairly easily,
but as they crop up so often, it is worth remembering
them:

n
F=YrP(r)=na (28)
r=0
n
P= z r2P(r) = nab + n2a?
r=0

62 =7 — (7)?> = nab (29)

M.10 NORMAL DISTRIBUTIONS

The normal distribution is also known as the Gaus-
sian distribution, and it is defined in the following way:

1 (r—=r?)
P(")—Nzncz CXP(252] (30)

The distribution is defined by two parameters: its
mean, 7, and its standard deviation, 6. The normal
distribution is a very common distribution in its own
right, but it is also an approximation of the discrete
binomial distribution by a continuous distribution
with the same mean and variance. Figure M3 shows
a normal distribution with 7=4 and 6> =2 com-
pared with a binomial distribution with n=8 and
a= 0.5, which has the same mean and variance.
The smooth curve of the normal distribution is quite
a good approximation of the binomial distribution,
although the binomial is only defined for integer

0.3~

0.251

Fig. M3 A binomial distribution can sometimes be
approximated by a normal distribution with the same mean
and variance. The dashed line is a binomial distribution with
mean 4 and variance 2, and the solid line is the normal
distribution approximation.

values of r in the range 0<r<8, whereas the
normal distribution is defined for all values of r, and
has some small probability of giving r > 8 and r < 0.
The larger the value of n, the closer the binomial
distribution becomes to the normal.

As the normal distribution is a continuous func-
tion, the normalization condition is an integral
rather than a sum, asin Eq. (27).

J o0P(r)dr=1 (31)

—oo

The integral means that the area under the curve is
equal to 1, which must be true for any function that
is a probability distribution.

All normal distributions have the same bell-shaped
curve. This means that they can be related to the dis-
tribution of a standard normal variable z, defined by:

r—r
c

z= (32)

The distribution of z is a normal distribution, with
mean equal to zero and standard deviation equal to 1:

Pz = —— exp[—f) (33)

The quantity z is very useful for statistical tests. If we
know that a quantity r has a normal distribution,
and we know its mean and variance, then z tells us
the number of standard deviations away from the
mean. Suppose that we have a genome that we
believe has a frequency of 25% of each of the four
bases. We sequence a stretch of n = 100 bases from
this genome and observe that the number of G+C
bases is r = 70. The expected value of r is ¥ = 100 x
0.5 = 50, and the variance is 100 x 0.5 x 0.5 = 25,
from Eq. (27). Therefore,

o 70-50 4
25
Now let us ask what is the probability of observing
a stretch of length n = 100 with > 70% GC content?
We could do it by using the binomial distribution, but
we would have to calculate P(70) + P(71) + P(72) +
... P(100). Life is too short for this! As n is quite
large, the normal approximation should be good
enough. The probability of observing a value of z
greater than or equal to the observed value z,;, is

p :J) P(z)dz (34)

Tables of integrals of the standard normal dis-
tribution are available in statistical textbooks. How-
ever, the value z ,, = 4 is very large, and is off the end
of my statistical table (Daniel 1995). This means
that p must be very small. Using Microsoft Excel, I
found that p=3.17 x 107°. This confirms what we
might have expected: it is extremely unlikely to
observe a stretch of DNA with 70 out of 100 G and C
bases if the frequencies of the bases are equal.

We can now formulate a statistical test to check
whether an observed value of r is consistent with the
normal distribution. We make the hypothesis that
r has a normal distribution, with known mean and
variance. We calculate z using Eq. (32), and we know
that z should have a standard normal distribution

Mathematical appendix ® 349

if the hypothesis is true. The statistical tables tell us
that there is a probability of 2.5% thatz > 1.96, and
by symmetry, there is a probability of 2.5% that
z < =1.96. Thus, there is a probability of 95% that z
lies in the interval —=1.96 < z < 1.96. We say that the
hypothesis is rejected at the 5% level if the observed
value of z lies outside this range. This is a two-tailed
test that rejects the hypothesis if z is either very high
or very low. 5% is the probability that z is in one or
other of the two tails of the distribution (see Daniel
1995, if you need more details on this).

M.11 POISSON DISTRIBUTIONS

The Poisson distribution is a limiting case of the
binomial distribution that occurs when the number
of events n is extremely large, but the probability of
the outcome of interest a is very small. The archety-
pal example of this is radioactive decay. We have a
sample of a material containing n = 1023 radioactive
nuclei. Each nucleus has a very small probability
a=5x 10723 of decaying per minute, and this is
detectable via a click on a Geiger counter. Let r be
the number of clicks we count in one minute. The
probability distribution of ris given by Eq. (26),

n!

P(r)= ' a(l—amrr

ri(in —r)!

However, it is possible to derive a simplified for-
mula for P(r) that applies in this case. The mean
number of clicks per minute is 7 = na, which is 5
here. Typical values of r will be close to this value,
whereas nis very much larger than this. As we know
n >> r, we can make the approximation

”_!:n(n_l)(n—z)...(n—r+1)znr
r)!

(n-
We can also use the approximation that
(1-a)yt=em (35)

This approximation applies whenever n is large and
a is small. In our case, ¢> = 6.74 x 1073, If we set

350 e Mathematical appendix

n=100anda=0.05, we get 0.95190 =592 x 1073,
which isroughly 10% out.Ifn = 1000 and a =0.005,
we get 0.9951990 = 6,65 x 1073, which is consider-
ably closer. If we increase n and decrease a (keeping
na = 5), the approximation gets closer and closer (try
this yourself with a calculator). For our original val-
ues in the radioactivity problem, the approximation
is almost exact. It is useful to define the parameter
A = na. If we now insert the two approximations into
Eq. (26), we obtain

nl"
P(r)= —’a"e‘"“(l —a)™"
rl

r

i.e., P(r) =£'e*7‘ (36)
rl

This result is the Poisson distribution. (Note that, in
the final step, we forgot about the (1 — a)™ as this is
very close to 1 in the limit we are interested in). The
Poisson distribution depends on a single parameter,
A, whereas the binomial distribution depends on two
parameters, n and a. It is worth remembering that the
variance of a Poisson distribution is equal to itsmean A.

Figure M4 shows a Poisson distribution with
A =5, abinomial distribution withn = 50 anda = 0.1

0.3~

0.25F

Fig. M4 A binomial distribution tends to a Poisson distribution
when n >> 1 but the mean value remains constant. Solid line:
Poisson distribution with mean A = 5. Dashed line: a binomial
distribution with n = 50 and a = 0.1. Dot-dashed line: a
binomial distribution withn=10anda = 0.5.

(which is quite close to the Poisson distribution), and
a binomial distribution with n=10 and a=0.5
(which also has a mean of 5, but is significantly
different in shape from the Poisson distribution).
The Poisson distribution is relevant in the context
of genome sequencing. Suppose we have a genome
of total length L. We are sequencing many short
fragments, each of length I (which is very much
less than L), and we will suppose these to be posi-
tioned randomly within the genome. Consider one
particular nucleotide in the genome. The probabil-
ity that this falls within the range sequenced in any
one fragment is a=1/L. After n fragments have
been sequenced, the probability that the particular
nucleotide has been sequenced r times is given by a
binomial distribution, defined by n and a. However,
we are in the limit where we can approximate it by a
Poisson distribution with A = nl/L. Therefore,

P = (n_lj exp(—nl/L) 37)
L r!

M.12 CHI-SQUARED DISTRIBUTIONS

Let z; ...z, be k random numbers, each of which
is drawn from a standard normal distribution P(z)
(Eq. (33)). The quantity

y=2212 (38)

has a probability distribution called a x? distribu-
tion, with k degrees of freedom. The shape of this dis-
tribution is:

k
22
_e7y

T 2K2T(k/2) (39)

P(y)

In the above formula, I'(k/2) is the gamma function
discussed in Section M.13 below. This is just a con-
stant that normalizes the distribution in Eq. (39).
The importance of this distribution comes from its
use in statistical tests. Here we will give two brief

examples of the use of chi-squared tests on frequen-
cies of bases in DNA (see Daniel 1995, if you need
refreshing on this).

In the small subunit ribosomal RNA gene from E.
coli (EMBL accession number J01859), the observed
numbers of bases of each type are given below. The
expected number in brackets is calculated under the
hypothesis that all four bases have equal frequency.

—

b
n{»(ny®)

389
352
487
313

385.25
385.25
385.25
385.25

RN RS

Total 1,541

We calculate the quantity X2 defined by

bs _ 116XP)2
X2=2‘(nliJS 1;)
i

n;

(40)

where the sum runs over the four types of base. It
can be shown that X? has a distribution that is very
close to the ? distribution if the hypothesis is true.
The number of degrees of freedom is 3 in this case (it
is always one less than the number of categories).
From statistical tables, the values of %2 correspond-
ing to p values of 5% and 1% are

0.05 0.01
ld.of. 3.841 6.635
2d.o.f. 5.991 9.210
3d.o.f. 7.815 11.345

In this case, X2 =43.3. This is very much larger
than 11.345; therefore, the probability of observing
this distribution of bases in the gene if the bases have
equal frequency is very much less than 1%. Micro-
soft Excel comes in handy again here: the probability
of observing a value greater than or equal to 43.3 is
2.1 x 107, Thus, there is a significant deviation
from equal base frequencies.

Now let us compare the large subunit rRNA gene
from E. coli (EMBL accession number VO0331) with

Mathematical appendix ® 351

the small subunit gene. The observed numbers of
bases for the two genes are given below (m;, for the
large subunit and n; for the small subunit). The
expected numbers are calculated under the hypo-
thesis that the frequencies of the bases are the same
in both genes. For example, the average frequency of
Ais1,151/4,445; therefore, the expected number of
A’sinthefirst geneis 1,541 x 1,151/4,445 = 399.0.

i nos(nep) mo®S(m&®) Row totals
A 389(399.0) 762(752.0) 1,151

C 352(343.6) 639(647.4) 991

G 487(485.0) 912(914.0) 1,399

T 313(313.4) 591(590.6) 904
Total 1,541 2,904 4,445
X?is the sum of eight terms:

(nqbs _ n?XD)Z (mqbs _ mf}XD)Z
2 i i i i
el me (41)

i i i
which adds up to 0.71. The number of degrees of
freedom, when dealing with tables like this, is equal
to (number of rows— 1) X (number of cols— 1),
which is 3 x 1 = 3 in this case. From the table of >
values, 0.71 ismuch less than 7.81, hence the prob-
ability of this distribution of bases occurring is

greater than 5% (in fact p = 8 7% according to Excel).
Therefore, we have no reason to reject the hypothesis
that the bases have the same frequency in the two
genes. We can say that the processes of mutation and
selection acting on these genes cause a significant bias
away from equal base frequency, but that the same
types of process seem to be working on both genes.

M.13 GAMMA FUNCTIONS AND
GAMMA DISTRIBUTIONS

The gamma function I'(a) is defined by the integral

T(a) =J

We can show directly from this that T'(1) =1, and
I'(2) = 1. Also, for any value of a

xaLe=dy
0

(42)

I'(1 +a)=al(a) (43)
Therefore, it follows that for an integer n
T'(n)=(n-1)! (44)

Another handy fact is that T'(1/2)=x'/2. This,
together with Eq. (43), allows us to calculate all

0.1 ~—-2
0.5 —10
1T —100

Fig. M5 Gamma distributions f(r,a).

352 o Mathematical appendix

Labels indicate the value of a on each
curve.

2.0

the values I'(3/2), I'(5/2), etc. that occur in the
chi-squared distribution (Eq. (39)).

The gamma distribution is a probability distribu-
tion for a variable x that can take any positive value
between O and infinity. It is defined as

a-1 ex

X
J(xa) = T

(45)

From the definition of I'(a) in Eq. (42), we can see
thatEq. (45) is a properly normalized probability dis-
tribution. In fact, Eq. (45) describes a whole family of
distributions whose shapes are controlled by the
value of a. The mean value of x is equal to a, with the
definition above. It is useful to rescale the distribu-
tion so that the mean is at 1. Defining a new variable
r = x/a, and changing variables, we obtain

aara—l ear
fra)= T (46)

The shapes of the distributions f(r,a) for several val-
ues of a are shown in Fig. M5. When a < 1, the
weight of the distribution is close to r = O and there is
along tail extending to high r. When a = 1, the curve
is a simple exponential. When a > 1, the distribution
becomes peaked around r = 1. For very large a, the
curve becomes a delta function. The mean value of r
is 1 for all values of a.

REFERENCES

Cornish-Bowden, A. 1999. Basic Mathematics for Biochemists,
second edition. Oxford, UK: Oxford University Press.

Daniel, W.W. 1995. Biostatistics: A Foundation for Analysis
in the Health Sciences, sixth edition. New York: Wiley.

Mathematical appendix ® 353

354 @ Mathematical appendix

List of Web addresses

NUCLEOTIDE SEQUENCE

EMBL http://www.ebi.ac.uk/embl/

GenBank http://www.ncbi.nlm.nih.gov/
GenBank/

DDB]J http://www.ddbj.nig.ac.jp/

INSD http://www.ncbi.nlm.nih.gov/
projects/collab/

dbEST http://www.ncbi.nlm.nih.gov/
dbEST/

UniGene http://www.ncbi.nlm.nih.gov/
UniGene/

ORGANISM

FlyBase http://flybase.bio.indiana.edu/

SGD http://yeastgenome.org/

WormBase http://www.wormbase.org/

MGD http://www.informatics.jax.org/

TAIR http://www.arabidopsis.org/

Ensembl http://www.ensembl.org/

TDB http://www.tigr.org/tdb/

PROTEIN SEQUENCE

PIR http://pir.georgetown.edu

MIPS http://mips.gsf.de/

Swiss-Prot http://www.expasy.org/sprot

NRL-3D http://www-nbrf.georgetown.edu/
pirwww/dbinfo/nrl3d.html

UniProt http://www.uniprot.org/

PROTEIN FAMILY

PROSITE http://www.expasy.org/prosite/

PRINTS http://www.bioinf.man.ac.uk/
dbbrowser/PRINTS/

Blocks http://blocks.there.org/

Profiles http://hits.isb-sib.ch/cgi-bin/
PFSCAN/

Pfam http://www.sanger.ac.uk/Software/
Pfam/

eMOTIF http://fold.stanford.edu/emotif/

InterPro http://www.ebi.ac.uk/interpro/

PROTEIN STRUCTURE

PDB http://www.rscb.org/pdb/

Scop http://scop.mrc-Imb.cam.ac.uk/scop/

CATH http://www.biochem.ucl.ac.uk/bsm/
cath/

PDBsum http://www.biochem.ucl.ac.uk/bsm/
pdbsum/

CDD http://www.ncbi.nlm.nih.gov/
Structure/cdd/cdd.shtml

METABOLIC/PATHWAY

KEGG http://www.genome.ad.jp/

WIT http://www-wit.mcs.anl.gov/Gongxin/

EcoCyc http://ecocyc.org/

UMBBD http://umbbd.ahc.umn.edu/

List of Web addresses ® 355

OTHER GO http://www.geneontology.org/

NAR http://nar.oupjournals.org/
OMIM http://www3.ncbi.nlm.nih.gov/ DBcat http://www.infobiogen.fr/services/
entrez/query.fcgi?db=OMIM dbcat
BIND http://www.blueprint.org/bind/
bind.php

356 © Listof Webaddresses

Glossary

accession number a unique identifier for a data-
base entry (e.g., a protein sequence, a protein family
signature) that is assigned when the entry is origin-
ally added to a database and should not change
thereafter.

advantageous mutation amutationthatcauses
the fitness of a gene to be increased with respect to
the original sequence.

algorithm alogical description of the way to solve
a given problem that could be used as a specification
for how to write a computer program.

alignment an arrangement of two or more
molecular sequences, one below the other, such that
regions that are identical or similar are placed imme-
diately below one another.

allele one of several alternative sequences for a
particular gene present in a population.
annotation (i) text in a database entry (e.g., for
a gene sequence) that describes what the entry
is (including relevant background information,
literature references, and cross-references to other
databases) to a human reader; (ii) the process of
assigning readable explanations to all the entries in
a database (e.g., the complete set of gene sequences
in a genome).

archaea one of three principal domains of life.
Archaeal cells can be distinguished from bacterial
cells based on gene sequence and gene content.
Many archaea are specialized to conditions of
extreme heat or salinity.

bacteria (singular bacterium) one of three prin-
cipal domains oflife. Bacterial cells contain no nucleus
and usually possess a cell wall of petidoglycan.

base chemical group that is part of a nucleotide.
May be either a purine or a pyrimidine. The sequ-
ence of bases in a nucleic acid stores the information
content.

BLAST (Basic Local Alignment Search Tool) a
widely used program for searching sequence data-
bases for entries that are similar to a specified query
sequence.

BLOSUM (BLOcks SUbstitution Matrix) type of
amino acid scoring matrix (derived from blocks
in the Blocks database) used in aligning protein
sequences.

bootstrapping a statistical technique used to
estimate the reliability of a result (usually a phylo-
genetic tree) that involves sampling data with
replacement from the original data set.

cDNA DNA strand that is complementary to an
RNA strand and synthesized from it by a reverse
transcriptase.

chloroplast (also called plastid) an organelle in
eukaryotes such as plants and algae that possesses
its own genome and is responsible for photosyn-
thesis. Thought to have arisen by the incorporation
of a cyanobacterium into an ancient eukaryotic cell
(cf. endosymbiosis).

clade a group of species including all the species
descending from an internal node of a tree and no
others.

coalescence the process by which the lines of
descent of individuals or sequences in a present-day
population converge towards a single common
ancestor at some point in the past.

codon triplet of three nucleotides that specifies

Glossary ® 357

one type of amino acid during the translation
process.

codon usage the frequency with which each
codon is used in a gene or genome, particularly the
relative frequencies with which synonymous codons
are used.

compensatory substitutions a pair of substitu-
tions at different sites in a sequence such that each
one alone would be deleterious, but are neutral
when both occur together (e.g., in RNA helices).
complementary sequences two nucleic acid
sequences that can form an exactly matching dou-
ble strand as a result of A-T and C-G pairing. Com-
plementary sequences run in opposite directions:
ACCAGTG is complementary to CACTGGT.
deleterious mutation a mutation that causes
the fitness of a gene to be reduced with respect to the
original sequence.

dynamic programming a type of algorithm in
which a problem is solved by building up from
smaller subproblems using a recursion relation (e.g.,
in sequence alignment and RNA folding).
electrophoresis method of separating charged
molecules according to their rate of motion through
a gel under the influence of an applied electric field.
endosymbiosis process by which a bacterial cell
was enclosed within a eukaryotic cell and eventu-
ally became an integral part of the cell. Thought to
have given rise to chloroplasts and mitochondria.
eukaryotes one of three principal domains of life.
Eukaryotic cells possess a nucleus, and usually con-
tain other organelles like, e.g., mitochondria, endo-
plasmic reticulum, Golgi apparatus, a cytoskelton of
actin and tubulin.

exon part of a gene sequence that is transcribed
and translated to give rise to a protein (cf. intron).
fixation the spread of an initially rare mutant
allele through a population until it becomes the
most frequent allele for that gene.

gap a space in a sequence alignment indicating
that a deletion has occurred from the sequence con-
taining the gap, or that an insertion has occurred in
another sequence.

gap penalty (or gap cost) part of the scoring sys-
tem used for sequence alignments intended to penal-
ize the insertion of unnecessary gaps.

358 @ Glossary

generalize the ability of a supervised learning
algorithm (e.g., a neural network) to perform well
on data other than that on which it was specifically
trained.

genetic code set of assignments of the 64 codons
to the 20 amino acids.

genome the complete sequence of heritable DNA
of an organism.

genomics the study of genomes. Usually applies
to studies that deal with very large sets of genes
using high-throughput experimental techniques.
global alignment an alignment of the whole of
one sequence with the whole of another sequence.
heuristic algorithm an algorithm that usually
produces fairly good answers most of the time, but
cannot be proven to give the best answer all the
time.

hidden Markov model a probabilistic model of
a protein sequence alignment in which the probab-
ility of a given amino acid occurring at a given site
depends on the value of hidden variables in the
model.

high-throughput experiments experiments
that allow large numbers of genes or gene products
to be studied at the same time using partially auto-
mated methods.

homologs sequences that are evolutionarily re-
lated by descent from a common ancestor (cf.
orthologs and paralogs).

horizontal gene transfer the acquisition of a
gene from an unrelated species by incorporation of
“foreign” DNA into a genome.

hybridization the binding of a nucleic acid
strand to its complementary sequence.
hydrophobic an amino acid is said to be hydro-
phobic if its free energy would be higher when in
contact with water than when buried in the interior
ofaprotein, i.e., it would “prefer” not to be in contact
with water. In contrast, a hydrophilic amino acid
would “prefer” to be in contact with water.

IEF (isoelectric focusing) technique for separating
proteins from one another according to the value of
their pI (isoelectric point). Used as the first dimen-
sion in 2D gel electrophoresis.

indel an insertion or deletion occurring in a pro-
tein or nucleic acid sequence. The term denotes the

fact that we do not know whether a gap in a
sequence is actually a deletion in that sequence or
an insertion in a related sequence.

interactome the complete set of protein—protein
interactions that occursin a cell.

intron part of the DNA sequence of a gene that is
transcribed, but is cut out of the mRNA (i.e., spliced)
prior to translation. Introns do not code for protein
sequences.

knowledge-based an approach that uses infor-
mation from previously known examples in order to
make predictions about new examples. Used in con-
trast to an ab initio approach, in which a prediction
would be made based on a fundamental theory or
principle.

local alignment an alignment of a part of one
sequence with a closely matching part of another
sequence.

locus a position on a chromosome corresponding
to a gene or a molecular marker used in population
genetics studies.

log-odds a quantity that is calculated as the loga-
rithm of the relative likelihood of an event to its like-
lihood under a null model. A positive log-odds score
indicates that the event is more likely than it would
be under the null model.

machine learning an approach in which a com-
puter program learns to solve a problem by progress-
ive optimization of the internal parameters of the
algorithm.

MALDI (Matrix-Assisted Laser Desorption/
Ionization) mass spectrometry technique used to
measure the masses of peptide fragments.
metabolome the complete set of chemicals in a
cell that are involved in metabolic reactions.
microarray a glass slide or silicon chip onto
which spots of many different DNA probes have been
deposited. Used for the simultaneous measurement
of gene-expression levels of many genes in the same
tissue sample.

mitochondrial Eve hypothetical female from
whom all present-day human mitochondrial DNA is
descended.

mitochondrion (plural mitochondria) an organ-
elle in eukaryotic cells that possesses its own genome
and is the site of aerobic respiration. Thought to

have arisen as a result of the incorporation of an
a-proteobacterium into an ancient eukaryote (cf.
endosymbiosis).

monophyletic adjective describing a group of
species on a phylogenetic tree that share a common
ancestor that is not shared by species outside the
group. A clade is a monophyletic group.

motif characteristic sequence of conserved or
partly conserved amino acids appearing in a protein
sequence alignment that can be used as a diagnostic
feature of a protein family.

Muller’'sratchet the accumulation of deleterious
mutations in asexual genomes via a stochastic pro-
cess that is virtually irreversible.

nested models two probabilistic models such
that the simpler one is a special case of the more
complex one.

neural network a type of machine-learning pro-
gram used for pattern recognition, composed of a
network of connected neurons.

neuron an element of a neural network having
several inputs and one output. The output is a simple
function of the combined inputs.

neutral mutation a mutation whose fitness is
equal to the fitness of the original sequence, or
whose fitness is sufficiently close to that of the ori-
ginal sequence that the fate of the mutation is
determined by random drift rather than natural
selection.

normalize for a probability distribution, to divide
all probabilities by a constant factor so that the sum
of probabilities over all possible alternatives adds
up to 1. For microarray data, to adjust the meas-
ured intensities in order to correct for biases in the
experiment.

nucleic acid a polymeric molecule composed of
nucleotides. May be either DNA (deoxyribonucleic
acid) or RNA (ribonucleic acid).

nucleotide chemical unit that forms the building
block for nucleic acids. Composed of a nitrogenous
base, a ribose or deoxyribose sugar, and a phosphate
group (cf. nucleic acid, purines, pyrimidines).

null model a simple model used for calculating
the probabilities of events that ignores factors
thought to be important. If the observed data differ
significantly from expectations under the null

Glossary ® 359

model, it can be concluded that the additional fac-
tors are necessary to explain the observation.
oligonucleotide a nucleic acid fragment com-
posed of a small number of nucleotides.

ontology specification of the set of terms and
concepts used in a domain of knowledge giving
definitions of the terms and relationships between
them.

ORF (open reading frame) a continuous sequence
of DNA in a genome beginning with a start codon
and ending with a stop codon in the same triplet
reading frame that could potentially be a protein-
coding gene.

organelle structural component of a eukaryotic
cell.
orthologs sequences from different species that

are evolutionarily related by descent from a com-
mon ancestral sequence and that diverged from one
another as a result of speciation.

outgroup a species (or group of species) that is
known to be the earliest-diverging species in a phylo-
genetic analysis. The outgroup is added in order to
determine the position of the root.

PAGE (polyacrylamide gel electrophoresis) tech-
nique for separating proteins from one another
according to their molecular weight.

PAM (point accepted mutation) matrix a matrix
describing the rate of substitution of one type of
amino acid by another during protein evolution.
paralogs sequences from the same organism that
have arisen by duplication of one original sequence.
parsimony a principle that states that the sim-
plest solution to a problem (or the solution using the
fewest arbitrary assumptions) is to be preferred. In
molecular phylogenetics, the tree that requires the
fewest mutations is preferred.

pathogenicity island region of a bacterial gen-
ome containing genes responsible for the patho-
genic behavior of some strains of bacteria. The island
is usually not present in all strains of the species and
is thought to have been acquired by horizontal
transfer.

PCA (principal component analysis) technique for
visualizing the relationship between points in a multi-
dimensional data set in a small number of dimen-
sions (usually two or three).

360 ® (Glossary

PCR (polymerase chain reaction) experimental
technique by which a specified sequence of DNA is
multiplied exponentially by repeated copying and
synthesis of both complementary strands.
perceptron simplest type of neural network, hav-
ing only a single layer of neurons.

peptide asequence of amino acids connected in a
chain via peptide bonds. Usually refers to a sequence
of a few tens of amino acids, in contrast to a protein,
which usually contains a few hundred amino acids.
phylogeny an evolutionary tree showing the rela-
tionship between sequences or species.
polymorphism the presence of more than one
allele for a given gene at an appreciable frequency in
a population.

polynomial time for a problem with input data of
size N, a polynomial time algorithm will run in a
time of order N*, for some constant o. If o is small,
the algorithm is efficient, and will work for large
sized problems.

polyphyletic adjective describing a group of
species on a phylogenetic tree for which there is no
common ancestor that is not also shared by species
outside the group. A polyphyletic group is evolution-
arily ill-defined.

posterior inBayesian statistical methods, the prob-
ability of an event estimated after taking account of
the information in the data (cf. prior).

primary structure refers to the chemical struc-
ture of a protein or nucleic acid. As far as bioinform-
atics is concerned, this is just the sequence of the
amino acids or bases in the molecule.

primer short nucleic acid sequence that is used to
initiate the process of DNA synthesis from a specified
position, e.g., during PCR.

prior in Bayesian statistical methods, the prob-
ability of an event estimated from expectations
based on previous experience, but before taking
account of the information in the data to be analyzed
(cf. posterior).

prokaryotes cells lacking a nucleus. Thought to
be divided into two principal groups: archaea and
bacteria.

promoter region of DNA upstream of a gene that
acts as a binding site for a transcription factor and
ensures that the gene is transcribed.

proteome the complete set of proteins present in a
cell.
proteomics the study of the proteome, usually

using two-dimensional gel electrophoresis and mass
spectrometry to separate and identify the proteins.
purines the bases A (adenine) and G (guanine)
that are present in nucleic acid sequences.
pyrimidines the bases C (cytosine), T (thymine),
and U (uracil) that are present in nucleic acid
sequences.

random drift change in gene frequency owing to
chance effects in a finite sized population rather than
tonatural selection.

redundant gene a gene that is not necessary to
the organism owing to the presence of another copy
of the same gene or of another gene performing the
same function.

regular expression a way of representing a sequ-
ence of conserved or partly conserved amino acids in
a protein motif.

ribosome the organelle that carries out protein
synthesis. Composed of small and large subunit
RNAs and a large number of ribosomal proteins.
ribozyme an RNA sequence that functions as a
catalyst (by analogy with an enzyme, which is a pro-
tein that functions as a catalyst).

root the earliest point on an evolutionary tree.
The common ancestor from which all species on the
tree have evolved.

rooted tree an evolutionary tree in which the
root is marked, and in which time proceeds from the
root towards the tips of the tree. In contrast, an
unrooted tree does not specify the direction in which
time is proceeding.

schema specification of the types of object in a
database, the attributes they possess, and the rela-
tionship between the objects. A diagram represent-
ing this specification.

secondary structure elements of local structure
from which the complete tertiary structure of a mole-
cule is built. In proteins, the o helices and B strands.
In RNA, the pattern of helical regions and loops.
selectivity the proportion of objects identified by
a prediction algorithm that are correct predictions.
Selectivity = True Positives/(True Positives + False
Positives).

sensitivity the proportion of the true members of
a set that are correctly identified by a prediction algo-
rithm. Sensitivity = True Positives/(True Positives +
False Negatives).

stabilizing selection when natural selection
acts to retain ancestral sequences or characters and
hence slows down the rate of evolutionary change.
stacking interaction between one base pair and
the next in a double-stranded helix of RNA or DNA.
substitution the replacement of one type of
nucleotide in a DNA sequence by another type
owing to the occurrence of a point mutation and the
subsequent fixation of this mutation in the popula-
tion. Also the replacement of one type of amino acid
in a protein by another type.

supervised learning alearning procedure where
aprogram is given a set of right and wrong examples
and is trained to give optimum performance on this
set. In contrast, an unsupervised learning algorithm
uses an optimization procedure without being given
examples.

synapomorphy a shared derived character in
parsimony analysis that marks a group of species as
evolutionarily related.

synonymous substitution a substitution at the
nucleic acid level that does not lead to change of the
amino acid sequence of the protein (because of re-
dundancy in the genetic code). A non-synonymous
substitution is one that does change the amino
acid.

symbiont an organism that lives with another
organism of a different species in a mutually bene-
ficial way.

TAP (tandem affinity purification) technique for
simultaneously isolating sets of proteins that inter-
act in the form of complexes.

taxon (plural taxa) name for a group of species
defined in a hierarchical classification.

tertiary structure the complete three-dimen-
sional structure of a molecule, such as a protein
or RNA, built from the packing of its secondary
structures.

Test set a set of known examples used for verify-
ing the performance of an algorithm (e.g., a neural
network). The test set must be distinct from the
training set.

Glossary ® 361

training set a set of known examples on which
an algorithm (e.g., a neural network) is trained. The
algorithm is optimized to give the best possible
results on the training set.

transcription the synthesis of an RNA strand
using a complementary DNA strand as a template.
transcription factor a protein that binds to a
regulatory region of DNA, usually upstream of the
coding region, and influences the rate of transcrip-
tion of the gene.
transcriptome
scribed in a cell.

the complete set of mRNAs tran-

362 ® (Glossary

transition in the strict sense, the substitution of a
purine by another purine, or of a pyrimidine by
another pyrimidine. In the more general sense, any
substitution in a DNA sequence, and sometimes also
used for substitutions of amino acids.

translation the process by which the ribosome
decodes the gene sequence specified on a mRNA and
synthesizes the corresponding protein.
transversion the substitution of a purine by a
pyrimidine or vice versa (cf. transition).

yeast two-hybrid experimental technique for
determining whether a physical interaction occurs
between two proteins.

Index

adaptation/adaptationist 49—-53
additive trees 166,171
algorithms 119-21
alignment
global 123
local 125
multiple 130-6
pairwise 121-30
progressive 130-5
statistics 147-55
alleles 7, 39, 51, 56
allozymes 51
amino acids
physico-chemical properties
22-32,72-4,245
relative mutability 68-9, 72
structure 14-15
aminoacyl-tRNA synthetase 20, 293
anticodon 20, 56—7
archaerhodopsin 208
Archezoa 301
Atlas of Protein Sequence and Structure
89

Back-propagation 249

Baum-Welch algorithm 237

Bayesian methods 180-5,229-33

bacteriorhodopsin 208 -9

BIND 114

bioinformatics (definition) 6

BLAST 143-7,153-5,195

Blocks (database) 75,95-6, 102—4
(motifs) 95-6, 205-7

BLOSUM matrices 74-5, 147,196

bootstrapping 169-71

BRCA140-3

breakpoint distance 306—8
Buchnera288-9, 295

Captain Kirk 143 -4
CASP 252
CATH113
ChD 114
central dogma 16-22
chloroplasts 298-300, 303
clade 161
ClustalX /ClustalW 128, 132-5
clustering
direct 33
hierarchical 28 -33
K-means 33
microarray data 320-2
phylogenetics 162-9
coalescence 44—6
codon bias 53-4, 292
codons 19-20,42,53-4
COGs294-6
coiled coils 237-8
color blindness 210
compensatory substitutions 258-9,
265
cones 209
consensus trees 170, 1845
correlation coefficient 28, 30

database
accession numbers 82,92,97, 98,
99,102,104,110
divisions 84
ID codes 82,92,97,99,101,102,
105
data explosion 1-7, 11

dbCAT 81,114
dbEST 87
DDBJ 1, 88
Dirichlet distribution 232-3
distance matrix 30, 132
DNA
replication 21-2
structure 12-13
dynamic programming 123-7, 238,
260-4

EBI 84

EcoCyc 114

electrophoresis 5,51, 325-6

EMBL database 1, 84-5

eMOTIF95-6,108

endosymbiosis 298-300

Ensembl 114

Entrez 85

ESTs 84, 85,87

Escherichia coli 291-4

eukaryotes (evolution of) 277-8,
298-301

Evalues 139-41,145-7,153-4

evolution (definition) 37-8

ExPASy 93,105

Expectation-maximization algorithm
237

extreme value distribution 149-53

false positives/false negatives 146
FASTA (file format) 83
(program) 143-7
feature table 85, 92
file formats 82—-111
fingerprints 95-6, 200-5,213-14

Index ® 363

Fitch—-Margoliash method 171

fitness 38,48-9

fixation 4650, 56

flatfiles 83

FlyBase 114

forward and backward algorithms
239

G protein-coupled receptors 208—16

G protein coupling 215-16

gamma distribution 64, 175, 352

gap penalties 122,126-7, 134

G—Cskew 290

GenBank 1-4, 85-7, 154

gene content phylogenies 296—8

gene deletion 288, 304-5

gene duplication 131, 2901,
304-5

gene ontology 110-11,335-6

gene order phylogenies 305-9

general reversible model 63

generalization (in neural networks)
245,248

genetic code 19-20, 73

genomics 5-6,313-14

gradient descent/ascent 248

GSSs 84, 85

halorhodopsin 208

Hasegawa, Kishino, and Yano (HKY)
model 63,175

hexokinase 70, 128-34, 294

hidden Markov models 95-6,
234-43

high-throughput techniques 5,
313-30

hill-climbing algorithm 173, 181

homologs/homology 8,161, 209

homoplasy 177

horizontal gene transfer 290—4

HTCs 84, 85

HTGs 84, 85

hydrophobicity 24-5

indels 40

informative sites 45,178,187
INSD 88

InterPro 108-11, 141-2
intron/exon 41

inversions 288, 304

364 © [ndex

ISI Science Citation Index 5—6
ISREC96, 105

JIPID 88, 89
Jukes—Cantor model 60-2, 162

KEGG 114
Kimura two-parameter model 63

life (definition) 37

ligand binding (of GPCRs) 215-16

likelihood ratio test 26 7-70

log-odds scores 71-5, 229

long-branch attraction 179, 277,
301

machine learning 227-8,323-5

mammals 42-3,162-9,175-85,
272-6

Markov Chain Monte Carlo 181-5,
232,307

Markov model 234

mass spectrometry 5, 326

maximum likelihood 173-6,
178-81

MEDLINE 85

metazoa 276-7,307-8

Metropolis algorithm 181

MGD 114

MIAME standard 332

microarrays 5—6, 314-25

microsatellites 40

MIPS 90

mitochondrial DNA /mitochondrial
Eve 44-5

mitochondrial genomes 298 -309

model selection 266—-70

molecular clock 165,275-6

Moore’s law 2—4

motifs 96,99-102,197, 204

MPsrch 139-42

mutations 39-43

NCBI 85

nearest neighbor interchange 171-2

Needleman—Wunsch algorithm
123-5

neighbor joining 132,166-9, 187

neural networks 244-53

neutral evolution 38,41-7,49-54

normalization 316-19
NRL3D 94-5
nucleic acid (see DNA and RNA)

‘omes (definitions) 313-14
OMIM 90, 114

ontologies 334—6

open reading frames 286
opsins 210-11

orthologs 209-10, 291, 294
outgroup 160

PAGE (see electrophoresis)
PAM model
derivation 65-72
distances 69-72
scoring matrices 71-4,139-42,
147,196,202,270
paralogs 209-10, 294
parsimony 65-6,177-9,187, 306
pathogenicity islands 291-2
pattern recognition 227—-8
PCR 22-3
PDB3,111-12
PDBsum 113
peptide mass fingerprinting 326
perceptron 2467
Pfam 95-6,107-8, 243
pl24-5,325-7
PIR 89,94-5
PIR SUPERFAMILY 109
polymorphism 39, 45
position-specific scoring matrix
144-5,196,205-8
principal component analysis 25-9,
322-3
PRINTS95-6,98-102,213-14
prion proteins (in databases) 96-111
prior/posterior probabilities 180,
229-33
ProDom 107, 109
profiles 95-6,105-7,196, 205-8,
231
profile HMM 241-3
prokaryotic genomes 283-98
PROSITE95-8,197-200,219-21
protein
folding 14, 20-5
structure 14-16
structure prediction 250-3

protein family databases 95-111,
197-208

protein—protein interaction network
330

protein structure databases 111-13

protein tyrosine phosphatase
139-42,145,154

proteobacteria 284-94

proteomics 5—6, 325-30

pseudocounts 231

PSI-BLAST 144-5

PubMed 85

quartet puzzling 179-80

random drift 38, 47-50
Reclinomonas americana 299-300
recombination 46
regular expressions 95-7, 198-200
replicator 38
restriction fragment length
polymorphism 51
Rhizobia 289-90
rhodopsin 209-11
ribosome 21
ribozyme 21
Rickettsia 284-5, 288-9, 300
rods 209
rooted/unrooted trees 158—-61, 166
RNA
free energy parameters 263 —4
processing /splicing 18
rRNA 21,162,257-8
structure 13-14, 257-66
tRNA 14, 54,56-7,307-8
rules (regular expression) 198-9

SCOP 112
selection 48 -54

selective sweep 49, 53

self-organizing map 323-4

sensitivity and selectivity 146

sensory rhodopsin 208

sequence alignment (see alignment)

serpentine receptors 209

SGD 114

Shakespeare 124-7,131-2

SIB90

signal peptides 250, 302

single nucleotide polymorphism 10,
52

SMART 109,111

Smith—-Waterman algorithm 126,
139-42,153

sorting 119-20

sparse matrix 201, 202

splicing 18, 41

SRS 85

STSs 84, 85

substitution rate matrices 58— 64,
264-7

SUPERFAMILY 109

supervised /unsupervised learning
236,244

support vector machines 324-5

Swiss—Prot 85,90-3,139-42, 145,
154,221-5

synapomorphy 177

synonymous/non-synonymous
substitutions 40, 53, 567,
271-2

TAIR 114

tandem affinity purification 330-1
Taq polymerase 23

T—Coffee 135-6

TDB 114

TIGRFAMs 109

time reversibility 63
top 500 supercomputers 2—4
training set/test set 228, 244
transcription 16—-18
transfer of genes from organelles to
the nucleus 301-4
transition/transversion 39,42,
63
translocations 288, 304
transmembrane helices 208-10,
215,225,229,240-1
traveling salesman problem 120-1
tree optimization criteria 171
tree space 171-3
TrEMBL 85,93,223-4

ultrametricity 169

UM-BBD 114

unified modeling language 332—4
UniGene 114

UniProt 95

untranslated regions 18

UPGMA 164-6,187

variability of rates between sites 64,
175

visual pigments 209-10

Viterbi algorithm 238, 242

WD-40 repeats 105—-6

WIT 114

wobble 20

WormBase 114
Wright-Fisher model 47-50

Y chromosome 44 -5
yeast two-hybrid 328 -9

zscore 148, 349

Index ® 365

Plate 2.1 (a) Crystal structure of a complex of glutaminyl tRNA with glutaminyl-tRNA synthetase (Sherlin et al. 2000, Journal
of Molecular Biology, 299: 431-46). (b) Crystal structure of the dimeric lac repressor protein bound to DNA (Bell and Lewis 2001,
Journal of Molecular Biology, 312:921-6). Image reproduced with permission from NDB (Berman et al. 1992). ID number

PR0O025 and PD0250.

22252733

Cluster |
Bamic

Cluster 2
Acid + Amide

Cluster 3
Small

Cluster4 Cysteine

Cluster 5
Hydrophobic

Clusier 6
Aromatic

e I e I B

(b) non-palar potar

Plate 2.2 (a)Hierarchical clustering of the amino acids performed using CLUTO (Karypis 2000, University of Minnesota
technical report #02—017), as described in Section 2.6.2. (b) Where clusters fail: the Venn diagram illustrates the overlapping
properties of amino acids. The color scheme is the one implemented in the CINEMA sequence alignment editor (Parry-Smith et al.
1998, Gene, 221: GC57-GC63): red for acidic; blue for basic; green for polar neutral; purple for aromatic; black for aliphatic;
yellow for cysteine (disulfide potential); and brown for proline and glycine (which have unique structural properties, especially in
helices).

*dnoan urysiqnJ aanjeN wodj
uorsstutd Y)Mm (€ T-807Z :80F ‘24BN ‘000 7) ‘[P 32 uRWSU] WO} paonpoIday "UOIRWLIOJUL ST} WOJJ padNpap 9911 d1auadoAyd oy
pue sdnoas o1ur])o JUSISJIP AURT WOIJ SOWIOUIS [RIIPUOYDIOJIT URWNY U $9)1S dATJRULIOJUI 1 PIAIISO Soseq Jo waned oy, L°€ ale|d

) .I.-l.._.

(@

f ! ‘ j_ 1(‘& -.M" L”Ftl

HRE TR 1l|f‘“..: 'i
-Nﬂ*n-h--é:ﬁn:ssp=anﬁﬂnannnnanaansnnnins+#

PSSM of IFBOOOSLTA (Prion;) 90 sequences.

(b)

OPSD_SHEEP
OPSD_BOVIN
OPSD_MOUSE
OPSD_HUMAN
OPSD_XENLA
OPSD_CHICK
OPSD_LAMJA
OPSG_CHICK
OPSG_CARAU
OPSB_GECGE
OPSU_BRARE

<
L

B T T
& >

<

5 T T 5 T T S S 5
ZTTITTITZTTTITZZ
> >
»FPPEFFFLTEE

s R e

©

OPSG_GECGE
OPSG_ASTFA
OPSG_HUMAN
OPSR_HUMAN
OPSR_ANOCA
OPSR_CHICK
OPSR_ASTFA
OPSR_CARAU

Prrrrrr

PPrrpprprpp
> rrr>

[ot et et i e
PrrrZITrr
PErRPEFRErrFE
PrprprRrrR

e ol okl ol el pee i
»Prrrrrrk

Plate 9.1 (a) Logo for the prion block depicted in Fig. 9.3. The completely conserved glycine and highly conserved proline
residues that form the GPG anchor for this block are clearly visible toward the center of the logo. (b) Excerpts from sequence
alignments of vertebrate visual receptors. The coloring of the amino acids follows the scheme shown in Plate 2.2(b). Part of the
typical signature of rhodopsin (denoted OPSD) sequences is shown. (c) Part of the typical signature of red/green opsins (denoted
OPSR and OPSG). Note that the red and green sequences are highly similar, such that it is almost impossible to separate them
using typical sequence analysis methods —the central motif, N-P-G-Y-[AP]-[FW]-H-P-L, which includes a conserved histidine, is
particularly striking. More startling is the fact that within the rhodopsin alignment are several “rogue” sequences, namely of
green, blue (OPSB), and purple (OPSU) opsins, that more closely resemble the rhodopsin sequence signature than they do their
own pigment sequences —in particular, the chicken (CHICK) and goldfish (CARAU) green pigments do not contain the N-P-G-Y-
[AP]-[FW]-H-P-L motif characteristic of green sequences.

3,450,001 3,475,000

YVbA similar to arsenical resistance operon repressor

Plate 10.1 Application of a three-state M1-M2 model to the Bacillus subtilis genome reveals an atypical segment (3,463-3,467 kb,
underlined) surrounded by ABC transporter gene duplication (thin black arrows). Filled arrows represent genes of known
function, empty arrows, those of unknown function, and red hairpins represent transcriptional terminators. The colored curves
show the probabilities of being in each of the three hidden states at each point in the sequence. The magenta state matches genes
on the (+) strand, whereas cyan matches genes on the (-) strand. The black state fits either intergenic regions or atypical genes.
Reproduced from Nicolas et al. (2002, Nucleic Acids Research, 30: 1418-26) with permission of Oxford University Press.

-
-
-
1
-
.
=

Plate 11.1 The secondary structure of SSUrRNA in E. coli. The color scheme shows the degree of variability of the sequence
across the bacterial domain. Category O (purple) sites are completely conserved. Categories 1 to 5 range from very slowly
evolving (blue) to rapidly evolving (red). The gray sites are present in less that 25% of the species considered, hence no measure
of evolutionary rate was made. Reproduced with permission from the European Ribosomal RNA database
http://oberon.fvms.ugent.be:8080/rRNA/index.html

o M gy
o g1 ey
*\i"‘“ e
%

e N "

- .‘\“ AR
'l--l||ll |'Il. 1. tD0ea0
By "I

(b) R o gl ...- Al - =

"'-"FF""""I 1—-—&- mﬂu—-un—!— »> A wi 4...4

“%\%&\“‘%\\\\\\\ NI Wi/ //

SR e el Yty 4

& preaia:

B
P e ik 1 Pt e D= -t r;-r!h'iu

%\\\\ \ \W/K/////f M/_//

I—ln -ll—t — -Jt- i*i—ll*ll——

iy __////J/

Plate 12.1 The genome of Rickettsia conorii, reproduced from Ogata et al. (2001), Copyright 2001 AAAS. (a) The outer circle
gives the nucleotide positions in bases measured anticlockwise from the origin of replication. The second and third circles show
the positions of ORFs on the plus and minus strands, respectively. The colors used indicate different functional classes of gene. The
arrows in the fourth and fifth circles show the positions of tRNA genes, and the three black arrows show rRNAs. The sixth and
seventh circles indicate short repeated sequences. The eighth circle shows G—C skew. The genome is found to be largely colinear
with R. prowazekii, except for the shaded sector on the lower left. (b) Three distinct regions of the R. conorii genome aligned with
homologous regions of the R. prowazekii genome. Most of the genes are present in the same order in both species. The top and
middle sections show split genes in R. prowazekii and R. conorii, respectively. The bottom section contains a non-coding region of

R. prowazekii that shows some sequence similarity to a functional gene (rOmpA) in R. conorii.

ke aarr——w—— e ———

0. -1 B OSSR WA A ..
PREINETLE Foso saphens Frofebms: 01 1MSsc I7 rieeg @ Lengiho D6SE9

== e E— - — &

O e TR e
FEDETE P - Frafaim BN INESar Y rieSe B Lesgiee OESED

I

T L L R |
e halben il Feptairad CF Ui B PR B Lesgiee 1ETTR

i

e Lk LS B R L] -
IR Al el iR L patine Frofsims 5 iRy BF el Legthc jSEY

1

R ol o o o DTN o
JENTTE ieafts mpwiwis Profsims 15 il 0¥ riiSw 8 Legths SIEF

Wb o Bresk Paiste 1 S | Lo

N OED A N I D AN e S W DT R e A R
CELIEITE Lo oyt Fratadrmt 03 rBWRac 8 Lengih: L0994

Bushar of Prasl Puinta § 1R i ked

Plate 12.2 Comparisons of gene order in pairs of animal mitochondrial genomes constructed using the OGRe database
(Jameson et al. 2003, Nucleic Acids Research, 31: 202—6). http://ogre.mcmaster.ca

0OCI Ly10 [DLBCL
DLCL-0042 Germinal Center B

A %_gt-oom NI. Lymph Node/Tonsil
DLCL 0036 Activated Blood B
DLCL-0030 Resting/Activated T
DLCL-0004 Transformed Cell Lines
DLCL-0029
Tonsil Germinal Center B

FL
Tonsil Germinal Center Centroblasts B R esting Blood B
SUDHL6 CLL

il

Pan B cell

[SISISISISISISIS]
T r <

]
=<
3
5s]
f El
=
9]
a
@

Germinal Center
B cell

Tl

DLCL-0021
Blood B;anti-lgM+CD40L low 48h
Blood B;anti-IgM+CD40L high 48h
Blood B;anti-IgM+CD40L 2

Blood B;anti-lgM 24h

Blood B;anti-lgM+IL-4 24h

Blood B;anti-IgM+CD40L+IL-4 24h
Blood B;anti-lgM+IL-4 6h

Blood B;anti-IgM 6h

Blood B;anti-IgM+CD40L 6h

Blood B;anti-IgM+CD40L+IL-4 6h
Blood T;Adult CD4+ Unstim.

Blood T;Adult CD4+ +P Stim.
Cord Blood T,CD4+ |+P Stim.

Thymic T:Fetal CD4+ Unstim.
Ttgm\c TFetal CD4+ |+P Stim.
ocl L¥1
WsU
Jurkat

937
QClLy12

B Tcen
B Activated B cell

| =50 (1277

Proliferation

FL-9,CD19+
FL-12,0D19+
FL-10;CD19+
FL-10

FL-11
FL-11,CD19+
FL-6,CD19+
FL-5:CD19+
Blood B;memory
Blood B;naive

Blood B
Cord Blood B
CLL-60

Lymph Node

QL6
L7t —2 -1 0 1 2
8LL39

CLL-52
——— I DLCL-0009 0.250 0.500 1.000 2.000 4.000

Plate 13.1 Hierarchical clustering of gene expression data depicting the relationship between 96 samples of normal and
malignant lymphocytes (reproduced from Alizadeh et al. 2000, Nature, 403: 50311, with permission of Nature Publishing
Group).

" UISB[RYD014D SNIp 9} 0] JUR)SISAI IO ANISUIS A[QWDIXA 21k Jey]) sojdures ajeorput

\ puUe S "BIRp SWES 97} JO SULIISN]D [BIIYOIRIANH (q) *I190URD Jo sadA) 9I0s U9am9q SULIAISN]D JO JUNOWE UTRLISD B S[BOAI SOXE
Juauodwod [edourad 991y 1811 o) 03u0 saduwes) jo uo13(oid (8) ‘(dnois Surysiqng aanjeN jo uorssiuiad yum ‘/—706 1€
‘yuawarddns so19u25) 2. ‘7 ()T WIUO[S WOJJ paoNnpoIda) saul] [[39 I90URD ()9 WOJJ BJep ARIIROIOIW JO SISA[eUY Z'€ L 91e|d

= mom omom EEw SaEps mpasmsssm

_n___n“E __n__a..m._mm__:__ __m___________ AR w5

RUHE ik ity __“___N_E_n s ____mmm_ o

L e m
— AN = |

5

-~ |ia) =TT T~ 31 o~
5 G e s
= » 5@ \ =
o ' 6@ b
5 |gf 70 _ @4 b ﬁ
== f’ - LS "' "_‘
3| s 5 1 =
5 |7 /s 11e Lk W2
2 I! \ \l @
o H L |
2\ 1de | Az]
N III'I. 11"‘ xf : -"’ 'E
5|\ o 14| 7 T /| &
&) ! b ! 0
N '
o= N\ 1 s
® |s/G2% 120 @ i %
¥ M/GLl
4 G2/M ™~ L " “
Array Correlation with |a;) Gene Correlation with |[vyz)

Plate 13.3 Analysis of microarray data from the yeast cell cycle using SVD (reproduced from Alter et al. 2000, Proceedings of

the National Academy of Sciences USA, 97: 10101-6, Copyright 2000 National Academy of Sciences, USA). (a) Arrays 1-12
correspond to successive time-points of the cell. The points for the 12 arrays proceed in an almost circular pattern around the
space defined by the first 2 eigenarrays (denoted | o> and | o.,>). (b) Each of 784 cell-cycle-regulated genes is shown as a point in
the space of the first two eigengenes (denoted | v, > and | y,> and). The array points are color-coded according to the five cell-cycle
stages: M/G, (yellow), G, (green), S (blue), S/G, (red), and G,/M (orange). The gene points are colored according to the stage at
which they are significantly up-regulated.

@ % ® 0

.‘l

i
0 5 10 15 20
No. of links

Plate 13.4 Map of protein—protein interactions in yeast (Jeong et al. 2001, Nature, 411:41-2, with permission of Nature
Publishing Group). Each node is a protein, and each link is a physical protein—protein interaction, identified usually by Y2H
experiments. The color of a node indicates the effect of deleting the corresponding protein (red, lethal; green, non-lethal; orange,
slow growth; yellow, unknown).

	Bioinformatics and Molecular Evolution
	Full Contents
	Preface
	1 Introduction: The revolution in biological information
	1.1 DATA EXPLOSIONS
	1.2 GENOMICS AND HIGH-THROUGHPUT TECHNIQUES
	1.3 WHAT IS BIOINFORMATICS?
	1.4 THE RELATIONSHIP BETWEEN POPULATION GENETICS, MOLECULAR EVOLUTION, AND BIOINFORMATICS
	SUMMARY

	2 Nucleic acids, proteins, and amino acids
	2.1 NUCLEIC ACID STRUCTURE
	2.2 PROTEIN STRUCTURE
	2.3 THE CENTRAL DOGMA
	2.4 PHYSICO-CHEMICAL PROPERTIES OF THE AMINO ACIDS AND THEIR IMPORTANCE IN PROTEIN FOLDING
	BOX 2.1 Polymerase chain reaction (PCR)
	2.5 VISUALIZATION OF AMINO ACID PROPERTIES USING PRINCIPAL COMPONENT ANALYSIS
	2.6 CLUSTERING AMINO ACIDS ACCORDING TO THEIR PROPERTIES
	BOX 2.2 Principal component analysis in more detail
	SUMMARY

	3 Molecular evolution and population genetics
	3.1 WHAT IS EVOLUTION?
	3.2 MUTATIONS
	3.3 SEQUENCE VARIATION WITHIN AND BETWEEN SPECIES
	3.4 GENEALOGICAL TREES AND COALESCENCE
	3.5 THE SPREAD OF NEW MUTATIONS
	3.6 NEUTRAL EVOLUTION AND ADAPTATION
	BOX 3.1 The influence of selection on the fixation probability
	BOX 3.2 A deterministic theory for the spread of mutations
	SUMMARY

	4 Models of sequence evolution
	4.1 MODELS OF NUCLEIC ACID SEQUENCE EVOLUTION
	BOX 4.1 Solution of the Jukes–Cantor model
	4.2 THE PAM MODEL OF PROTEIN SEQUENCE EVOLUTION
	BOX 4.2 PAM distances
	4.3 LOG-ODDS SCORING MATRICES FOR AMINO ACIDS
	SUMMARY

	5 Information resources for genes and proteins
	5.1 WHY BUILD A DATABASE?
	5.2 DATABASE FILE FORMATS
	5.3 NUCLEIC ACID SEQUENCE DATABASES
	5.4 PROTEIN SEQUENCE DATABASES
	5.5 PROTEIN FAMILY DATABASES
	5.6 COMPOSITE PROTEIN PATTERN DATABASES
	5.7 PROTEIN STRUCTURE DATABASES
	5.8 OTHER TYPES OF BIOLOGICAL DATABASE
	SUMMARY

	6 Sequence alignment algorithms
	6.1 WHAT IS AN ALGORITHM?
	6.2 PAIRWISE SEQUENCE ALIGNMENT – THE PROBLEM
	6.3 PAIRWISE SEQUENCE ALIGNMENT – DYNAMIC PROGRAMMING METHODS
	6.4 THE EFFECT OF SCORING PARAMETERS ON THE ALIGNMENT
	6.5 MULTIPLE SEQUENCE ALIGNMENT
	SUMMARY

	7 Searching sequence databases
	7.1 SIMILARITY SEARCH TOOLS
	7.2 ALIGNMENT STATISTICS (IN THEORY)
	BOX 7.1 Extreme value distributions
	BOX 7.2 Derivation of the extreme value distribution in the word-matching example
	7.3 ALIGNMENT STATISTICS (IN PRACTICE)
	SUMMARY

	8 Phylogenetic methods
	8.1 UNDERSTANDING PHYLOGENETIC TREES
	8.2 CHOOSING SEQUENCES
	8.3 DISTANCE MATRICES AND CLUSTERING METHODS
	BOX 8.1 Calculation of distances in the neighbor-joining method
	8.4 BOOTSTRAPPING
	8.5 TREE OPTIMIZATION CRITERIA AND TREE SEARCH METHODS
	8.6 THE MAXIMUM-LIKELIHOOD CRITERION
	BOX 8.2 Calculating the likelihood of the data on a given tree
	8.7 THE PARSIMONY CRITERION
	8.8 OTHER METHODS RELATED TO MAXIMUM LIKELIHOOD
	BOX 8.3 Calculating posterior probabilities
	SUMMARY

	9 Patterns in protein families
	9.1 GOING BEYOND PAIRWISE ALIGNMENT METHODS FOR DATABASE SEARCHES
	9.2 REGULAR EXPRESSIONS
	9.3 FINGERPRINTS
	9.4 PROFILES AND PSSMS
	9.5 BIOLOGICAL APPLICATIONS – G PROTEIN-COUPLED RECEPTORS
	SUMMARY

	10 Probabilistic methods and machine learning
	10.1 USING MACHINE LEARNING FOR PATTERN RECOGNITION IN BIOINFORMATICS
	10.2 PROBABILISTIC MODELS OF SEQUENCES – BASIC INGREDIENTS
	BOX 10.1 Dirichlet prior distributions
	10.3 INTRODUCING HIDDEN MARKOV MODELS
	BOX 10.2 The Viterbi algorithm
	BOX 10.3 The forward and backward algorithms
	10.4 PROFILE HIDDEN MARKOV MODELS
	10.5 NEURAL NETWORKS
	BOX 10.4 The back-propagation algorithm
	10.6 NEURAL NETWORKS AND PROTEIN SECONDARY STRUCTURE PREDICTION
	SUMMARY

	11 Further topics in molecular evolution and phylogenetics
	11.1 RNA STRUCTURE AND EVOLUTION
	11.2 FITTING EVOLUTIONARY MODELS TO SEQUENCE DATA
	11.3 APPLICATIONS OF MOLECULAR PHYLOGENETICS
	SUMMARY

	12 Genome evolution
	12.1 PROKARYOTIC GENOMES
	BOX 12.1 Web resources for bacterial genomes
	12.2 ORGANELLAR GENOMES
	SUMMARY

	13 DNA Microarrays and the ’omes
	13.1 ’OMES AND ’OMICS
	13.2 HOW DO MICROARRAYS WORK?
	13.3 NORMALIZATION OF MICROARRAY DATA
	13.4 PATTERNS IN MICROARRAY DATA
	13.5 PROTEOMICS
	13.6 INFORMATION MANAGEMENT FOR THE ’OMES
	BOX 13.1 Examples from the Gene Ontology
	SUMMARY

	Mathematical appendix
	M.1 EXPONENTIALS AND LOGARITHMS
	M.2 FACTORIALS
	M.3 SUMMATIONS
	M.4 PRODUCTS
	M.5 PERMUTATIONS AND COMBINATIONS
	M.6 DIFFERENTIATION
	M.7 INTEGRATION
	M.8 DIFFERENTIAL EQUATIONS
	M.9 BINOMIAL DISTRIBUTIONS
	M.10 NORMAL DISTRIBUTIONS
	M.11 POISSON DISTRIBUTIONS
	M.12 CHI-SQUARED DISTRIBUTIONS
	M.13 GAMMA FUNCTIONS AND GAMMA DISTRIBUTIONS
	PROBLEMS

	List of Web addresses
	Glossary
	Index

